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Quantum Annealing

Original target:
To solve classical combinatorial optimization problems.

Method:
Appropriate control of coefficients of the transverse-field Ising model
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An additional target:
Quantum simulation (experiment of quantum systems)

2/18



Recent examples of
guantum simulation by quantum annealing

Static (equilibrium) properties
e Spin glass in 3 dimensions Harris et al., Science (2018)

o Kosterlitz-Thouless transition  King et al., Nature (2018) 4= | To be reviewed

e Spinice King et al., arXiv (2020)
e Shastry-Sutherland model Kairys et al., arXiv (2020) <= | To be reviewed
* Field theory Abel et al., arXiv (2020)
e Z, lattice gauge theory Zhou et al., arXiv (2020)

o Griffiths-McCoy singularity ~ Nishimura et al., Phys. Rev. A (2020) =
; crep - - To be explained
Dynamical (non-equilibrium) properties

o Kibble-Zurek mechanism Gardas et al., Sci. Rep. (2018) 1d
Weinberg et al., Phys. Rev. Lett. (2020) 2d
e Generalized Kibble-Zurek Bando et al., Phys. Rev. Res. (2020) 1d <=

To be explained
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Review (1)

Quantumsimulation of

~

the Kostertlitz-Thouless transition

/

A. D. King et al., Nature 560, 456 (2018)
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Kosterlitz-Thouless transition

A. D. King et al., Nature 560, 456 (2018)

Representation of Z; model by the frustrated Ising Observation of vortex-antivortex
model embedded on the Chimera graph of D-Wave pairs in some parameter range

Power decay of
correlation, a hallmark
of the KT transition
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Review (2)
Quantumsimulation of
the Shastry-Sutherland model

P. Kairys, A. D. King, I. Ozfidan, K. Boothby, J. Raymond, A. Banerjee, T. S. Humble,
arxiv:2003.01019
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Shastry-Sutherland model

P. Kairys et al., arXiv:2003.01019

Ground-state phase diagram of a frustrated
classical Ising model on the square lattice

Magnetization plateau observed.
Phase diagram confirmed.
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Our contribution (1)

Quantum simulation of the generalized
Kibble-Zurek mechanism

~

J

Y. Bando, Y. Susa, H. Oshiyama, N. Shibata, M. Ohzeki, F. Gbmez-Ruiz, D. A. Lidar,

S. Suzuki, A. del Campo, and H. Nishimori, Phys. Rev. Res. 2, 033369 (2020)

cf. Talk by Y. Bando in Session 3 for additional information

Supported by IARPA QEO / DARPA QAFS
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Kibble-Zurek mechanism

Kibble (1976), Zurek (1985)
Quantum phase transition of the 1d transverse-field Ising model
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Defect (kink) When we change 77/ at a finite speed, the

system goes out of equilibrium (diabatic).
%ﬂﬂﬂ@mﬁﬁ@iﬂ% Defects are created in the final state at 7/J/=0.

Problem: Set a quantitative measure of diabaticity.
How many defects (n) are created as a function of the annealing time (t,)?

n as a function of t
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Prediction of the Kibble-Zurek theory

d: system dimension

n __av n: average of the number of kinks
=P (ta) T+vZ L. chain length
t,: elapsed time =1/ (speed of parameter change)

E ~ (F - Fc)_v
T~ —-T,)7v

1d ferromagnetic transverse-field Ising model

~ 0.5
p Xlig Isolated system: v =z=1

p <tz 928 Under bosonic environment: v = 0.63, z = 1.98 (Werner et al., 2005)

1

N, N,
H=-J> oo, —A> of
i=1 i=1

+ Z{Ck(azk +a;)o; + wi,kazkai,k},
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Result

Average number of kinks n

DW2000Q@NASA : exponent 0.20 Exponent for the average n

Under bosonic environment Isolated system

Theory: 0.28

DW2000Q@Burnaby: exponent 0.34

A\

Experiment 0.20(NASA), 0.34(Burnaby)

N, N .
H=-7Y oios, —AY o Deviations would come
Data for L=50 are excluded because they don’t = = from non-universal effects.

satisfy the condition for KZ theory to be valid, n>1. + M{Cilaly + a0 + wpaliand,
i,k
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Result

Generalized KZ theory on the distribution of n
Adolfo del Campo (2018)

Theoretical prediction for isolated system

Distribution of the number of kinks
‘/0_59

0.13 ?

Experiments A, @®
No theory for systems under bosonic environment

» Our quantum simulation (experiment) predicts that the theorical prediction for
Isolated system should remain valid even under bosonic environment.

* Prompting theoretical development for confirmation.

» This is (probably) the first time that quantum simulation has gone ahead of theory. o




Related study
2d square lattice
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Speed of change v =(annealing time t)1
(the other way round from our notation)

Necessary:

» Theory for 2d system under bosonic environment.

» To understand why 1d has no minimum but 2d has.

Weinberg et al.,
PRL 124, 090502(2020)

f(v) =apv® +bro"

Kibble-Zurek

Experiment 0.74+0.02

Theory fg/ isolated system

a=0.77
Bath

Confirmed qualitatively for 1d numerically
13/18



\

Our contribution (2)

Quantum simulation of
the Griffiths-McCoy singularity

J

Kohji Nishimura, H. Nishimori, Helmut G. Katzgraber,
Phys. Rev. A (to be published), arXiv:2006.16219

Supported by IARPA QEO / DARPA QAFS
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Griffiths-McCoy singularity

Problem: Does the Griffiths-McCoy singularity exist on the Chimera graph?

x(h) x e—a/IP|*"? (h — 0)

/

/A

Tc for randomly diluted system Tc for non-diluted system

Ising ferromagnet on a diluted lattice

» Large (but very rare) clusters respond very strongly to an external field even in the
paramagnetic phase for T (diluted) < T < T (non-diluted). — (Weak) singularity in y at h=0.
» This is enhanced in low-dimensional quantum spin systems, resulting in divergence of non-

linear susceptibility.
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GM singularity on diluted Chimera graph

* Numerical and experimental studies show evidence of the Griffiths-McCoy
singularity in low-dimensional quantum magnets.

» But studies of the 2d randomly-diluted ferromagnet have been rare. Mostly spin glass.

* There has been no study for the Chimera graph.

* There has been no study by quantum simulation on quantum device.

Regularly-diluted Chimera graph with smaller connectivity
— Stronger Griffiths-McCoy singularity if randomness is introduced.

Randomly diluted ferromagnet
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Analysis and result

) - 3
Non-linear susceptibility _ O'm
(stronger singularity than linear) nl Oh3

= —((m") - 3(m*)?)
h=0

Distribution over samples and local environments P (xn1) ~ xu ~ (%))

Average divergesif /2" <3  (xn) :] Xn1 P (Xn1)dXnl N/ a3 dy

+— d/z’=3

» »
» < »

para phase ferro phase

A

« Quantum simulation has shown: non-linear susceptibility is likely to diverge in the para phase.
« Consistent with the existence of the Griffiths-McCoy singularity on the Chimera graph.
» Backed up by classical simulations (“quantum’” Monte Carlo) 17/18




Conclusion

e Non-equilibrium (dynamical) phenomenon of Kibble-Zurek mechanism and its

generalization.
Quantum experiment has gone ahead of theory: A theory for qubits under

environment should be developed.

» Equilibrium (static) phenomenon of the Griffiths-McCoy singularity.
Nonlinear susceptibility has been shown to be likely to diverge even in the
paramagnetic phase on the Chimera graph.

» These result motivate further quantum simulations on the existing and future
quantum annealers for discoveries/verifications of new/existing physics.
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