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1Dipartimento di Fisica dell’Università degli Studi di Milano, 20133 Milano, Italia
2CNISM - Udr Milano, 20133 Milano, Italia

Received 13 January 2012 / Received in final form 21 February 2012
Published online 11 April 2012

Abstract. We address the basic postulates of quantum mechanics and
point out that they are formulated for a closed isolated system. Since
we are mostly dealing with systems that interact or have interacted
with the rest of the universe one may wonder whether a suitable modi-
fication is needed, or in order. This is indeed the case and this tutorial
is devoted to review the modern tools of quantum mechanics, which are
suitable to describe states, measurements, and operations of realistic,
not isolated, systems. We underline the central role of the Born rule and
and illustrate how the notion of density operator naturally emerges, to-
gether with the concept of purification of a mixed state. In reexamining
the postulates of standard quantum measurement theory, we investi-
gate how they may be formally generalized, going beyond the descrip-
tion in terms of selfadjoint operators and projective measurements, and
how this leads to the introduction of generalized measurements, prob-
ability operator-valued measures (POVMs) and detection operators.
We then state and prove the Naimark theorem, which elucidates the
connections between generalized and standard measurements and illus-
trates how a generalized measurement may be physically implemented.
The “impossibility” of a joint measurement of two non commuting ob-
servables is revisited and its canonical implementation as a generalized
measurement is described in some details. The notion of generalized
measurement is also used to point out the heuristic nature of the so-
called Heisenberg principle. Finally, we address the basic properties,
usually captured by the request of unitarity, that a map transforming
quantum states into quantum states should satisfy to be physically ad-
missible, and introduce the notion of complete positivity (CP). We then
state and prove the Stinespring/Kraus-Choi-Sudarshan dilation theo-
rem and elucidate the connections between the CP-maps description
of quantum operations, together with their operator-sum representa-
tion, and the customary unitary description of quantum evolution. We
also address transposition as an example of positive map which is not
completely positive, and provide some examples of generalized mea-
surements and quantum operations.
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1 Introduction

Quantum information science is a novel discipline which addresses how quantum
systems may be exploited to improve the processing, transmission, and storage of
information. This field has fostered new experiments and novel views on the concep-
tual foundations of quantum mechanics, and also inspired much current research on
coherent quantum phenomena, with quantum optical systems playing a prominent
role. Yet, the development of quantum information had so far little impact on the
way that quantum mechanics is taught, both at graduate and undergraduate levels.
This tutorial is devoted to review the mathematical tools of quantum mechanics and
to present a modern reformulation of the basic postulates which is suitable to de-
scribe quantum systems in interaction with their environment, and with any kind of
measuring and processing devices.
We use Dirac braket notation throughout the tutorial and by system we refer to

a single given degree of freedom (spin, position, angular momentum,. . . ) of a phys-
ical entity. Strictly speaking we are going to deal with systems described by finite-
dimensional Hilbert spaces and with observable quantities having a discrete spectrum.
Some of the results may be generalized to the infinite-dimensional case and to the
continuous spectrum.
The postulates of quantum mechanics are a list of prescriptions to summarize

1. how we describe the states of a physical system;
2. how we describe the measurements performed on a physical system;
3. how we describe the evolution of a physical system, either because of the dynamics
or due to a measurement.

In this section we present a picoreview of the basic postulates of quantum mechanics in
order to introduce notation and point out both i) the implicit assumptions contained
in the standard formulation, and ii) the need of a reformulation in terms of more
general mathematical objects. For our purposes the postulates of quantum mechanics
may be grouped and summarized as follows

Postulate 1 (States of a quantum system). The possible states of a physical sys-
tem correspond to normalized vectors |ψ⟩, ⟨ψ|ψ⟩ = 1, of a Hilbert spaceH. Composite
systems, either made by more than one physical object or by the different degrees
of freedom of the same entity, are described by tensor product H1 ⊗H2 ⊗ . . . of the
corresponding Hilbert spaces, and the overall state of the system is a vector in the
global space. As far as the Hilbert space description of physical systems is adopted,
then we have the superposition principle, which says that if |ψ1⟩ and |ψ2⟩ are possi-
ble states of a system, then also any (normalized) linear combination α|ψ1⟩+ β|ψ2⟩,
α,β ∈ C , |α|2 + |β|2 = 1 of the two states is an admissible state of the system.

Postulate 2 (Quantum measurements). Observable quantities are described by
Hermitian operators X. Any hermitian operator X = X†, admits a spectral decompo-
sition X =

∑
x xPx, in terms of its real eigenvalues x, which are the possible value of

the observable, and of the projectors Px = |x⟩⟨x|, Px, Px′ = δxx′Px on its eigenvectors
X|x⟩ = x|x⟩, which form a basis for the Hilbert space, i.e. a complete set of ortho-
normal states with the properties ⟨x|x′⟩ = δxx′ (orthonormality), and

∑
x |x⟩⟨x| = I

(completeness, we omitted to indicate the dimension of the Hilbert space). The prob-
ability of obtaining the outcome x from the measurement of the observable X is given
by px = |⟨ψ|x⟩|2, i.e

px = ⟨ψ|Px|ψ⟩ =
∑

n

⟨ψ|ϕn⟩⟨ϕn|Px|ψ⟩ (1)
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and the overall expectation value by

⟨X⟩ = ⟨ψ|X|ψ⟩ = Tr [|ψ⟩⟨ψ|X] .

This is the Born rule, which represents the fundamental recipe to connect the math-
ematical description of a quantum state to the prediction of quantum theory about
the results of an actual experiment. The state of the system after the measurement
is the (normalized) projection of the state before the measurement on the eigenspace
of the observed eigenvalue, i.e.

|ψx⟩ =
1
√
px
Px|ψ⟩ .

Postulate 3 (Dynamics of a quantum system). The dynamical evolution of a
physical system is described by unitary operators: if |ψ0⟩ is the state of the system
at time t0 then the state of the system at time t is given by |ψt⟩ = U(t, t0)|ψ0⟩, with
U(t, t0)U†(t, t0) = U†(t, t0)U(t, t0) = I.

We will denote by L(H) the linear space of (linear) operators from H to H, which
itself is a Hilbert space with scalar product provided by the trace operation, i.e. upon
denoting by |A⟩⟩ operators seen as elements of L(H), we have ⟨⟨A|B⟩⟩ = Tr[A†B]
(see Appendix A for details on the trace operation).

As it is apparent from their formulation, the postulates of quantum mechanics, as
reported above, are about a closed isolated system. On the other hand, we are mostly
dealing with system that interacts or have interacted with the rest of the universe,
either during their dynamical evolution, or when subjected to a measurement. As a
consequence, one may wonder whether a suitable modification is needed, or in order.
This is indeed the case and the rest of his tutorial is devoted to review the tools of
quantum mechanics and to present a modern reformulation of the basic postulates
which is suitable to describe, design and control quantum systems in interaction with
their environment, and with any kind of measuring and processing devices.

2 Quantum states

2.1 Density operator and partial trace

Suppose to have a quantum system whose preparation is not completely under con-
trol. What we know is that the system is prepared in the state |ψk⟩ with probability
pk, i.e. that the system is described by the statistical ensemble {pk, |ψk⟩},

∑
k pk = 1,

where the states {|ψk⟩} are not, in general, orthogonal. The expected value of an
observable X may be evaluated as follows

⟨X⟩ =
∑

k

pk⟨X⟩k =
∑

k

pk⟨ψk|X|ψk⟩ =
∑

n p k

pk⟨ψk|ϕn⟩⟨ϕn|X|ϕp⟩⟨ϕp|ψk⟩

=
∑

n p k

pk⟨ϕp|ψk⟩⟨ψk|ϕn⟩⟨ϕn|X|ϕp⟩ =
∑

n p

⟨ϕp|ϱ|ϕn⟩⟨ϕn|X|ϕp⟩

=
∑

p

⟨ϕp|ϱX|ϕp⟩ = Tr [ϱX]

where

ϱ =
∑

k

pk |ψk⟩⟨ψk|
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is the statistical (density) operator describing the system under investigation. The
|ϕn⟩’s in the above formula are a basis for the Hilbert space, and we used the trick
of suitably inserting two resolutions of the identity I =

∑
n |ϕn⟩⟨ϕn|. The formula is

of course trivial if the |ψk⟩’s are themselves a basis or a subset of a basis.

Theorem 1 (Density operator). An operator ϱ is the density operator associated
to an ensemble {pk, |ψk⟩} is and only if it is a positive ϱ ≥ 0 (hence selfadjoint)
operator with unit trace Tr[ϱ] = 1.

Proof. If ϱ =
∑
k pk|ψk⟩⟨ψk| is a density operator then Tr[ϱ] =

∑
k pk = 1 and for any

vector |ϕ⟩ ∈ H, ⟨ϕ|ϱ|ϕ⟩ =
∑
k pk|⟨ϕ|ψk⟩|2 ≥ 0. Viceversa, if ϱ is a positive operator

with unit trace than it can be diagonalized and the sum of eigenvalues is equal to
one. Thus it can be naturally associated to an ensemble. !

As it is true for any operator, the density operator may be expressed in terms of its
matrix elements in a given basis, i.e. ϱ =

∑
np ϱnp|ϕn⟩⟨ϕp| where ϱnp = ⟨ϕn|ϱ|ϕp⟩ is

usually referred to as the density matrix of the system. Of course, the density matrix
of a state is diagonal if we use a basis which coincides or includes the set of eigenvec-
tors of the density operator, otherwise it contains off-diagonal elements.
Different ensembles may lead to the same density operator. In this case they have

the same expectation values for any operator and thus are physically indistinguish-
able. In other words, different ensembles leading to the same density operator are
actually the same state, i.e. the density operator provides the natural and most fun-
damental quantum description of physical systems. How this reconciles with Postulate
1 dictating that physical systems are described by vectors in a Hilbert space?
In order to see how it works let us first notice that, according to the postulates

reported above, the action of “measuring nothing” should be described by the iden-
tity operator I. Indeed the identity it is Hermitian and has the single eigenvalues 1,
corresponding to the persistent result of measuring nothing. Besides, the eigenpro-
jector corresponding to the eigenvalue 1 is the projector over the whole Hilbert space
and thus we have the consistent prediction that the state after the “measurement” is
left unchanged. Let us now consider a situation in which a bipartite system prepared
in the state |ψAB⟩⟩ ∈ HA ⊗ HB is subjected to the measurement of an observable
X =

∑
x Px ∈ L(HA), Px = |x⟩⟨x| i.e. a measurement involving only the degree

of freedom described by the Hilbert space HA. The overall observable measured on
the global system is thus X = X ⊗ IB, with spectral decomposition X =

∑
x xQx,

Qx = Px ⊗ IB. The probability distribution of the outcomes is then obtained using
the Born rule, i.e.

px = TrAB
[
|ψAB⟩⟩⟨⟨ψAB|Px ⊗ IB

]
. (2)

On the other hand, since the measurement has been performed on the sole sys-
tem A, one expects the Born rule to be valid also at the level of the single sys-
tem A, and a question arises on the form of the object ϱA which allows one to
write px = TrA[ϱA Px] i.e. the Born rule as a trace only over the Hilbert space
HA. Upon inspecting Eq. (2) one sees that a suitable mapping |ψAB⟩⟩⟨⟨ψAB| → ϱA
is provided by the partial trace ϱA = TrB

[
|ψAB⟩⟩⟨⟨ψAB|

]
. Indeed, for the operator

ϱA defined as the partial trace, we have TrA[ϱA] = TrAB[|ψAB⟩⟩⟨⟨ψAB|] = 1 and,
for any vector |ϕ⟩ ∈ HA , ⟨ϕA|ϱA|ϕA⟩ = TrAB[|ψAB⟩⟩⟨⟨ψAB| |ϕA⟩⟨ϕA| ⊗ IB] ≥ 0.
Being a positive, unit trace, operator ϱA is itself a density operator according to
Theorem 1. As a matter of fact, the partial trace is the unique operation which allows
to maintain the Born rule at both levels, i.e. the unique operation leading to the cor-
rect description of observable quantities for subsystems of a composite system. Let
us state this as a little theorem [1] .
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Theorem 2 (Partial trace). The unique mapping |ψAB⟩⟩⟨⟨ψAB| → ϱA = f(ψAB)
from HA ⊗ HB to HA for which TrAB[|ψAB⟩⟩⟨⟨ψAB|Px ⊗ IB] = TrA[f(ψAB)Px] is the
partial trace f(ψAB) ≡ ϱA = TrB[|ψAB⟩⟩⟨⟨ψAB|].
Proof. Basically the proof reduces to the fact that the set of operators onHA is itself a
Hilbert space L(HA) with scalar product given by ⟨⟨A|B⟩⟩ = Tr[A†B]. If we consider
a basis of operators {Mk} for L(HA) and expand f(ψAB) =

∑
kMkTrA[M

†
kf(ψAB)],

then since the map f has to preserve the Born rule, we have

f(ψAB) =
∑

k

MkTrA[M
†
k f(ψAB)] =

∑

k

MkTrAB
[
M†k ⊗ IB |ψAB⟩⟩⟨⟨ψAB|

]

and the thesis follows from the fact that in a Hilbert space the decomposition on a
basis is unique. !
The above result can be easily generalized to the case of a system which is initially de-
scribed by a density operator ϱAB, and thus we conclude that when we focus attention
to a subsystem of a composite larger system the unique mathematical description of
the act of ignoring part of the degrees of freedom is provided by the partial trace. It
remains to be proved that the partial trace of a density operator is a density operator
too. This is a very consequence of the definition that we put in the form of another
little theorem.

Theorem 3. The partial traces ϱA = TrB[ϱAB], ϱB = TrA[ϱAB] of a density operator
ϱAB of a bipartite system, are themselves density operators for the reduced systems.

Proof. We have TrA[ϱA] = TrB[ϱB] = TrAB[ϱAB] = 1 and, for any state |ϕA⟩ ∈ HA,
|ϕB⟩ ∈ HB,

⟨ϕA|ϱA|ϕA⟩ = TrAB [ϱAB |ϕA⟩⟨ϕA|⊗ IB] ≥ 0
⟨ϕB|ϱB|ϕB⟩ = TrAB [ϱAB IA ⊗ |ϕB⟩⟨ϕB|] ≥ 0 . !

2.1.1 Conditional states

From the above results it also follows that when we perform a measurement on one
of the two subsystems, the state of the “unmeasured” subsystem after the observa-
tion of a specific outcome may be obtained as the partial trace of the overall post
measurement state, i.e. the projection of the state before the measurement on the
eigenspace of the observed eigenvalue, in formula

ϱBx =
1

px
TrA [Px ⊗ IB ϱAB Px ⊗ IB] =

1

px
TrA [ϱAB Px ⊗ IB] (3)

where, in order to write the second equality, we made use of the circularity of the
trace (see Appendix A) and of the fact that we are dealing with a factorized projector.
The state ϱBx will be also referred to as the “conditional state” of system B after the
observation of the outcome x from a measurement of the observable X performed on
the system A.

Exercise 1. Consider a bidimensional system (say the spin state of a spin 12 particle)
and find two ensembles corresponding to the same density operator.

Exercise 2. Consider a spin 12 system and the ensemble {pk, |ψk}, k = 0, 1, p0 =
p1 =

1
2 , |ψ0⟩ = |0⟩, |ψ1⟩ = |1⟩, where |k⟩ are the eigenstates of σ3. Write the density

matrix in the basis made of the eigenstates of σ3 and then in the basis of σ1. Then,
do the same but for the ensemble obtained from the previous one by changing the
probabilities to p0 =

1
4 , p1 =

3
4 .
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Exercise 3. Write down the partial traces of the state |ψ⟩⟩ = cosφ |00⟩⟩+sinφ |11⟩⟩,
where we used the notation |jk⟩⟩ = |j⟩ ⊗ |k⟩.

2.2 Purity and purification of a mixed state

As we have seen in the previous section when we observe a portion, say A, of a
composite system described by the vector |ψAB⟩⟩ ∈ HA⊗HB, the mathematical object
to be inserted in the Born rule in order to have the correct description of observable
quantities is the partial trace, which individuates a density operator on HA. Actually,
also the converse is true, i.e. any density operator on a given Hilbert space may
be viewed as the partial trace of a state vector on a larger Hilbert space. Let us
prove this constructively: if ϱ is a density operator on H, then it can be diagonalized
by its eigenvectors and it can be written as ϱ =

∑
k λk|ψk⟩⟨ψk|; then we introduce

another Hilbert space K, with dimension at least equal to the number of nonzero
eqigenvalues of ϱ and a basis {|θk⟩} in K, and consider the vector |ϕ⟩⟩ ∈ H⊗K given
by |ϕ⟩⟩ =

∑
k

√
λk |ψk⟩ ⊗ |θk⟩. Upon tracing over the Hilbert space K, we have

TrK [|ϕ⟩⟩⟨⟨ϕ|] =
∑

kk′

√
λkλk′ |ψk⟩⟨ψk′ | ⟨θk′ |θk⟩ =

∑

k

λk |ψk⟩⟨ψk| = ϱ .

Any vector on a larger Hilbert space which satisfies the above condition is referred to
as a purification of the given density operator. Notice that, as it is apparent from the
proof, there exist infinite purifications of a density operator. Overall, putting together
this fact with the conclusions from the previous section, we are led to reformulate
the first postulate to say that quantum states of a physical system are described by
density operators, i.e. positive operators with unit trace on the Hilbert space of the
system.
A suitable measure to quantify how far a density operator is from a projector

is the so-called purity, which is defined as the trace of the square density operator
µ[ϱ] = Tr[ϱ2] =

∑
k λ
2
k, where the λk’s are the eigenvalues of ϱ. Density operators

made by a projector ϱ = |ψ⟩⟨ψ| have µ = 1 and are referred to as pure states,
whereas for any µ < 1 we have a mixed state. Purity of a state ranges in the interval
1/d ≤ µ ≤ 1 where d is the dimension of the Hilbert space. The lower bound is found
looking for the minimum of µ =

∑
k λ
2
k with the constraint

∑
k λk = 1, and amounts

to minimize the function F = µ+ γ
∑
k λk, γ being a Lagrange multipliers. The solu-

tion is λk = 1/d, ∀k, i.e. the maximally mixed state ϱ = I/d, and the corresponding
purity is µ = 1/d.
When a system is prepared in a pure state we have the maximum possible infor-

mation on the system according to quantum mechanics. On the other hand, for mixed
states the degree of purity is connected with the amount of information we are miss-
ing by looking at the system only, while ignoring the environment, i.e. the rest of the
universe. In fact, by looking at a portion of a composite system we are ignoring the
information encoded in the correlations between the portion under investigation and
the rest of system: This results in a smaller amount of information about the state of
the subsystem itself. In order to emphasize this aspect, i.e. the existence of residual
ignorance about the system, the degree of mixedness may be quantified also by the
Von Neumann (VN) entropy S[ϱ] = −Tr[ϱ log ϱ] = −

∑
n λn log λn, where {λn} are

the eigenvalues of ϱ. We have 0 ≤ S[ϱ] ≤ log d: for a pure state S[|ψ⟩⟨ψ|] = 0 whereas
S[I/d] = log d for a maximally mixed state. VN entropy is a monotone function of
the purity, and viceversa.

Exercise 4. Evaluate purity and VN entropy of the partial traces of the state |ψ⟩⟩ =
cosφ |01⟩⟩+ sinφ |10⟩⟩.



Coherent Phenomena in Optics and Light-Matter Interaction 67

Exercise 5. Prove that for any pure bipartite state the entropies of the partial traces
are equal, though the two density operators need not to be equal.

Exercise 6. Take a single-qubit state with density operator expressed in terms of
the Pauli matrices ϱ = 1

2 (I+ r1σ1+ r2σ2+ r3σ3) (Bloch sphere representation), rk =
Tr[ϱ σk], and prove that the Bloch vector (r1, r2, r3) should satisfies r21 + r

2
2 + r

3
3 ≤ 1

for ϱ to be a density operator.

3 Quantum measurements

In this section we put the postulates of standard quantum measurement theory under
closer scrutiny. We start with some formal considerations and end up with a refor-
mulation suitable for the description of any measurement performed on a quantum
system, including those involving external systems or a noisy environment [2,3].
Let us start by reviewing the postulate of standard quantum measurement theory

in a pedantic way, i.e. by expanding Postulate 2; ϱ denotes the state of the system
before the measurement.

[2.1] Any observable quantity is associated to a Hermitian operator X with spectral
decomposition X =

∑
x x |x⟩⟨x|. The eigenvalues are real and we assume for

simplicity that they are nondegenerate. A measurement of X yields one of the
eigenvalues x as possible outcomes.

[2.2] The eigenvectors of X form a basis for the Hilbert space. The projectors Px =
|x⟩⟨x| span the entire Hilbert space,

∑
x Px = I.

[2.3] The projectors Px are orthogonal PxPx′ = δxx′Px. It follows that P 2x = Px and
thus that the eigenvalues of any projector are 0 and 1.

[2.4] (Born rule) The probability that a particular outcome is found as the measure-
ment result is

px = Tr [PxϱPx] = Tr
[
ϱP 2x
] ⋆
= Tr [ϱPx] .

[2.5] (Reduction rule) The state after the measurement (reduction rule or projection
postulate) is

ϱx =
1

px
PxϱPx,

if the outcome is x.
[2.6] If we perform a measurement but we do not record the results, the post-

measurement state is given by ϱ̃ =
∑
x px ϱx =

∑
x PxϱPx.

The formulations [2.4] and [2.5] follow from the formulations for pure states, upon
invoking the existence of a purification:

px = TrAB [Px ⊗ IB |ψAB⟩⟩⟨⟨ψAB|Px ⊗ IB] = TrAB
[
|ψAB⟩⟩⟨⟨ψAB|P 2x ⊗ IB

]

= TrA
[
ϱAP

2
x

]
(4)

ϱAx =
1

px
TrB [Px ⊗ IB |ψAB⟩⟩⟨⟨ψAB|Px ⊗ IB] =

1

px
Px TrB [|ψAB⟩⟩⟨⟨ψAB|]Px

=
1

px
Px ϱA Px . (5)
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The message conveyed by these postulates is that we can only predict the spectrum of
the possible outcomes and the probability that a given outcome is obtained. On the
other hand, the measurement process is random, and we cannot predict the actual
outcome of each run. Independently on its purity, a density operator ϱ does not
describe the state of a single system, but rather an ensemble of identically prepared
systems. If we perform the same measurement on each member of the ensemble we
can predict the possible results and the probability with which they occur but we
cannot predict the result of individual measurement (except when the probability of
a certain outcome is either 0 or 1).

3.1 Probability operator-valued measure and detection operators

The set of postulates [2.*] may be seen as a set of recipes to generate probabilities
and post-measurement states. We also notice that the number of possible outcomes
is limited by the number of terms in the orthogonal resolution of identity, which itself
cannot be larger than the dimensionality of the Hilbert space. It would however be
often desirable to have more outcomes than the dimension of the Hilbert space while
keeping positivity and normalization of probability distributions. In this section will
show that this is formally possible, upon relaxing the assumptions on the mathemat-
ical objects describing the measurement, and replacing them with more flexible ones,
still obtaining a meaningful prescription to generate probabilities. Then, in the next
sections we will show that there are physical processes that fit with this generalized
description, and that actually no revision of the postulates is needed, provided that
the degrees of freedom of the measurement apparatus are taken into account.
The Born rule is a prescription to generate probabilities: its textbook form is the

right term of the starred equality in [2.4]. However, the form on the left term has the
merit to underline that in order to generate a probability it sufficient if the P 2x is a
positive operator. In fact, we do not need to require that the set of the Px’s are pro-
jectors, nor we need the positivity of the underlying Px operators. So, let us consider
the following generalization: we introduce a set of positive operators Πx ≥ 0, which
are the generalization of the Px and use the prescription px = Tr[ϱΠx] to generate
probabilities. Of course, we want to ensure that this is a true probability distribution,
i.e. normalized, and therefore require that

∑
xΠx = I, that is the positive operators

still represent a resolution of the identity, as the set of projectors over the eigenstates
of a selfadjoint operator. We will call a decomposition of the identity in terms of posi-
tive operators

∑
xΠx = I a probability operator-valued measure (POVM) and Πx ≥ 0

the elements of the POVM.
Let us denote the operators giving the post-measurement states (as in [2.5]) by

Mx. We refer to them as to the detection operators. As noted above, they are no longer
constrained to be projectors. Actually, they may be any operator with the constraint,
imposed by [2.4] i.e. px = Tr[MxϱM†x] = Tr[ϱΠx]. This tells us that the POVM
elements have the form Πx = M†xMx which, by construction, individuate a set of a
positive operators. There is a residual freedom in designing the post-measurement
state. In fact, since Πx is a positive operator Mx =

√
Πx exists and satisfies the con-

straint, as well as any operator of the formMx = Ux
√
Πx with Ux unitary. This is the

most general form of the detection operators satisfying the constraint Πx = M†xMx
and corresponds to their polar decomposition. The POVM elements determine the
absolute values leaving the freedom of choosing the unitary part.
Overall, the detection operators Mx represent a generalization of the projectors

Px, while the POVM elements Πx generalize P 2x . The postulates for quantum mea-
surements may be reformulated as follows
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[II.1] Observable quantities are associated to POVMs, i.e. decompositions of identity∑
xΠx = I in terms of positive Πx ≥ 0 operators. The possible outcomes x

label the elements of the POVM and the construction may be generalized to
the continuous spectrum.

[II.2] The elements of a POVM are positive operators expressible as Πx = M†xMx
where the detection operatorsMx are generic operators with the only constraint∑
xM

†
xMx = I.

[II.3] (Born rule) The probability that a particular outcome is found as the measure-
ment result is px = Tr[MxϱM†x] = Tr[ϱM

†
xMx] = Tr[ϱΠx].

[II.4] (Reduction rule) The state after the measurement is ϱx =
1
px
MxϱM†x if the

outcome is x.
[II.5] If we perform a measurement but we do not record the results, the post-

measurement state is given by ϱ̃ =
∑
x px ϱx =

∑
xMxϱM

†
x.

Since orthogonality is no longer a requirement, the number of elements of a POVM has
no restrictions and so the number of possible outcomes from the measurement. The
above formulation generalizes both the Born rule and the reduction rule, and says that
any set of detection operators satisfying [II.2] corresponds to a legitimate operations
leading to a proper probability distribution and to a set of post-measurement states.
This scheme is referred to as a generalized measurement. Notice that in [II.4] we
assume a reduction mechanism sending pure states into pure states. This may be
further generalized to reduction mechanism where pure states are transformed to
mixtures, but we are not going to deal with this point.
Of course, up to this point, this is just a formal mathematical generalization of

the standard description of measurements given in textbook quantum mechanics,
and few questions naturally arise: Do generalized measurements describe physically
realizable measurements? How they can be implemented? And if this is the case, does
it means that standard formulation is too restrictive or wrong? To all these questions
an answer will be provided by the following sections where we state and prove the
Naimark Theorem, and discuss few examples of measurements described by POVMs.

3.2 The Naimark theorem

The Naimark theorem basically says that any generalized measurement satisfying
[II.*] may be viewed as a standard measurement defined by [2.*] in a larger Hilbert
space, and conversely, any standard measurement involving more than one physical
system may be described as a generalized measurement on one of the subsystems.
In other words, if we focus attention on a portion of a composite system where a
standard measurement takes place, than the statistics of the outcomes and the post-
measurement states of the subsystem may be obtained with the tools of generalized
measurements. Overall, we have

Theorem 4 (Naimark). For any given POVM
∑
xΠx = I, Πx ≥ 0 on a Hilbert

space HA there exists a Hilbert space HB, a state ϱB = |ωB⟩⟨ωB| ∈ L(HB), a unitary
operation U ∈ L(HA ⊗ HB), UU† = U†U = I, and a projective measurement Px,
PxP ′x = δxx′Px on HB such that Πx = TrB[I⊗ ϱB U†I⊗ Px U ]. The setup is referred
to as a Naimark extension of the POVM. Conversely, any measurement scheme where
the system is coupled to another system, from now on referred to as the ancilla, and
after evolution, a projective measurement is performed on the ancilla may be seen as
the Naimark extension of a POVM, i.e. one may write the Born rule px = Tr[ϱAΠx]
and the reduction rule ϱA → ϱAx =

1
px
MxϱAM†x at the level of the system only, in

terms of the POVM elements Πx = TrB[I⊗ϱB U†I⊗Px U ] and the detection operators
Mx|ϕA⟩ = ⟨x|U |ϕA,ωB⟩⟩.
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Fig. 1. Schematic diagram of a generalized measurement. The system of interest is coupled
to an ancilla prepared in a known state |ωB⟩ by the unitary evolution U , and then a projective
measurement is performed on the ancilla.

Let us start with the second part of the theorem, and look at what happens when we
couple the system under investigation to an additional system, usually referred to as
ancilla (or apparatus), let them evolve, and then perform a projective measurement
on the ancilla. This kind of setup is schematically depicted in Fig. 1. The Hilbert space
of the overall system is HA⊗HB, and we assume that the system and the ancilla are
initially independent on each other, i.e. the global initial preparation is R = ϱA⊗ ϱB.
We also assume that the ancilla is prepared in the pure state ϱB = |ωB⟩⟨ωB| since
this is always possible, upon a suitable purification of the ancilla degrees of freedom,
i.e. by suitably enlarging the ancilla Hilbert space. Our aim it to obtain information
about the system by measuring an observable X on the ancilla. This is done after
the system-ancilla interaction described by the unitary operation U . According to the
Born rule the probability of the outcomes is given by

px = TrAB
[
UϱA ⊗ ϱBU† I⊗ |x⟩⟨x|

]
= TrA

[
ϱA TrB

[
I⊗ ϱB U† I⊗ |x⟩⟨x|U

]
︸ ︷︷ ︸

]

Πx
where the set of operators Πx = TrB[I ⊗ ϱB U† I ⊗ |x⟩⟨x|U ] = ⟨ωB|U†I ⊗ PxU |ωB⟩ is
the object that would permit to write the Born rule at the level of the subsystem A,
i.e. it is our candidate POVM.
In order to prove this, let us define the operators Mx ∈ L(HA) by their action on the
generic vector in HA

Mx|ϕA⟩ = ⟨x|U |ϕA,ωB⟩⟩
where |ϕA,ωB⟩⟩ = |ϕA⟩ ⊗ |ωB⟩ and the |x⟩’s are the orthogonal eigenvectors of X.
Using the decomposition of ϱA =

∑
k λk|ψk⟩⟨ψk| onto its eigenvectors the probability

of the outcomes can be rewritten as

px = TrAB
[
UϱA ⊗ ϱBU† I⊗ |x⟩⟨x|

]
=
∑

k

λkTrAB
[
U |ψk,ωB⟩⟩⟨⟨ωB,ψk|U† I⊗ |x⟩⟨x|

]

=
∑

k

λkTrA
[
⟨x|U |ψk,ωB⟩⟩⟨⟨ωB,ψk|U†|x⟩

]
=
∑

k

λkTrA
[
Mx|ψk⟩⟨ψk|M†x

]

= TrA
[
MxϱAM

†
x

]
= TrA

[
ϱAM

†
xMx
]
, (6)

which shows that Πx = M†xMx is indeed a positive operator ∀x. Besides, for any
vector |ϕA⟩ in HA we have

⟨ϕA|
∑

x

M†xMx|ϕA⟩ =
∑

x

⟨⟨ωB,ϕA|U†|x⟩⟨x|U |ϕA,ωB⟩⟩

= ⟨⟨ωB,ϕA|U†U |ϕA,ωB⟩⟩ = 1 , (7)
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and since this is true for any |ϕA⟩ we have
∑
xM

†
xMx = I. Putting together Eqs. (6)

and (7) we have that the set of operators Πx = M†xMx is a POVM, with detection
operators Mx. In turn, the conditional state of the system A, after having observed
the outcome x, is given by

ϱAx =
1

px
TrB
[
UϱA ⊗ |ωB⟩⟨ωB|U† I⊗ Px

]
=
1

px

∑

k

λk⟨x|U |ψk,ωB⟩⟩⟨⟨ωB,ψk|U†|x⟩

=
1

px
MxϱAM

†
x. (8)

This is the half of the Naimark theorem: if we couple our system to an ancilla, let
them evolve and perform the measurement of an observable on the ancilla, which
projects the ancilla on a basis in HB, then this procedure also modify the system.
The transformation needs not to be a projection. Rather, it is adequately described
by a set of detection operators which realizes a POVM on the system Hilbert space.
Overall, the meaning of the above proof is twofold: on the one hand we have shown
that there exists realistic measurement schemes which are described by POVMs when
we look at the system only. At the same time, we have shown that the partial trace of
a spectral measure is a POVM, which itself depends on the projective measurement
performed on the ancilla, and on its initial preparation. Finally, we notice that the
scheme of Fig. 1 provides a general model for any kind of detector with internal
degrees of freedom.
Let us now address the converse problem: given a set of detection operators Mx

which realizes a POVM
∑
xM

†
xMx = I, is this the system-only description of an

indirect measurement performed a larger Hilbert space? In other words, there exists
a Hilbert space HB, a state ϱB = |ωB⟩⟨ωB| ∈ L(HB), a unitary U ∈ L(HA ⊗ HB),
and a projective measurement Px = |x⟩⟨x| in HB such that Mx|ϕA⟩ = ⟨x|U |ϕA,ωB⟩⟩
holds for any |ϕA⟩ ∈ HA and Πx = ⟨ωB|U†I ⊗ PxU |ωB⟩? The answer is positive and
we will provide a constructive proof. Let us take HB with dimension equal to the
number of detection operators and of POVM elements, and choose a basis |x⟩ for HB,
which in turn individuates a projective measurement. Then we choose an arbitrary
state |ωB⟩ ∈ HB and define the action of an operator U as

U |ϕA⟩ ⊗ |ωB⟩ =
∑

x

Mx |ϕA⟩ ⊗ |x⟩

where |ϕA⟩ ∈ HA is arbitrary. The operator U preserves the scalar product

⟨⟨ωB,ϕ′A|U†U |ϕA,ωB⟩⟩ =
∑

xx′

⟨ϕ′A|M
†
x′Mx|ϕA⟩⟨x

′|x⟩ =
∑

x

⟨ϕ′A|M
†
x′Mx|ϕA⟩ = ⟨ϕ

′
A|ϕA⟩

and so it is unitary in the one-dimensional subspace spanned by |ωB⟩. Besides, it
may be extended to a full unitary operator in the global Hilbert space HA ⊗HB, eg
it can be the identity operator in the subspace orthogonal to |ωB⟩. Finally, for any
|ϕA⟩ ∈ HA, we have

⟨x|U |ϕA,ωB⟩⟩ =
∑

x′

Mx′ |ϕA⟩⟨x|x′⟩ =Mx|ϕA⟩,

and

⟨ϕA|Πx|ϕA⟩ = ⟨ϕA|M†xMx|ϕA⟩ = ⟨⟨ωB,ϕA|U†I⊗ PxU |ϕA,ωB⟩⟩,

that is, Πx = ⟨ωB|U†I⊗ PxU |ωB⟩. !
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This completes the proof of the Naimark theorem, which asserts that there is a
one-to-one correspondence between POVM and indirect measurements of the type
describe above. In other words, an indirect measurement may be seen as the physical
implementation of a POVM and any POVM may be realized by an indirect measure-
ment.
The emerging picture is thus the following: In measuring a quantity of interest on

a physical system one generally deals with a larger system that involves additional
degrees of freedom, besides those of the system itself. These additional physical en-
tities are globally referred to as the apparatus or the ancilla. As a matter of fact,
the measured quantity may be always described by a standard observable, however
on a larger Hilbert space describing both the system and the apparatus. When we
trace out the degrees of freedom of the apparatus we are generally left with a POVM
rather than a PVM. Conversely, any conceivable POVM, i.e. a set of positive oper-
ators providing a resolution of identity, describe a generalized measurement, which
may be always implemented as a standard measurement in a larger Hilbert space.
Before ending this Section, few remarks are in order:

R1 The possible Naimark extensions are actually infinite, corresponding to the in-
tuitive idea that there are infinite ways, with an arbitrary number of ancillary
systems, of measuring a given quantity. The construction reported above is some-
times referred to as the canonical extension of a POVM. The Naimark theorem
just says that an implementation in terms of an ancilla-based indirect measure-
ment is always possible, but of course the actual implementation may be different
from the canonical one.

R2 The projection postulate described at the beginning of this section, the scheme of
indirect measurement, and the canonical extension of a POVM have in common
the assumption that a nondemolitive detection scheme takes place, in which the
system after the measurement has been modified, but still exists. This is some-
times referred to as a measurement of the first kind in textbook quantum me-
chanics. Conversely, in a demolitive measurement or measurement of the second
kind, the system is destroyed during the measurement and it makes no sense of
speaking of the state of the system after the measurement. Notice, however, that
for demolitive measurements on a field the formalism of generalized measure-
ments provides the framework for the correct description of the state evolution.
As for example, let us consider the detection of photons on a single-mode of the
radiation field. A demolitive photodetector (as those based on the absorption of
light) realizes, in ideal condition, the measurement of the number operator a†a
without leaving any photon in the mode. If ϱ =

∑
np ϱnp|n⟩⟨p| is the state of the

single-mode radiation field a photodetector of this kind gives a natural number
n as output, with probability pn = ϱnn, whereas the post-measurement state is
the vacuum |0⟩⟨0| independently on the outcome of the measurement. This kind
of measurement is described by the orthogonal POVM Πn = |n⟩⟨n|, made by the
eigenvectors of the number operator, and by the detection operatorMn = |0⟩⟨n|.
The proof is left as an exercise.

R3 We have formulated and proved the Naimark theorem in a restricted form, suit-
able for our purposes. It should be noticed that it holds in more general terms,
as for example with extension of the Hilbert space given by direct sum rather
than tensor product, and also relaxing the hypothesis [4].

3.2.1 Conditional states in generalized measurements

If we have a composite system and we perform a projective measurement on,
say, subsystem A, the conditional state of the unmeasured subsystem B after
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the observation of the outcome x is given by Eq. (3), i.e. it is the partial trace
of the projection of the state before the measurement on the eigenspace of the
observed eigenvalue. One may wonder whether a similar results holds also when
the measurement performed on the subsystem a A is described by a POVM. The
answer is positive and the proof may be given in two ways. The first is based on
the observation that, thanks to the existence of a canonical Naimark extension,
we may write the state of the global system after the measurement as

ϱABx =
1

px
Mx ⊗ IB ϱABM†x ⊗ IB,

and thus the conditional state of subsystem B is the partial trace ϱBx = TrA[ϱABx]
i.e.

ϱBx =
1

px
TrA[Mx ⊗ IB ϱABM†x ⊗ IB]

=
1

px
TrA[ϱABM

†
xMx ⊗ IB] =

1

px
TrA[ϱABΠx ⊗ IB],

where again we used the circularity of partial trace in the presence of factorized
operators. A second proof may be offered invoking the Naimark theorem only to
ensure the existence of an extension, i.e. a projective measurement on a larger
Hilbert space HC ⊗ HA, which reduces to the POVM after tracing over HC .
In formula, assuming that Px ∈ L(HC ⊗ HA) is a projector and σ ∈ L(HC) a
density operator

ϱBx =
1

px
TrCA [Px ⊗ IB ϱAB ⊗ σ Px ⊗ IB] =

1

px
TrCA [ϱAB ⊗ σ Px ⊗ IB]

=
1

px
TrA [ϱABΠx ⊗ IB] .

3.3 Joint measurement of non commuting observables

A common statement about quantum measurements says that it is not possible to
perform a joint measurement of two observables QA and PA of a given system A
if they do not commute, i.e. [QA, PA] ̸= 0. This is related to the impossibility of
finding any common set of projectors on the Hilbert space HA of the system and to
define a joint observable. On the other hand, a question arises on whether common
projectors may be found in a larger Hilbert space, i.e. whether one may implement a
joint measurement in the form of a generalized measurement. The answer is indeed
positive [5–8]: This Section is devoted to describe the canonical implementation of
joint measurements for pair of observables having a (nonzero) commutator [QA, PA] =
c I ̸= 0 proportional to the identity operator.
The basic idea is to look for a pair of commuting observables [XAB, YAB] = 0 in a

larger Hilbert space HA⊗HB which trace the observables PA and QA, i.e. which have
the same expectation values

⟨XAB⟩ ≡ TrAB[XAB ϱA ⊗ ϱB] = TrA[QA ϱA] ≡ ⟨QA⟩

⟨YAB⟩ ≡ TrAB[YAB ϱA ⊗ ϱB] = TrA[PA ϱA] ≡ ⟨PA⟩
(9)

for any state ϱA ∈ HA of the system under investigation, and a fixed suitable prepa-
ration ϱB ∈ HB of the system B. A pair of such observables may be found upon
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choosing a replica system B, identical to A, and considering the operators

XAB = QA ⊗ IB + IA ⊗QB

YAB = PA ⊗ IB − IA ⊗ PB
(10)

where QB and PB are the analogue of QA and PA for system B, see [9] for more details
involving the requirement of covariance. The operators in Eq. (10), taken together a
state ϱB ∈ HB satisfying

TrB[QB ϱB] = TrB[PB ϱB] = 0 , (11)

fulfill the conditions in Eq. (9), i.e. realize a joint generalized measurement of the
noncommuting observables QA and PA. The operators XAB and YAB are Hermitian by
construction. Their commutator is given by

[XAB, YAB] = [QA, PA]⊗ IB − IA ⊗ [QB, PB] = 0 . (12)

Notice that the last equality, i.e. the fact that the two operators commute, is valid
only if the commutator [QA, PA] = c I is proportional to the identity. More general
constructions are needed if this condition does not hold [10].
Since the [XAB, YAB] = 0 the complex operator ZAB = XAB + i YAB is normal i.e.

[ZAB, Z
†
AB] = 0. For normal operators the spectral theorem holds, and we may write

ZAB =
∑

z

z Pz Pz = |z⟩⟩⟨⟨z| ZAB|z⟩⟩ = z|z⟩⟩ (13)

where z ∈ C , and Pz are orthogonal projectors on the eigenstates |z⟩⟩ ≡ |z⟩⟩AB of ZAB.
The set {Pz} represents the common projectors individuating the joint observable
ZAB. Each run of the measurement returns a complex number, whose real and imag-
inary parts correspond to a sample of the XAB and YAB values, aiming at sampling
QA and PA. The statistics of the measurement is given by

pZ(z) = TrAB[ϱA ⊗ ϱB Pz] = TrA[ϱAΠz] (14)

where the POVM Πz is given by

Πz = TrB[IA ⊗ ϱB Pz] . (15)

The mean values ⟨XAB⟩ = ⟨QA⟩ and ⟨YAB⟩ = ⟨PA⟩ are the correct ones by construction,
where by saying “correct” we intend the mean values that one would have recorded by
measuring the two observables QA and PA separately in a standard (single) projective
measurement on ϱA. On the other hand, the two marginal distributions

pX(x) =

∫
dy pZ(x+ iy) pY (y) =

∫
dx pZ(x+ iy) ,

need not to reproduce the distributions obtained in single measurements. In particu-
lar, for the measured variances ⟨∆X2AB⟩ = ⟨X2AB⟩ − ⟨XAB⟩2 and ⟨∆YAB⟩ one obtains

⟨∆X2AB⟩ = Tr
[
(Q2A ⊗ IB + IA ⊗Q2B + 2QA ⊗QB) ϱA ⊗ ϱB

]
− ⟨QA⟩2

= ⟨∆Q2A⟩+ ⟨Q2B⟩
⟨∆Y 2AB⟩ = ⟨∆P 2A⟩+ ⟨P 2B⟩ (16)

where we have already taken into account that ⟨QB⟩ = ⟨PB⟩ = 0. As it is apparent
from Eqs. (16) the variances of XAB and YAB are larger than those of the original, non
commuting, observables QA and PA.
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Overall, we may summarize the emerging picture as follows: a joint measurement
of a pair of non commuting observables corresponds to a generalized measurement
and may be implemented as the measurement of a pair of commuting observables on
an enlarged Hilbert space. Mean values are preserved whereas the non commuting
nature of the original observables manifests itself in the broadening of the marginal
distributions, i.e. as an additional noise term appears to both the variances. The
uncertainty product may be written as

⟨∆X2AB⟩⟨∆Y 2AB⟩ = ⟨∆Q2A⟩⟨∆P 2A⟩+ ⟨∆Q2A⟩⟨P 2B⟩+ ⟨Q2B⟩⟨∆P 2A⟩+ ⟨Q2B⟩⟨P 2B⟩ ,

≥ 1
4

∣∣[QA, PA]
∣∣2 + ⟨∆Q2A⟩⟨P 2B⟩+ ⟨Q2B⟩⟨∆P 2A⟩+ ⟨Q2B⟩⟨P 2B⟩ , (17)

where the last three terms are usually referred to as the added noise due to the joint
measurement. If we perform a joint measurement on a minimum uncertainty state
(MUS, see Appendix B) for a given pair of observables (e.g. a coherent state in the
joint measurement of a pair of conjugated quadratures of the radiation field) and use
a MUS also for the preparation of the replica system (e.g. the vacuum), then Eq. (17)
rewrites as

⟨∆X2AB⟩⟨∆Y 2AB⟩ =
∣∣[QA, PA]

∣∣2 . (18)

This is four times the minimum attainable uncertainty product in the case of a mea-
surement of a single observable (see Appendix B). In terms of rms’ ∆X =

√
⟨∆X2⟩

we have a factor 2, which is usually referred to as the 3 dB of added noise in joint
measurements. The experimental realization of joint measurements of non commuting
observables has been carried out for conjugated quadratures of the radiation field in
a wide range of frequencies ranging from radiowaves to the optical domain, see e.g.
[11,12].

3.4 About the so-called Heisenberg principle

Let us start by quoting Wikipedia about the Heisenberg principle [13]

Published by Werner Heisenberg in 1927, the principle implies that it is impos-
sible to simultaneously both measure the present position while “determining”
the future momentum of an electron or any other particle with an arbitrary
degree of accuracy and certainty. This is not a statement about researchers’
ability to measure one quantity while determining the other quantity. Rather,
it is a statement about the laws of physics. That is, a system cannot be de-
fined to simultaneously measure one value while determining the future value
of these pairs of quantities. The principle states that a minimum exists for the
product of the uncertainties in these properties that is equal to or greater than
one half of the reduced Planck constant.

As is it apparent from the above formulation, the principle is about the preci-
sion achievable in the measurement of an observable and the disturbance intro-
duced by the same measurement on the state under investigation, which, in turn,
would limit the precision of a subsequent measurement of the conjugated observable.
The principle, which has been quite useful in the historical development of quan-
tum mechanics, has been inferred from the analysis of the celebrated Heisenberg’
gedanken experiments, and thus is heuristic in nature. However, since its mathemat-
ical formulation is related to that of the uncertainty relations (see Appendix B),
it is often though as a theorem following from the axiomatic structure of quantum
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mechanics. This is not the case: here we exploit the formalism of generalized measure-
ments to provide an explicit example of a measurement scheme providing the max-
imum information about a given observable, i.e. the statistics of the corresponding
PVM, while leaving the state under investigation in an eigenstate of the conjugated
observable.
Let us consider the two noncommuting observables [A,B] = c I and the set of

detection operators Ma = |b⟩⟨a| where |a⟩ and |b⟩ are eigenstates of A and B respec-
tively, i.e. A|a⟩ = a|a⟩, B|b⟩ = b|b⟩. According to the Naimark theorem the set of
operators {Ma} describe a generalized measurement (e.g. an indirect measurement
as the one depicted in Fig. 1) with statistics pa = Tr[ϱΠa] described by the POVM
Πa = M†aMa = |a⟩⟨a| and where the conditional states after the measurement are
given by ϱa =

1
pa
MaϱM†a = |b⟩⟨b|. In other words, the generalized measurement

described by the set {Ma} has the same statistics of a Von-Neumann projective mea-
surement of the observable A, and leave the system under investigating in an eigen-
state of the observable B, thus determining its future value with an arbitrary degree
of accuracy and certainty and contrasting the formulation of the so-called Heisenberg
principle reported above. An explicit unitary realization of this kind of measurement
for the case of position, as well as a detailed discussion on the exact meaning of
the Heisenberg principle, and the tradeoff between precision and disturbance in a
quantum measurement, may be found in [14–16].

3.5 The quantum roulette

Let us consider K projective measurements corresponding to K nondegenerate
isospectral observables Xk, k = 1, . . . ,K in a Hilbert space H, and consider the
following experiment. The system is sent to a detector which at random, with proba-
bility zk,

∑
k zk = 1, perform the measurement of the observable Xk. This is known

as the quantum roulette since the observable to be measured is chosen at random,
eg according to the outcome of a random generator like a roulette. The probability
of getting the outcome x from the measurement of the observable Xk on a state

ϱ ∈ L(H) is given by p(k)x = Tr[ϱP (k)x ], P
(k)
x = |x⟩kk⟨x|, and the overall probability

of getting the outcome x from our experiment is given by

px =
∑

k

zkp
(k)
x =

∑

k

zkTr[ϱP
(k)
x ] = Tr

[

ϱ
∑

k

zkP
(k)
x

]

= Tr[ϱΠx],

where the POVM describing the measurement is given by Πx =
∑
k zkP

(k)
x . This is

indeed a POVM and not a projective measurement since

[Πx,Πx′ ] =
∑

kk′

zkzk′ [P
(k)
x , P

(k′)
x′ ] ̸= 0.

Again, we have a practical situation where POVMs naturally arise in order to describe
the statistics of the measurement in terms of the Born rule and the system density
operator. A Naimark extension for the quantum roulette may be obtained as follows.
Let us consider an additional probe system described by the Hilbert space HP of
dimension K equal to the number of measured observables in the roulette, and the

set of projectors Qx =
∑
k P

(k)
x ⊗ |θk⟩⟨θk| where {|θk⟩} is a basis for HP . Then, upon

preparing the probe system in the superposition |ωP ⟩ =
∑
k

√
zk|θk⟩ we have that

px = TrSP [ϱ ⊗ |ωP ⟩⟨ωP |Qx] and, in turn, Πx = TrP [IS ⊗ |ωP ⟩⟨ωP |Qx] =
∑
k zkP

(k)
x .
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The state of the system after the measurement may be obtained as the partial trace

ϱx =
1

px
TrP [Qx ϱ⊗ |ωP ⟩⟨ωP |Qx]

=
1

px

∑

k

∑

k′

TrP
[
P (k)x ⊗ |θk⟩⟨θk| ϱ⊗ |ωP ⟩⟨ωP |P (k

′)
x ⊗ |θk′⟩⟨θk′ |

]

=
1

px

∑

k

zkP
(k)
x ϱP (k)x .

Notice that the presented Naimark extension is not the canonical one.

Exercise 7. Prove that the operators Qx introduced for the Naimark extension of
the quantum roulette, are indeed projectors.

Exercise 8. Take a system made by a single qubit system and construct the canon-
ical Naimark extension for the quantum roulette obtained by measuring the observ-
ables σα = cosασ1 + sinασ2, where σ1 and σ2 are Pauli matrices and α ∈ [0,π] is
chosen at random with probability density p(α) = π−1.

4 Quantum operations

In this section we address the dynamical evolution of quantum systems to see whether
the standard formulation in terms of unitary evolutions needs a suitable generaliza-
tion. This is indeed the case: we will introduce a generalized description and see how
this reconciles with what we call Postulate 3 in the Introduction. We will proceed
in close analogy with what we have done for states and measurements. We start by
closely inspecting the physical motivations behind any mathematical description of
quantum evolution, and look for physically motivated conditions that a map, intended
to transform a quantum state into a quantum state, from now on a quantum operation,
should satisfy to be admissible. This will lead us to the concept of complete positivity,
which suitably generalizes the motivations behind unitarity. We then prove that any
quantum operation may be seen as the partial trace of a unitary evolution in a larger
Hilbert space, and illustrate a convenient form, the so-called Kraus or operator-sum
representation, to express the action of a quantum operation on quantum states.
By quantum operation we mean a map ϱ→ E(ϱ) transforming a quantum state ϱ

into another quantum state E(ϱ). The basic requirements on E to describe a physically
admissible operations are those captured by the request of unitarity in the standard
formulation, i.e.

Q1 The map is positive and trace-preserving, i.e. E(ϱ) ≥ 0 (hence selfadjoint) and
Tr[E(ϱ)] = Tr[ϱ] = 1. The last assumption may be relaxed to that of being
trace non-increasing 0 ≤ Tr[E(ϱ)] ≤ 1 in order to include evolution induced by
measurements (see below).

Q2 The map is linear E(
∑
k pkϱk) =

∑
k pkE(ϱk), i.e. the state obtained by applying

the map to the ensemble {pk, ϱk} is the ensemble {pk, E(ϱk)}.
Q3 The map is completely positive (CP), i.e. besides being positive it is such that
if we introduce an additional system, any map of the form E ⊗ I acting on the
extended Hilbert space is also positive. In other words, we ask that the map
is physically meaningful also when acting on a portion of a larger, composite,
system. As we will see, this request is not trivial at all, i.e. there exist maps that
are positive but not completely positive.
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4.1 The operator-sum representation

This section is devoted to state and prove a theorem showing that a map is a quantum
operation if and only if it is the partial trace of a unitary evolution in a larger Hilbert
space, and provides a convenient form, the so-called Kraus decomposition or operator-
sum representation [17,18], to express its action on quantum states.

Theorem 5 (Kraus). A map E is a quantum operation i.e. it satisfies the require-
ments Q1–Q3 if and only if is the partial trace of a unitary evolution on a larger
Hilbert space with factorized initial condition or, equivalently, it possesses a Kraus
decomposition i. e. its action may be represented as E(ϱ) =

∑
kMkϱM

†
k where {Mk}

is a set of operators satisfying
∑
kM

†
kMk = I.

Proof. The first part of the theorem consists in assuming that E(ϱ) is the partial trace
of a unitary operation in a larger Hilbert space and prove that it has a Kraus decom-
position and, in turn, it satisfies the requirements Q1–Q3. Let us consider a physical
system A prepared in the quantum state ϱA and another system B prepared in the
state ϱB. A and B interact through the unitary operation U and we are interested
in describing the effect of this interaction on the system A only, i.e. we are looking
for the expression of the mapping ϱA → ϱ′A = E(ϱA) induced by the interaction. This
may be obtained by performing the partial trace over the system B of the global AB
system after the interaction, in formula

E(ϱA) = TrB
[
U ϱA ⊗ ϱBU†

]
=
∑

s

psTrB
[
U ϱA ⊗ |θs⟩⟨θs|U†

]

=
∑

st

ps⟨ϕt|U |θs⟩ ϱA⟨θs|U†|ϕt⟩ =
∑

k

Mk ϱAM
†
k (19)

where we have introduced the operatorMk =
√
ps⟨ϕt|U |θs⟩, with the polyindex k ≡ st

obtained by a suitable ordering, and used the spectral decomposition of the density
operator ϱB =

∑
s ps|θs⟩⟨θs|. Actually, we could have also assumed the additional

system in a pure state |ωB⟩, since this is always possible upon invoking a purification,
i.e. by suitably enlarging the Hilbert space. In this case the elements in the Kraus
decomposition of our map would have be written as ⟨ϕt|U |ωB⟩. The set of operators
{Mk} satisfies the relation

∑

k

M†Mk =
∑

st

psθs|U†|ϕt⟩⟨ϕt|U |θs⟩ =
∑

s

ps⟨θs|U†U |θs⟩ = I.

Notice that the assumption of a factorized initial state is crucial to prove the existence
of a Kraus decomposition and, in turn, the complete positivity. In fact, the dynamical
map E(ϱA) = TrB[U ϱAB U†] resulting from the partial trace of an initially correlated
preparation ϱAB needs not to be so. In this case, the dynamics can properly be defined
only on a subset of initial states of the system. Of course, the map can be extended
to all possible initial states by linearity, but the extension may not be physically
realizable, i.e. may be not completely positive or even positive [19].
We now proceed to show that for map of the form (19) (Kraus decomposition) the

properties Q1–Q3 hold. Preservation of trace and of the Hermitian character, as well
as linearity, are guaranteed by the very form of the map. Positivity is also ensured,
since for any positive operator OA ∈ L(HA) and any vector |ϕA⟩ ∈ HA we have

⟨ϕA|E(OA)|ϕA⟩ = ⟨ϕA|
∑

k

Mk OAM
†
k |ϕA⟩ = ⟨ϕA|TrB[U OA ⊗ ϱB U

†]|ϕA⟩

= TrAB[U
†|ϕA⟩⟨ϕA|⊗ IU OA ⊗ ϱB ] ≥ 0 ∀OA,∀ ϱB,∀ |ϕA⟩.
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Therefore it remains to be proved that the map is completely positive. To this aim
let us consider a positive operator OAC ∈ L(HA ⊗HC) and a generic state |ψAC⟩⟩ on
the same enlarged space, and define

|ωk⟩⟩ =
1√
Nk
Mk ⊗ IC |ψAC⟩⟩, Nk = ⟨⟨ψAC |M†kMk ⊗ IC |ψAC⟩⟩ ≥ 0.

Since OAC is positive we have

⟨⟨ψAC |(M†k ⊗ IC)OAC(Mk ⊗ IC)|ψAC⟩⟩ = Nk⟨⟨ωk|OAC |ωk⟩⟩ ≥ 0

and therefore ⟨⟨ψAC |E ⊗ IC(OAC)|ψAC⟩⟩ =
∑
kNk⟨⟨ωk|OAC |ωk⟩⟩ ≥ 0, which proves

that for any positive OAC also E ⊗ IC(OAC) is positive for any choice of HC , i.e. E is
a CP-map.
Let us now prove the second part of the theorem, i.e. we consider a map

E :L(HA) → L(HA) satisfying the requirements Q1–Q3 and show that it may be
written in the Kraus form and, in turn, that its action may be obtained as the partial
trace of a unitary evolution in a larger Hilbert. We start by considering the state
|ϕ⟩⟩ = 1√

d

∑
k |θk⟩ ⊗ |θk⟩ ∈ HA ⊗HA and define the operator ϱAA = E ⊗ I(|ϕ⟩⟩⟨⟨ϕ|).

From the complete positivity and trace preserving properties of E we have that
Tr[ϱAA] = 1, and ϱAA ≥ 0, i.e. ϱAA is a density operator. Besides, this establishes
a one-to-one correspondence between maps L(HA) → L(HA) and density operators
in L(HA) ⊗ L(HA) which may be proved as follows: for any |ψ⟩ =

∑
k ψk|θk⟩ ∈ HA

define |ψ̃⟩ =
∑
k ψ
∗
k|θk⟩ and notice that

⟨ψ̃|ϱAA|ψ̃⟩=
1

d
⟨ψ̃|
∑

kl

E(|θk⟩⟨θl|)⊗ |θk⟩⟨θl| |ψ̃⟩=
1

d

∑

kl

ψ∗l ψk E(|θk⟩⟨θl|)=
1

d
E(|ψ⟩⟨ψ|),

where we used linearity to obtain the last equality. Then define the operatorsMk|ψ⟩ =√
dpk⟨ψ̃|ωk⟩⟩, where |ωk⟩⟩ are the eigenvectors of ϱAA =

∑
k pk|ωk⟩⟩⟨⟨ωk|: this is a

linear operator on HA and we have

∑

k

Mk|ψ⟩⟨ψ|M †k = d
∑

k

pk⟨ψ̃|ωk⟩⟩⟨⟨ωk|ψ̃⟩ = d⟨ψ̃|ϱAA|ψ̃⟩ = E(|ψ⟩⟨ψ|)

for all pure states. Using again linearity we have that E(ϱ) =
∑
kMkϱM

†
k also for

any mixed state. It remains to be proved that a unitary extension exists, i.e. to
prove that for any map on L(HA) which satisfies Q1–Q3, and thus possesses a Kraus
decomposition, there exist: i) a Hilbert space HB, ii) a state |ωB⟩ ∈ HB, iii) a unitary
U ∈ L(HA ⊗HB) such that E(ϱA) = TrB[U ϱA ⊗ |ωB⟩⟨ωB|U†] for any ϱA ∈ L(HA). To
this aim we proceed as we did for the proof of the Naimark theorem, i.e. we take an
arbitrary state |ωB⟩ ∈ HB, and define an operator U trough its action on the generic
ϕA⟩ ⊗ |ωB⟩ ∈ HA ⊗ HB, U |ϕA⟩ ⊗ |ωB⟩ =

∑
kMk |ϕA⟩ ⊗ |θk⟩, where the |θk⟩’s are a

basis for HB. The operator U preserves the scalar product

⟨⟨ωB,ϕ′A|U†U |ϕA,ωB⟩⟩=
∑

kk′

⟨ϕ′A|M
†
k′Mk|ϕA⟩⟨θk′ |θk⟩=

∑

k

⟨ϕ′A|M
†
kMk|ϕA⟩=⟨ϕ

′
A|ϕA⟩

and so it is unitary in the one-dimensional subspace spanned by |ωB⟩. Besides, it may
be extended to a full unitary operator in the global Hilbert space HA ⊗ HB, e.g. it
can be the identity operator in the subspace orthogonal to |ωB⟩. Then, for any ϱA in
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HA we have

TrB
[
UϱA ⊗ |ωB⟩⟨ωB|U†

]
=
∑

s

psTrB
[
U |ψs⟩⟨ψs|⊗ |ωB⟩⟨ωB|U†

]

=
∑

skk′

ps TrB
[
Mk|ψs⟩⟨ψs|M†k′ ⊗ |θk⟩⟨θk′ |

]

=
∑

sk

psMk|ψs⟩⟨ψs|M†k =
∑

k

MkϱAM
†
k . !

The Kraus decomposition of a quantum operation generalizes the unitary description
of quantum evolution. Unitary maps are, of course, included and correspond to maps
whose Kraus decomposition contains a single elements. The set of quantum operations
constitutes a semigroup, i.e. the composition of two quantum operations is still a
quantum operation:

E2(E1(ϱ)) =
∑

k1

M
(1)
k1
E2(ϱ)M (1)†k1

=
∑

k1k2

M
(1)
k1
M
(2)
k2
ϱM

(2)†
k2
M
(1)†
k1
=
∑

k

MkϱM
†
k,

where we have introduced the polyindex k. Normalization is easily proved, since∑
kM

†
kMk =

∑
k1k2
M
(2)†
k2
M
(1)†
k1
M
(1)
k1
M
(2)
k2
= I. On the other hand, the existence of

inverse is not guaranteed: actually only unitary operations are invertible (with a CP
inverse).
The Kraus theorem also allows us to have a unified picture of quantum evolution,

either due to an interaction or to a measurement. In fact, the modification of the state
in the both processes is described by a set of operators Mk satisfying

∑
kM

†
kMk = I.

In this framework, the Kraus operators of a measurement are what we have referred
to as the detection operators of a POVM.

4.1.1 The dual map and the unitary equivalence

Upon writing the generic expectation value for the evolved state E(ϱ) and exploiting
both linearity and circularity of trace we have

⟨X⟩ = Tr[E(ϱ)X] =
∑

k

Tr[MkϱM
†
k X] =

∑

k

Tr[ϱM†kXMk] = Tr[ϱE
∨(X)],

where we have defined the dual map E∨(X) =
∑
kM

†
kXMk which represents the

“Heisenberg picture” for quantum operations. Notice also that the elements of the
Kraus decomposition Mk = ⟨ϕk|U |ωB⟩ depend on the choice of the basis used to
perform the partial trace. Change of basis cannot have a physical effect and this
means that the set of operators

Nk = ⟨θk|U |ωB⟩ =
∑

s

⟨θk|ϕs⟩⟨ϕs|U |ωB⟩ =
∑

s

VksMs,

where the unitary V ∈ L(HB) describes the change of basis, and the original set Mk
actually describe the same quantum operations, i.e.

∑
kNkϱN

†
k =

∑
kMkϱM

†
k , ∀ϱ.

The same can be easily proved for the system B prepared in mixed state. The origin
of this degree of freedom stays in the fact that if the unitary U on HA ⊗HB and the
state |ωB⟩ ∈ HB realize an extension for the map E :L(HA)→ L(HA) then any unitary
of the form (I⊗ V )U is a unitary extension too, with the same ancilla state. A quan-
tum operation is thus identified by an equivalence class of Kraus decompositions. An
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interesting corollary is that any quantum operation on a given Hilbert space of dimen-
sion d may be generated by a Kraus decomposition containing at most d2 elements,
i.e. given a Kraus decomposition E(ϱ) =

∑
kMkϱM

†
k with an arbitrary number of

elements, one may exploit the unitary equivalence and find another representation
E(ϱ) =

∑
kNkϱN

†
k with at most d

2 elements.

4.2 The random unitary map and the depolarizing channel

A simple example of quantum operation is the random unitary map, defined by the
Kraus decomposition E(ϱ) =

∑
k pkUkϱU

†
k , i.e.Mk =

√
pk Uk and U

†
kUk = I. This map

may be seen as the evolution resulting from the interaction of our system with another
system of dimension equal to the number of elements in the Kraus decomposition of
the map via the unitary V defined by V |ψA⟩ ⊗ |ωB⟩ =

∑
k

√
pk Uk|ψA⟩ ⊗ |θk⟩, |θk⟩

being a basis for HB which includes |ωB⟩. If “we do not look” at the system B and
trace out its degree of freedom the evolution of system A is governed by the random
unitary map introduced above.

Exercise 9. Prove explicitly the unitarity of V.

The operator-sum representation of quantum evolutions have been introduced, and
finds its natural application, for the description of propagation in noisy channels, i.e.
the evolution resulting from the interaction of the system of interest with an external
environment, which generally introduces noise in the system degrading its coherence.
As for example, let us consider a qubit system (say, the polarization of a photon), on
which we have encoded binary information according to a suitable coding procedure,
traveling from a sender to a receiver. The propagation needs a physical support (say,
an optical fiber) and this unavoidably leads to consider possible perturbations to
our qubit, due to the interaction with the environment. The resulting open system
dynamics is usually governed by a Master equation, i.e. the equation obtained by
partially tracing the Schroedinger (Von Neumann) equation governing the dynamics
of the global system, and the solution is expressed in form of a CP-map. For a qubit
Q in a noisy environment a quite general description of the detrimental effects of the
environment is the so-called depolarizing channel [1], which is described by the Kraus
operator M0 =

√
1− γ σ0, Mk =

√
γ/3σk, k = 1, 2, 3, i.e.

E(ϱ) = (1− γ)ϱ+ γ

3

∑

k

σk ϱ σk 0 ≤ γ ≤ 1.

The depolarizing channel may be seen as the evolution of the qubit due to the inter-
action with a four-dimensional system through the unitary

V |ψQ⟩ ⊗ |ωE⟩ =
√
1− γ|ψQ⟩ ⊗ |ωE⟩+

√
γ

3

3∑

k=1

σk|ψQ⟩ ⊗ |θk⟩,

|θk⟩ being a basis which includes |ωE⟩. From the practical point view, the map de-
scribes a situation in which, independently on the underlying physical mechanism, we
have a probability γ/3 that a perturbation described by a Pauli matrix is applied to
the qubit. If we apply σ1 we have the so-called spin-flip i.e. the exchange |0⟩ ↔ |1⟩,
whereas if we apply σ3 we have the phase-flip, and for σ2 we have a specific combi-
nation of the two effects. Since for any state of a qubit ϱ+

∑
k σkϱσk = 2I the action

of the depolarizing channel may be written as

E(ϱ) = (1− γ)ϱ+ γ

3
(2I− ϱ) = 2

3
γI+

(
1− 4
3
γ

)
ϱ = pϱ+ (1− p) I

2
,
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where p = 1− 43γ, i.e. −
1
3 ≤ p ≤ 1. In other words, we have that the original state ϱ is

sent to a linear combination of itself and the maximally mixed state I2 , also referred
to as the depolarized state.

Exercise 10. Express the generic qubit state in Bloch representation and explicitly
write the effect of the depolarizing channel on the Bloch vector.

Exercise 11. Show that the purity of a qubit cannot increase under the action of
the depolarizing channel.

4.3 Transposition and partial transposition

The transpose T (X) = XT of an operator X is the conjugate of its adjoint XT =
(X†)∗ = (X∗)†. Upon the choice of a basis we have X =

∑
nkXnk|θn⟩⟨θk| and thus

XT =
∑
nkXnk|θk⟩⟨θn| =

∑
nkXkn|θn⟩⟨θk|. Transposition does not change the trace

of an operator, neither its eigenvalues. Thus it transforms density operators into
density operators: Tr[ϱ] = Tr[ϱT ] = 1 ϱT ≥ 0 if ϱ ≥ 0. As a positive, trace preserving,
map it is a candidate to be a quantum operation. On the other hand, we will show by a
counterexample that it fails to be completely positive and thus it does not correspond
to physically admissible quantum operation.
Let us consider a bipartite system formed by two qubits prepared in the state

|ϕ⟩⟩ = 1√
2
|00⟩⟩ + |11⟩⟩. We denote by ϱτ = I ⊗ T (ϱ) the partial transpose of ϱ i.e.

the operator obtained by the application of the transposition map to one of the two
qubits. We have

(
|ϕ⟩⟩⟨⟨ϕ|

)τ
=
1

2

⎛

⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞

⎟⎠

τ

=
1

2

(
|0⟩⟨0|⊗ |0⟩⟨0|+ |1⟩⟨1|⊗ |1⟩⟨1|+ |0⟩⟨1|⊗ |0⟩⟨1|+ |1⟩⟨0|⊗ |1⟩⟨0|

)τ

=
1

2

(
|0⟩⟨0|⊗ |0⟩⟨0|+ |1⟩⟨1|⊗ |1⟩⟨1|+ |0⟩⟨1|⊗ |1⟩⟨0|+ |1⟩⟨0|⊗ |0⟩⟨1|

)

=
1

2

⎛

⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟⎠ .

Using the last expression it is straightforward to evaluate the eigenvalues of ϱτ , which
are + 12 (multiplicity three) and −

1
2 . In other words I⊗ T is not a positive map and

the transposition is not completely positive. Notice that for a factorized state of the
form ϱAB = ϱA ⊗ ϱB we have I ⊗ T (ϱAB) = ϱA ⊗ ϱTB ≥ 0 i.e. partial transposition
preserves positivity in this case .

Exercise 12. Prove that transposition is not a CP-map by its action on any state
of the form |ϕ⟩⟩ = 1√

d

∑
k |ϕk⟩ ⊗ |θk⟩. Hint: the operator I ⊗ T (|ϕ⟩⟩⟨⟨ϕ|) ≡ E is the

so-called swap operator since it “exchanges” states as E(|ψ⟩A ⊗ |ϕ⟩B) = |ϕ⟩A ⊗ |ψ⟩B.
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5 Conclusions

In this tutorial, we have addressed the postulates of quantum mechanics about states,
measurements and operations. We have reviewed their modern formulation and intro-
duced the basic mathematical tools: density operators, POVMs, detection operators
and CP-maps. We have shown how they provide a suitable framework to describe
quantum systems in interaction with their environment, and with any kind of mea-
suring and processing devices. The connection with the standard formulation have
been investigated in details building upon the concept of purification and the Theo-
rems of Naimark and Stinespring/Kraus-Choi-Sudarshan.
The framework and the tools illustrated in this tutorial are suitable for the pur-

poses of quantum information science and technology, a field which has fostered new
experiments and novel views on the conceptual foundation of quantum mechanics,
but has so far little impact on the way that it is taught. We hope to contribute in
disseminating these notions to a larger audience, in the belief that they are useful for
several other fields, from condensed matter physics to quantum biology.
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Appendix A. Trace and partial trace

The trace of an operator O is a scalar quantity equal to sum of diagonal elements in a
given basis Tr[O] =

∑
n⟨ϕn|O|ϕn⟩. The trace is invariant under any change of basis,

as it is proved by the following chain of equalities
∑

n

⟨θn|O|θn⟩ =
∑

njk

⟨θn|ϕk⟩⟨ϕk|O|ϕj⟩⟨ϕj |θn⟩ =
∑

njk

⟨ϕj |θn⟩⟨θn|ϕk⟩⟨ϕk|O|ϕj⟩

=
∑

jk

⟨ϕj |ϕk⟩⟨ϕk|O|ϕj⟩ =
∑

k

⟨ϕk|O|ϕk⟩,

where we have suitably inserted and removed resolutions of the identity in terms of
both basis {|θn⟩} and {|ϕn⟩}. As a consequence, using the basis of eigenvectors of
O, Tr[O] =

∑
n on, on being the eigenvalues of O. Trace is a linear operation, i.e.

Tr[O1 + O2] = Tr[O1] + Tr[O2] and Tr[λO] = λTr[O] and thus ∂Tr[O] = Tr[∂O] for
any derivation. The trace of any “ket-bra” Tr[|ψ1⟩⟨ψ2|] is obtained by “closing the
sandwich” Tr[|ψ1⟩⟨ψ2|] = ⟨ψ2|ψ1⟩; in fact upon expanding the two vectors in the same
basis and taking the trace in that basis Tr[|ψ1⟩⟨ψ2|] =

∑
nkl ψ1kψ

∗
2l⟨θn|θk⟩⟨θl|θn⟩ =∑

n ψ1nψ
∗
2n = ⟨ψ2|ψ1⟩. Other properties are summarized by the following theorem.

Theorem 6. For the trace operation the following properties hold

i) Given any pair of operators Tr[A1A2] = Tr[A2A1]
ii) Given any set of operators A1, . . . , AN we Tr[A1A2A3 . . . AN ] =
Tr[A2A3 . . . ANA1] = Tr[A3A4 . . . A1A2] = . . . (circularity).

Proof. left as an exercise. !
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Notice that the “circularity” condition is essential to have property ii) i.e.
Tr[A1A2A3] = Tr[A2A3A1], but Tr[A1A2A3] ̸= Tr[A2A1A3]
Partial traces RB ∈ L(HB) RA ∈ L(HA) of an operator R in L(H1 ⊗ H2) are

defined accordingly as

RB = TrA [R ] =
∑

n

A⟨ϕn|R |ϕn⟩A RA = TrB [R ] =
∑

n

B⟨ϕn|R |ϕn⟩B

and circularity holds only for single-system operators, e.g., if R1, R2 ∈ L(HA ⊗HB),
A ∈ L(HA), B ∈ L(HB)

TrA [A⊗ IR1R2] =
∑

n

an⟨an|R1R2|an⟩ = TrA [R1R2A⊗ I]

TrA [A⊗BR1R2] =
∑

n

an⟨an|I⊗BR1R2|an⟩ = TrA [I⊗BR1R2A⊗ I]

̸=
∑

n

an⟨an|R1R2 I⊗B|an⟩ = TrA [R1R2A⊗B]

Exercise 13. Consider a generic mixed state ϱ ∈ L(H ⊗ H) and write the matrix
elements of the two partial traces in terms of the matrix elements of ϱ.

Exercise 14. Prove that also partial trace is invariant under change of basis.

Appendix B. Uncertainty relations

Two non commuting observables [X,Y ] ̸= 0 do not admit a complete set of common
eigenvectors, and thus it not possible to find common eigenprojectors and to define
a joint observable. Two non commuting observables are said to be incompatible or
complementary, since they cannot assume definite values simultaneously. A striking
consequence of this fact is that when we measure an observable X the precision of
the measurement, as quantified by the variance ⟨∆X2⟩ = ⟨X2⟩ − ⟨X⟩2, is influenced
by the variance of any observable which is non commuting with X and cannot be
made arbitrarily small. In order to determine the relationship between the variances
of two noncommuting observables, one of which is measured on a given state |ψ⟩, let
us consider the two vectors

|ψ1⟩ = (X − ⟨X⟩)|ψ⟩, |ψ2⟩ = (Y − ⟨Y ⟩)|ψ⟩ ,

and write explicitly the Schwartz inequality ⟨ψ1|ψ1⟩⟨ψ2|ψ2⟩ ≥ |⟨ψ1|ψ2⟩|2, i.e. [20]

⟨∆X2⟩⟨∆Y 2⟩ ≥ 1
4

[
|⟨F ⟩|2 + |⟨C⟩|2

]
≥ 1
4
|⟨C⟩|2 , (20)

where [X,Y ] = iC and F = XY − Y X − 2⟨X⟩⟨Y ⟩. In Eq. (20) represents the uncer-
tainty relation for the non commuting observablesX and Y and it is usually presented
in the form involving the second inequality. Uncertainty relations set a lower bound
to the measured variance in the measurement of a single observable, say X, on a
state with a fixed, intrinsic, variance of the complementary observable Y (see Sect.
3.3 for the relationship between the variance of two non commuting observables in a
joint measurement). The uncertainty product is minimum when the two vectors |ψ1⟩
and |ψ2⟩ are parallel in the Hilbert space, i.e. |ψ1⟩ = −iλ|ψ2⟩ where λ is a complex
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number. Minimum uncertainty states (MUS) for the pair of observables X,Y are thus
the states satisfying

(X + iλY ) |ψ⟩ = (⟨X⟩+ iλ⟨Y ⟩) |ψ⟩ .

If λ is real then ⟨F ⟩ = 0, i.e. the quantities X and Y are uncorrelated when the
physical system is prepared in the state |ψ⟩. If |λ| = 1 then ⟨∆X2⟩ = ⟨∆Y 2⟩ and
the corresponding states are referred to as equal variance MUS. Coherent states of
a single-mode radiation field [21,22] are equal variance MUS, e. g. for the pair of
quadrature operators defined by Q = 1√

2
(a† + a) and P = i√

2
(a† − a).
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