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Adiabatic theorem
If a subspace P(t)H of eigenstates of H(t) is separated by a gap
Δ(t) from the rest of the spectrum, then

‖(1− P(t))ψ(t)‖ = O(1/t) (1)

where ψ(t) is the solution of ψ̇ = −iH(t)ψ, ψ(0) = P(0)ψ(0).
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Big-O notation means ∃θ:

‖(1− P(t))ψ(t)‖ ≤ θ/t (3)

This talk is about the adiabatic timescale θ = θ(H′,Δ . . . )
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Our results

We present an explicit expression for θnew, improving on the existing
result θJRS [S. Jansen, M.-B. Ruskai, and R. Seiler, (2007)] :

• for an unbounded ‖H′‖ =∞, θJRS =∞ while θnew <∞

• for an n-qubit subspace P(t)H , θJRS ∼ 2n while θnew ∼ 1

• First practical application of both bounds to a circuit model of a
flux qubit

ωqθ
JRS =

11
p
2

ωq

ωs=1
pl δ

(4)
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Unbounded H′ (e.g. Harmonic oscillator)

For θ <∞, an assumption is needed.

Assumption of ‖R′(z = i)H‖ <∞ [J. E. Avron and A. Elgart, (1999)]:,
where the resolvent is:

R(z = i) =
1

i− H
= (i− H)−1 (5)

No explicit θ(‖R′(z = i)H‖, . . . ) is presented.

Our assumption: H′2 ≤
∑︀kmx

k=0 ckH2k (easier to work with)
Explicit θ(ck, . . . ) is presented.
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n-qubit low-energy subspace (e.g. D-wave)

A replacement
p
d

Δ
→min

(︃p
d

Δ
,
2r+ 2πΔ

2πΔ2

)︃
can be made in θJRS, where d = 2n

for n-qubit subspace PH .
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Application to superconducting qubits

HCSFQ,sin = ECn̂2 + EJbcos ϕ̂− Eα sin
1

2
ϕ̂ sin

1

2
f ϕ ∈ [−2π, 2π] .

• The n̂ and ϕ̂ are canonically conjugate operators.

• The EJ, EC and Eα are fabrication parameters.

• The b(t) and f(t) are time dependent controls.

We follow the experimental procedure that aims at implementing:

Hq = ωq((1− s+ δ)X + sZ), s ∈ [0, 1] (6)

Note that there’s always nonzero tunneling under the barrier δωq.
The gap to the non-qubit states Δ ∼ ωpl ∼

p
EJECb (plasma frequency). 6/7
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f ϕ ∈ [−2π, 2π] .

We find:

ωqθ
JRS =

11
p
2

ωq

ωs=1
pl δ

, ωqθ
new = O

⎛⎜⎝ ωq

ωs=1
pl δln

ωs=1
pl
δωq

⎞⎟⎠ (7)

where

• ωqδ – tunneling under the barrier at the end of the anneal

• ωpl ∼
p
EJECb – gap to the non-qubit states, plasma frequency

• ωq – the qubit frequency 7/7


