Adiabatic theorem for unbounded Hamiltonians,

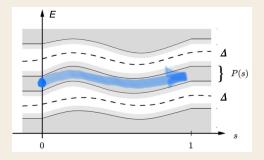
with applications to superconducting circuits Jenia (Evgeny) Mozgunov, USC

Adiabatic theorem

If a subspace $P(t)\mathcal{H}$ of eigenstates of H(t) is separated by a gap $\Delta(t)$ from the rest of the spectrum, then

$$\|(1 - P(t))\psi(t)\| = O(1/t)$$
(1)

where $\psi(t)$ is the solution of $\dot{\psi} = -iH(t)\psi$, $\psi(0) = P(0)\psi(0)$.



Adiabatic theorem

If a subspace $P(t)\mathcal{H}$ of eigenstates of H(t) is separated by a gap $\Delta(t)$ from the rest of the spectrum, then

$$\|(1 - P(t))\psi(t)\| = O(1/t)$$
(2)

where $\psi(t)$ is the solution of $\dot{\psi} = -iH(t)\psi$, $\psi(0) = P(0)\psi(0)$.

Big-O notation means $\exists \theta$:

$$\|(1 - P(t))\psi(t)\| \le \theta/t \tag{3}$$

This talk is about the adiabatic timescale $\theta = \theta(H', \Delta...)$

Our results

We present an explicit expression for θ^{new} , improving on the existing result θ^{JRS} [S. Jansen, M.-B. Ruskai, and R. Seiler, (2007)] :

- for an unbounded $||H'|| = \infty$, $\theta^{JRS} = \infty$ while $\theta^{new} < \infty$
- for an *n*-qubit subspace $P(t)\mathcal{H}$, $\theta^{JRS} \sim 2^n$ while $\theta^{new} \sim 1$
- First practical application of both bounds to a circuit model of a flux qubit

$$\omega_q \theta^{\text{JRS}} = \frac{11}{\sqrt{2}} \frac{\omega_q}{\omega_{\text{pl}}^{s=1} \delta} \tag{4}$$

Unbounded H' (e.g. Harmonic oscillator)

For $\theta < \infty$, an assumption is needed.

Assumption of $||R'(z = i)H|| < \infty$ [J. E. Avron and A. Elgart, (1999)]:, where the resolvent is:

$$R(z=i) = \frac{1}{i-H} = (i-H)^{-1}$$
(5)

No explicit $\theta(||R'(z = i)H||, ...)$ is presented.

Unbounded H' (e.g. Harmonic oscillator)

For $\theta < \infty$, an assumption is needed.

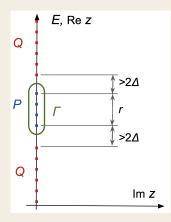
Assumption of $||R'(z = i)H|| < \infty$ [J. E. Avron and A. Elgart, (1999)]:, where the resolvent is:

$$R(z=i) = \frac{1}{i-H} = (i-H)^{-1}$$
(5)

No explicit $\theta(||R'(z = i)H||, ...)$ is presented.

Our assumption: $H'^2 \leq \sum_{k=0}^{k_{max}} c_k H^{2k}$ (easier to work with) Explicit $\theta(c_k, ...)$ is presented.

n-qubit low-energy subspace (e.g. D-wave)



A replacement

$$\frac{\sqrt{d}}{\Delta} \to \min\left(\frac{\sqrt{d}}{\Delta}, \frac{2r + 2\pi\Delta}{2\pi\Delta^2}\right)$$

can be made in θ^{JRS} , where $d = 2^n$ for *n*-qubit subspace $P\mathcal{H}$.

Application to superconducting qubits

$$H_{\rm CSFQ,sin} = E_C \hat{n}^2 + E_J b \cos \hat{\phi} - E_\alpha \sin \frac{1}{2} \hat{\phi} \sin \frac{1}{2} f \quad \phi \in [-2\pi, 2\pi].$$

- The \hat{n} and $\hat{\phi}$ are canonically conjugate operators.
- The E_J , E_C and E_α are fabrication parameters.
- The *b*(*t*) and *f*(*t*) are time dependent controls.

We follow the experimental procedure that aims at implementing:

$$H_{q} = \omega_{q}((1 - s + \delta)X + sZ), \quad s \in [0, 1]$$
(6)

Note that there's always nonzero tunneling under the barrier $\delta \omega_q$. The gap to the non-qubit states $\Delta \sim \omega_{pl} \sim \sqrt{E_J E_C b}$ (plasma frequency). Application to superconducting qubits

$$H_{\rm CSFQ,sin} = E_C \hat{n}^2 + E_J b \cos \hat{\phi} - E_\alpha \sin \frac{1}{2} \hat{\phi} \sin \frac{1}{2} f \quad \phi \in [-2\pi, 2\pi].$$

We find:

$$\omega_q \theta^{\text{JRS}} = \frac{11}{\sqrt{2}} \frac{\omega_q}{\omega_{\text{pl}}^{\text{s}=1} \delta}, \quad \omega_q \theta^{\text{new}} = O\left(\frac{\omega_q}{\omega_{\text{pl}}^{\text{s}=1} \delta \ln \frac{\omega_{\text{pl}}^{\text{s}=1}}{\delta \omega_q}}\right)$$
(7)

where

- $\omega_q \delta$ tunneling under the barrier at the end of the anneal
- $\omega_{\rm pl} \sim \sqrt{E_J E_C b}$ gap to the non-qubit states, plasma frequency
- ω_q the qubit frequency