

Efficient local counterdiabatic driving in adiabatic quantum computing

Andreas Hartmann 05.10.2020

Quantum annealing

Speed limit: Adiabatic theorem

Counter-diabatic driving

M. Demirplak and S.A. Rice *J.Phys.Chem.A* **2003**, 107

AH and Wolfgang Lechner New. J. Phys. **21** 043025 (2019)

Counter-diabatic Driving

Basic idea

Goals

- Fast protocols for quantum annealing
- High ground state fidelity

D. Sels, A. Polkovnikov, PNAS, 114 3909 (2017).

Analysis:

Moving frame: $|\tilde{\psi}\rangle = U^{\dagger}(\lambda) |\psi\rangle \xrightarrow{\text{Schrödinger Eq.}}$

Full Hamiltonian: $H(t) = H_0 + \dot{\lambda}A_{\lambda}$

 $H_{\rm CD}(t) \stackrel{\checkmark}{=} \dot{\lambda} A_{\lambda}$

Counter-diabatic Hamiltonian:

$$\tilde{H} = U^{\dagger} H U$$

 $\tilde{H}_m = \tilde{H}$

diagonal

 $\tilde{A}_{\lambda} = i\hbar U^{\dagger}\partial_{\lambda}U$ adiabatic gauge potential responsible for transitions

How does adiabatic gauge potential A_{λ} look like?

Hamiltonian in moving frame

Adiabatic gauge potential:

AH and Wolfgang Lechner, New. J. Phys. 21 043025 (2019)

Efficient local counter-diabatic driving:

Solutions:
$$H_{CD}(t) = \dot{\lambda} A_{\lambda}^* = \sum_{i=1}^N \Gamma_i \sigma_i^y$$

 $\Gamma_i = \{\alpha_i, \beta_i, \gamma_i, \lambda_f, \dots\}$

Analytical variational optimization

$$\frac{\delta Tr[G_{\lambda}(\mathcal{A}^{*}_{\lambda})^{2}]}{\delta \mathcal{A}^{*}_{\lambda}} = 0$$

Numerical variational optimization

$$\dot{\lambda}(t) = \lambda_f \frac{\pi^2}{4\tau} \sin\left[\frac{\pi}{\tau}t\right] \sin\left[\pi \sin^2\left(\frac{\pi}{2\tau}t\right)\right]$$

 $\sigma_i^y \sigma_i^z, \sigma_i^y \sigma_i^x$

Outlook: Using whole family of solutions! Forthcoming publication