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A: Static B: Moving C: Counter diabatic

Figure 1. The counter diabatic waiter. A waiter’s goal
is to deliver a tray with a glass of water from the bar to a
costumer without spilling. In the beginning and the end of
the task the system should look like situation A. An adiabatic
waiter can always be in situation A, but with a desire to be
more efficient and speed up the protocol, a naive waiter will
find himself in the undesirable situation B somewhere during
the task. By tilting the tray (situation C), an example of
counter-diabatic driving, situation B can be avoided and the
desired tasks can be achieved much faster.

he slowly moves along the shortest path (geodesic) con-
necting the bar and the table keeping the tray vertically
at all times. This will work but will require a lot of time
and thus the efficiency of such “adiabatic waiter” will be
very low. An efficient waiter has to serve more customers
by going faster and this requires a different tactic. When
accelerating to reach a finite speed, a pseudo-force will
act on the drinks, which will cause the drinks to spill or
even tip over. This can be avoided by acting on the drinks
with an equal and opposite force and that’s exactly what
waiters do. Moreover, the same tilt can counter a drag
force caused by the air if the waiter runs very fast. In
fact, by tilting the tray while moving the waiter induces
a CD force. Despite the fact that the system of the tray,
the glass and water is complex and chaotic it is clear
from our everyday experience that this CD protocol can
be extremely efficient. Let us highlight several important
points, which we can learn from this intuitive example.
We will come back to these points later, when we discuss
various physical examples:

• In order to implement an efficient CD protocol one
has to introduce new degrees of freedom (like a tilt),
which do not show up in the initial and final state
as well as in the adiabatic path.

• The system does not generally follow an instan-
taneous ground state: at intermediate times the
waiter tilts the tray and moves it fast, which cor-
responds to a highly excited state of the system in
the lab frame.

• The CD protocol corresponds to adding local terms
to the Hamiltonian of the system like the gravita-
tional field. This protocol is only sensitive to the
velocity and acceleration of the waiter.

As we will show these observations underlie cru-
cial ideas behind engineering CD protocols in complex
systems such as locality and gauge equivalence. Us-
ing these ideas as a guiding principle, we develop a
simple variational approach allowing one to find local
and robust approximate counter-adiabatic Hamiltonians.
These counter-terms allow one to achieve truly spectacu-
lar results in suppressing dissipation or targeting ground
states of gapped or gapless many-particle systems with
a very high fidelity at a very fast speeds. An important
advantage of the variational method is that it allows one
to find efficient CD protocols without the need of diag-
onalizing the Hamiltonian, in particular, in the thermo-
dynamic limit. Moreover one can check the accuracy of
the variational ansatz by analyzing the stability of the
protocol with respect to adding additional terms.

LOCAL COUNTER-DIABATIC DRIVING.

CD driving in quantum and classical systems

Let’s have a closer look at how transitions between
eigenstates actually arise and how one can suppress them.
Consider a state |ψ⟩, evolving under the Hamiltonian
H0 (λ(t)), which is time dependent through the parame-
ter λ(t). In general, λ can be a multicomponent vector
parameter (for example in the case of a waiter λ can
stand for his x and y coordinates), but in this work we
will focus on the single-component case to avoid extra
complications. If the parameter changes in time then
for a moving observer in the instantaneous eigenbasis of
H0, the laws of physics are modified. This is of course
very well known for the case of an accelerated or a rotat-
ing frame, but in fact it applies to all types of motion.
Specifically, the Hamiltonian picks up an extra contribu-
tion and becomes

Heff
0 = H̃0 − λ̇Ãλ, (1)

here Ãλ is the adiabatic gauge potential in the mov-
ing frame. It is geometric in origin and related to the
infinitesimal transformations of the instantaneous basis
states in the quantum case and to the infinitesimal canon-
ical transformations of conjugate variables (like coordi-
nates and momenta) in the classical case (see methods
and Ref. [17] for details).
In the moving frame the Hamiltonian H̃0 is diagonal

(stationary), so all non-adiabatic effects must be due to
the second term. The idea of the CD driving is to evolve
the system with the Hamiltonian

HCD(t) = H0 + λ̇Aλ

such that in the moving frame Heff
CD(t) = H̃0 is station-

ary and no transitions occur. Note that by construction
in the zero velocity limit |λ̇| → 0 the CD Hamiltonian

D. Sels, A. Polkovnikov, PNAS, 114 3909 (2017).

Basic idea

Analysis:

Goals

• Fast protocols for quantum annealing

• High ground state fidelity


1.4 Derivation: gauge potential:

Therefore, we are free to choose any function f(q̨, t) that satisfies the Laplace equation

Ò2
f = 0. (1.7)

The gauge transformation is related to Eichsymmetrie.

1.4 Derivation: gauge potential:

In the moving frame the original state |ÂÍ becomes

˜|ÂÍ = U
†(⁄) |ÂÍ (1.8)

which can be thought of as rotation by an angle „ (for rotation around the z-axis) and
so we get

i~dẪ

dt
= i~d(U † |ÂÍ)

dt
= i~dU

†

dt
|ÂÍ + i~U

† d |ÂÍ
dt

= i~d„

dt

ˆU
†

ˆ„

---Ẫ
f

+ U
†
HU

---Ẫ
f

= (H̃ ≠ „̇Ã⁄)
---Ẫ

f
(1.9)

as the Hamiltonian in the moving frame basis, that is,

H̃m = H̃ ≠ „̇Ã⁄ (1.10)

where
Ã„ = ≠i~(ˆ„U

†)U = ≠i~[ˆ„(U †
U) ≠ U

†
ˆ„U ] = i~U

†
ˆ„U (1.11)

is the adiabatic gauge potential with respect to the parameter „ in the moving frame.
Equation (1.6) can be inverted into the instantaneous basis by doing the inverse unitary
transformation of the form H = UH̃U

†, so that we get

Hm = H ≠ „̇A„. (1.12)

The gauge potential plays the role of a derivative, such that

A„ = i~ˆ„. (1.13)

1.4.1 Gauge potential in Quantum Hamiltonian Systems:

Analogous to canonical transformations in classical mechanics which reflect the freedom of
choosing canoical variables, these transformations correspond to unitary transformations
in quantum mechanics and reflect the freedom of choosing basis states.
The wave function |ÂÍ can always be written in their eigenbasis as

|ÂÍ =
ÿ

n

Ân |nÍ (1.14)

5

Moving frame:

Hamiltonian in moving frame

Full Hamiltonian:

Schrödinger Eq.

diagonal
H̃ = U†HU

H̃m = H̃ − ·λÃλ

H(t) = H0 + ·λAλ Ãλ = iℏU†∂λU
adiabatic gauge  
potential
responsible for 
transitions

HCD(t) = ·λAλ
Counter-diabatic  
Hamiltonian: 

How does adiabatic gauge potential  look like?Aλ
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Exact form: HCD(t) = ·λAλ = iℏ ∑
m≠n

∑
n

|m⟩⟨m |∂tH0 |n⟩⟨n |
Em − En

Ansatz:

Eq.(8) run over all Np = N(N +1)/2− 2 physical qubits

where N is the number of logical spins in the original

model and hk as well as J̃ij → Jk are the strengths of

controllable local fields that act on physical qubits. In

the third sum, Cl are the strengths of 4-body constraints

constructed by closed loops of logical spins emerging

due to the increased number of degrees of freedom from

N logical to Np physical qubits. To account for this,

Nc = Np − 2N + 3 four-body constraints among nearest

neighbors on a square lattice are introduced. This

notation includes Na = N − 2 auxiliary physical qubits

in the bottom row of the LHZ architecture to obtain

4-body constraints on the whole square lattice. The

indices (l, n), (l, w), (l, s) and (l, e) denote the northern,

western, southern and eastern physical qubit of the

constraint l, respectively (more details in Ref.[65]).

For the sweeps in this work, we choose a general time-

dependent protocol λ(t) for all local fields hk(t), Jk(t)
and constraints Cl(t) of Eq.(8) that - in the philosophy

of counter-diabatic driving - behaves like an adiabatic

protocol in the beginning as well as end of the sweep and

accelerates during intermediate times and reads

λ(t) = λ0 + (λf − λ0) sin
2

#
π

2
sin2

#
πt

2τ

$$
. (9)

Here, τ is the sweep time and λ0 and λf the corre-

sponding values for initial and final time, respectively.

This function λ(t) has vanishing first and second or-

der derivatives at the beginning and end of the sweep,

respectively, to attain smoothness of the function, i.e.

λ̇(t = 0) = λ̈(t = 0) = λ̇(t = τ) = λ̈(t = τ) = 0 and

where

λ̇(t) = (λf − λ0)
π2

4τ
sin

%π
τ
t

&
sin

%
π sin2

% π

2τ
t

&&
(10)

is the first time derivative of the protocol λ(t).
In Hamiltonian (8), the time-dependent protocols for the

strengths of the local fields and constraints, respectively,

can thus be written according to Eq.(9) with initial and

final values hk,0 = 1, hk,f = 0, Jk,0 = 0, Jk,f = Jk,

Ck,0 = 0 and Cl,f = Cl (i.e. λ0 = hk,0 and λf = hk,f for

hk(t), λ0 = Jk,0 and λf = Jk,f for Jk(t), λ0 = Cl,0 and

λf = Cl,f for Cl(t)).

As a local and experimentally feasible ansatz for the

adiabatic gauge potential Aλ of the LHZ Hamiltonian

(8), we choose

A∗
λ =

Np"

i=1

αiσ
y
i (11)

where αi is a time-dependent function to be determined.

The additional local magnetic field (σy
) is introduced for

each physical qubit. This ansatz is imaginary; thus it

breaks instantaneous time-reversal symmetry and adds a

new degree of freedom to the system.

The operator (5) in LHZ reads

G(A∗
λ) =

Np"

k=1

(ḣk − 2αkJk)σ
x
k + (J̇k + 2αkhk)σ

z
k

−
Nc"

l=1

Ċlσ
z
l,nσ

z
l,wσ

z
l,sσ

z
l,e

+ 2Cl(αl,nσ
x
l,nσ

z
l,wσ

z
l,sσ

z
l,e + αl,wσ

z
l,nσ

x
l,wσ

z
l,sσ

z
l,e

+ αl,sσ
z
l,nσ

z
l,wσ

x
l,sσ

z
l,e + αl,eσ

z
l,nσ

z
l,wσ

z
l,sσ

x
l,e), (12)

where the dot stands for the time derivative. We compute

the Hilbert-Schmidt norm by building the square of the

Hermitian operator (12), that is

Tr[G2
λ(A∗

λ)]

2Np
=

Np"

k=1

(ḣk − 2αkJk)
2 + (J̇k + 2αkhk)

2

+

Nc"

l=1

(Ċl)
2 + 4C2

l (α
2
l,n + α2

l,w + α2
l,s + α2

l,e), (13)

where 2Np is the dimension of the Hilbert space.

The goal is to find an expression for αk with minimal ac-

tion in Eq.(6) corresponding to a minimum in operator

distance D
2(A∗

λ) between exact and approximate adia-

batic gauge potential. The optimal approximate solution

for the adiabatic gauge potential A∗
λ is found by comput-

ing the derivative of the action with respect to αk and

applying Eq.(7). For the optimal solution we obtain

αk =
1

2

ḣkJk − J̇khk

J
2
k + h

2
k +

!
n C

2
k,n

, (14)

where the sum in the denominator runs over all nearest

neighbor constraints Ck,n of the k-th physical qubit.

Note that this solution for the adiabatic gauge potential

is exact for any constraint strength Cl equal to zero, as it

is just the counter-diabatic solution for Np independent

two-level systems [48, 50]. The adiabtic gauge potential

A∗
λ also vanishes, if either hk = 0 or Jk = 0 for all physi-

cal qubits, implying that the leading contribution to Aλ

actually comes from the 4-body interaction terms. For

completeness, we can include 4-body interaction terms in

our ansatz (see Appendix). The experimental implemen-

tation of the resulting 4-body terms is challenging and

we will focus on the local solutions in this work.

The resulting local CD Hamiltonian in the lattice

gauge model has the form

HCD,LHZ(t) =

Np"

k=1

hk(t)σ
x
k +

Np"

k=1

Jk(t)σ
z
k

+

Np"

k=1

Yk(λf , t)σ
y
k −

Nc"

l=1

Cl(t)σ
z
l,nσ

z
l,wσ

z
l,sσ

z
l,e (15)

where

Yk(λf , t) = αk(t) · λ̇(t) =
1

2

ḣk(t)Jk(t)− J̇k(t)hk(t)

J
2
k (t) + h

2
k(t) +

!
n C

2
k,n(t)

· λ̇(t)

(16)

Adiabatic gauge potential:

Approximate local CD driving

Quantum annealing + analytical variation

Additional iterative variation of parameters

AH and Wolfgang Lechner, New. J. Phys. 21 043025 (2019)

Find optimal expression for  by 

minimising operator distance 

between exact and approximate 

solution

αi
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Efficient local counter-diabatic driving:

Solutions: HCD(t) = ·λA*λ = ∑N
i=1 Γiσ

y
i

Γi = {αi, βi, γi, λf , . . . }

Outlook: Using whole family of solutions!

Forthcoming publication
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Can even outperform  
2-spin CD driving
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Analytical variational optimization

Inhomogeneous Driving:

p-spin Hamiltonian

HP = �N

 
1

N

NX

i=1

�
z

i

!p

(14)

HP = �N

 
1

N

NX

i=1

�
z

i

!p

+
NX

i=1

hi�
z

i
(15)

HLHZ,P =

NpX

k=1

Jk�
z

k
�

NcX

l=1

Cl�
z

l,n
�
z

l,e
�
z

l,s
�
z

l,w
(16)

E4(m) = �C

⇣
Np �

p
1 + 8Np + 2

⌘
m

4
(17)

E3(m) = �C

⇣p
0.25 + 2Np � 1.5

⌘
m

3
(18)

⌧ = s
r

(19)

r s

t/tf (20)

� Tr[G�(A⇤
�
)2]

�A⇤
�

= 0 (21)

Numerical variational optimization
·λ(t) = λf

π2

4τ
sin [ π

τ
t] sin [π sin2 ( π

2τ
t)]


