

Artificial Neural Networks 2 : Recent Developments

Roger Barlow Roger.Barlow@hud.ac.uk

New Material - beyond the course

- 1. GPUs
- 2. Big Data
- 3. Deep Learning
- 4. Face recognition

GPUs - Graphical Processing Units

Top end CPU (e.g. Intel i9) has 10 cores - can run 10 processes in parallel

Top end GPU (e.g. Nvidia TESLA V100) has 5120 cores - can run 5120 processes in parallel

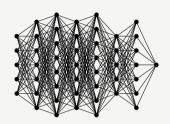
5120 cores: 80 units of 64 cores all doing the same thing in shared memory Historically driven by graphics for gaming: ray tracing, shading etc. for many objects Parallelism - not suitable for programs involving branching Memory caching only basic - best suited to intensive computations CUDA programming language - extension of C/C++ (R for GPUs is also available)

ANNs tick all the boxes - get massive increase in speed

Big Data

It's BIG! terabytes to petabytes

It's VARIED. Inhomogeneous. Collections of different types of data


- ► Weather/climate science data
- Astronomy: Sloan Digital Sky Survey. Multi-messenger (optical, IR,Radio,X-ray...)
- ► Genome data
- ► Government data from the census and other records
- Data large organisations get from their activities
- ▶ Data generated by the internet

Lots of large datasets out there suitable for ANN training and analysis

Deep Learning Networks with many layers

Back propagation doesn't work well for more than a few layers

A weight in a late layer affects the result and is rewarded or punished accordingly - OK
A weight in an early layer affects the result through many different paths, some good some bad, and rewards/punishments tend to wash out

Instead: Encourage early layers to pick out *features* - maximise spread of outputs Then use supervised backpropagation learning in later layers
Use this to recognise useful features and prune useless ones
Needs enormous training samples and superfast computers - which we have

Very powerful and enables many new applications

Face recognition

What's not to like? It lets your phone recognise you

Data Schools

Humans very good at this - Fusiform Gyrus in the brain devoted to it

Tough problem for AI techniques - early methods had very low accuracy

Now progress! 'DeepFace' and other techniques using deep Neural Nets

Banned in San Francisco, Boston etc.

IBM, Microsoft, Amazon won't sell to police

- ► Can be inaccurate. You look like a criminal and get arrested. Fix: improve the technology
- Can be accurate but incorrectly applied. You walk past a bank the day before a robbery and get hauled in as a suspect. Fix: educate the cops
- ► Can be accurate and correctly applied but misused. You take part in a peaceful demonstration. The regime locks you up. Fix: none

© **①**

Summary and future talk

- 1. You learnt what an ANN was and you set one up and used it
- 2. Deep learning adds to their power- helped by Big Data and powerful GPUs. But there is a dark side.
- 3. Tips on teaching your own course