

Quantum simulation by quantum annealing

Hidetoshi Nishimori Tokyo Institute of Technology

Quantum Annealing

Original target:

To solve classical combinatorial optimization problems.

Method:

Appropriate control of coefficients of the transverse-field Ising model

$$H(t) = -\sum_{i,j} J_{ij}(t)\sigma_i^z \sigma_j^z - \Gamma(t)\sum_i \sigma_i^x$$

An additional target:

Quantum simulation (experiment of quantum systems)

Recent examples of quantum simulation by quantum annealing

Static (equilibrium) properties

Harris et al., Science (2018)

King et al., Nature (2018)

King et al., arXiv (2020)

Kairys et al., arXiv (2020)

Abel et al., arXiv (2020)

Zhou et al., arXiv (2020)

- Spin glass in 3 dimensions
- Kosterlitz-Thouless transition
- Spin ice
- Shastry-Sutherland model
- Field theory
- Z_2 lattice gauge theory
- Griffiths-McCoy singularity Dynamical (non-equilibrium) properties
- Kibble-Zurek mechanism
- Generalized Kibble-Zurek

Gardas et al., Sci. Rep. (2018) 1*d* Weinberg et al., Phys. Rev. Lett. (2020) 2dBando et al., Phys. Rev. Res. (2020) 1d

Nishimura et al., Phys. Rev. A (2020)

To be reviewed

To be reviewed

To be explained

To be explained

Review (1) Quantum simulation of the Kostertlitz-Thouless transition

A. D. King et al., Nature 560, 456 (2018)

Kosterlitz-Thouless transition

A. D. King et al., Nature 560, 456 (2018)

Representation of Z_6 model by the frustrated Ising model embedded on the Chimera graph of D-Wave

Power decay of correlation, a hallmark of the KT transition Observation of vortex-antivortex pairs in some parameter range

Review (2) Quantum simulation of the Shastry-Sutherland model

P. Kairys, A. D. King, I. Ozfidan, K. Boothby, J. Raymond, A. Banerjee, T. S. Humble, arXiv:2003.01019

Shastry-Sutherland model

P. Kairys et al., arXiv:2003.01019

Ground-state phase diagram of a frustrated classical Ising model on the square lattice

$$H = J_1 \sum_{\langle i,j \rangle} \sigma_{(i)}^z \sigma_{(j)}^z + J_2 \sum_{\langle \langle i,j \rangle \rangle} \sigma_{(i)}^z \sigma_{(j)}^z + h_z \sum_i \sigma_{(i)}^z$$

Magnetization plateau observed. Phase diagram confirmed.

Our contribution (1) Quantum simulation of the generalized Kibble-Zurek mechanism

Y. Bando, Y. Susa, H. Oshiyama, N. Shibata, M. Ohzeki, F. Gómez-Ruiz, D. A. Lidar, S. Suzuki, A. del Campo, and H. Nishimori, *Phys. Rev. Res.* 2, 033369 (2020)

cf. Talk by Y. Bando in Session 3 for additional information

Supported by IARPA QEO / DARPA QAFS

When we change Γ/J at a finite speed, the system goes out of equilibrium (diabatic). Defects are created in the final state at $\Gamma/J=0$.

Problem: Set a quantitative measure of diabaticity. How many defects (*n*) are created as a function of the annealing time (t_a) ?

n as a function of t_a

Prediction of the Kibble-Zurek theory

d: system dimension

n: average of the number of kinks

L: chain length

 t_a : elapsed time =1/ (speed of parameter change)

$$\xi \sim (\Gamma - \Gamma_c)^{-\nu} \tau \sim (\Gamma - \Gamma_c)^{-\nu z}$$

1d ferromagnetic transverse-field Ising model

 $\rho \propto t_a^{-0.5}$ Isolated system: v = z = 1

 $\frac{n}{L} = \rho \propto (t_a)^{-\frac{d\nu}{1+\nu z}}$

 $\rho \propto t_a^{-0.28}$

Under bosonic environment: v = 0.63, z = 1.98 (*Werner et al.*, 2005)

$$H = -J \sum_{i=1}^{N_x} \sigma_i^z \sigma_{i+1}^z - \Delta \sum_{i=1}^{N_x} \sigma_i^x + \sum_{i,k} \{C_k(a_{i,k}^{\dagger} + a_{i,k})\sigma_i^z + \omega_{i,k}a_{i,k}^{\dagger}a_{i,k}\},$$
10/18

Result **Tokyo** Tech Generalized KZ theory on the distribution of *n* Adolfo del Campo (2018) Theoretical prediction for isolated system Distribution of the number of kinks $\kappa_3/\kappa_1 \vdash$ K2/K1 + (c) 0.8 0.3 0.7 $t_a = 1 \ \mu s$ 0.59 0.6 0.25 $t_{\alpha} = 10 \ \mu s$ 0.5 ξ_q/κ_l 0.4 $t_a = 100 \ \mu s$ 0.2 0.3 0.13 0.15 0.2 0.1 0.1 0 10^{0} 10^{1} 10^{2} 0.05 [µs] ta 0 Experiments \blacktriangle , \bullet 5 10 15 20 25 30 0 No theory for systems under bosonic environment n

- Our quantum simulation (experiment) predicts that the theorical prediction for isolated system should remain valid even under bosonic environment.
- Prompting theoretical development for confirmation.

P(n)

• This is (probably) the first time that quantum simulation has gone ahead of theory.

- Theory for 2d system under bosonic environment.
- To understand why 1d has no minimum but 2d has.

Confirmed qualitatively for 1d numerically

Related study 2d square lattice

Our contribution (2) Quantum simulation of the Griffiths-McCoy singularity

Kohji Nishimura, H. Nishimori, Helmut G. Katzgraber, *Phys. Rev. A (to be published)*, arXiv:2006.16219

Supported by IARPA QEO / DARPA QAFS

Griffiths-McCoy singularity

Problem: Does the Griffiths-McCoy singularity exist on the Chimera graph?

Ising ferromagnet on a diluted lattice

- Large (but very rare) clusters respond very strongly to an external field even in the paramagnetic phase for T_c (diluted) $< T < T_c$ (non-diluted). \rightarrow (Weak) singularity in χ at h=0.
- This is enhanced in low-dimensional quantum spin systems, resulting in divergence of nonlinear susceptibility.

Tokyo Tech

GM singularity on diluted Chimera graph

- Numerical and experimental studies show evidence of the Griffiths-McCoy singularity in low-dimensional quantum magnets.
- But studies of the 2d randomly-diluted ferromagnet have been rare. Mostly spin glass.
- There has been no study for the Chimera graph.
- There has been no study by quantum simulation on quantum device.

Regularly-diluted Chimera graph with smaller connectivity

 \rightarrow Stronger Griffiths-McCoy singularity if randomness is introduced.

Randomly diluted ferromagnet

$$P(J_{ij}) = \frac{1}{6} \sum_{k=0}^{5} \delta(J_{ij} + 0.2k)$$

Analysis and result

- Quantum simulation has shown: non-linear susceptibility is likely to diverge in the para phase.
- Consistent with the existence of the Griffiths-McCoy singularity on the Chimera graph.
- Backed up by classical simulations ("quantum" Monte Carlo)

Conclusion

Tokyo Tech

• Non-equilibrium (dynamical) phenomenon of Kibble-Zurek mechanism and its generalization.

Quantum experiment has gone ahead of theory: A theory for qubits under environment should be developed.

- Equilibrium (static) phenomenon of the Griffiths-McCoy singularity. Nonlinear susceptibility has been shown to be likely to diverge even in the paramagnetic phase on the Chimera graph.
- These result motivate further quantum simulations on the existing and future quantum annealers for discoveries/verifications of new/existing physics.