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The problem of representation

e Mapping an atomic structure to a mathematical representation suitable

to ML is the first and perhaps most important step for atomistic machine
learning

1X) y

inference

dimensionality
reduction

classification

MC, Unsupervised machine learning in atomistic simulations, between predictions and understanding, JCP (2019)
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A phylogenetic tree of ML representations

Behler-Parrinello

ACE DeepMD aPIPs
Sl\f\‘TAF:D projection GTTP permutation g(rT)R
SHIP /\atomic Invariant distance Wasserstein

symmetry Polynomials metric

imi shar ] histograms
slimit  SRAP - inctions .

permutations

e blur permutations (histogram) PIV
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Wavelets correlation distances BoB
NICE features™ atom
rotations, centred .
(density products) istriputions Plonng . Sorted
Diffraction FP — ) sorting i |
translations _— €igenvalues
3D Voxel — molecular SPRINT _
potential atom matrices overlap matrix

symmetrized . figlds density _internal

: i coordinates — Z matrix
local field,,qtions fields
LODE rotations
i rotations & molecular
permutations translations graphs
family of features
symmetry Cartesian
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3 Michele Ceriotti - cosmo.epfl.ch Equivariant Representations For Atomistic Machine Learning



What we want from a representation

e Structure representations should: 1. reflect basic physical symmetries; 2.
be complete (injective); 3. be smooth, regular; 4. exploit additivity
o Cartesian coordinates fulfill only 2 and 3

translations ¢

T
R™,
# rotations .
completeness

structure space

*
+ symmetry 2
L* X
feature space \
smoothness v‘

* < additivity
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Additivity, and locality

o Arepresentation of a structure in terms of a sum over atom-centered
terms implies (For a linear model or an average kernel) an additive form of
the property

r \ »
[A) =22 [Ad)
V(4) = ZieA V(A;) K(A,B) = Zi,j k(A;, Bj)
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Additivity, and locality

o Arepresentation of a structure in terms of a sum over atom-centered
terms implies (For a linear model or an average kernel) an additive form of
the property
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Additivity, and locality

o Arepresentation of a structure in terms of a sum over atom-centered
terms implies (For a linear model or an average kernel) an additive form of
the property
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A Dirac notation fFor representations

features S{ A representation
index target & nature

correlation
radial |nd|ces structure order ity
—H_
<n111;. Nyl k, A ,0 L0 )\u>
\ \ rot
angular channels flelgle oy | Symmetry

e Arepresentation maps a structure A (or one environment A;) to a vector
discretized by a feature index X

o Bra-ket notation (X|A;rep.) indicates in an abstract way this mapping,
leaving plenty of room to express the details of a representation

o Dirac-like notation reflects naturally a change of basis,

(¥]A) = / dx (YX) (X|A)

Willatt, Musil, MC, JCP (2019); https://tinyurl.com/dirac-rep
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A Dirac notation fFor representations

features S{ A representation
index target & nature

correlation
radial |nd|ces structure order ity
—H_
<n111;. Nyl k, A ,0 L0 )\u>
\ \ rot
angular channels flelgle oy | Symmetry

e Arepresentation maps a structure A (or one environment A;) to a vector
discretized by a feature index X

o Bra-ket notation (X|A;rep.) indicates in an abstract way this mapping,
leaving plenty of room to express the details of a representation

o Dirac-like notation reflects naturally a change of basis, the construction
of a kernel,

k(AA) = (AA) ~ / dX (AIX) (X|A)

Willatt, Musil, MC, JCP (2019); https://tinyurl.com/dirac-rep
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A Dirac notation fFor representations

features S{ A representation
index target & nature

correlation
radial |nd|ces structure order ity
_ﬁ_
<n1l1;. Nyl k, A ,0 L0 )\u>
\ . Id \ rot
e
angular channels ! center symmetry

e Arepresentation maps a structure A (or one environment A;) to a vector
discretized by a feature index X

o Bra-ket notation (X|A;rep.) indicates in an abstract way this mapping,
leaving plenty of room to express the details of a representation

o Dirac-like notation reflects naturally a change of basis, the construction
of akernel, or alinear model

E(A) = (E|A) ~ / dX (E|X) (X|A)

Willatt, Musil, MC, JCP (2019); https://tinyurl.com/dirac-rep
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Symmetrized field construction

e Start from a non-symmetric representation (Cartesian coordinates)

.00 0.00
.00 0.00
.00 0.00

willatt, Musil, MC, JCP (2019)

7 Michele Ceriotti - cosmo.epfl.ch Equivariant Representations For Atomistic Machine Learning



Symmetrized field construction

e Start from a non-symmetric representation (Cartesian coordinates)
o Define a decorated atom-density |p) (permutation invariant)

(ar|p) = Zz g(r —14)daa,
C)
IN) Il
B) H

willatt, Musil, MC, JCP (2019)
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Symmetrized field construction

e Start from a non-symmetric representation (Cartesian coordinates)

o Define a decorated atom-density |p) (permutation invariant)

o Translational average of a tensor product |p) ® |p) yields atom-centred
(and tinvariant) |p;)

willatt, Musil, MC, JCP (2019)
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A universal feature construction

o Rotationally-averaged representations are essentially the same n-body
correlations that are used in statistical theories of liquids

I

0.5 1 1.5 2 2.5

rlag
<ar pi>

p;@1> = [dR <arf
willatt, Musil, MC, JCP (2019); Bartok, Kondor, Csanyi PRB 2013
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A universal feature construction

o Rotationally-averaged representations are essentially the same n-body
correlations that are used in statistical theories of liquids

rv/ag ]

Cos(w)
o
o

1

. . ®2
<6117“1, az72; W‘Pi

= [dR <a11“1f' R pi> <azT2f’(W) R Pz‘>

Willatt, Musil, MC, JCP (2019); Drautz, PRB (2019); Glielmo, Zeni, De Vita, PRB (2018)

Equivariant Representations For Atomistic Machine Learning

2
rg/ay 3
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A universal feature construction

o Rotationally-averaged representations are essentially the same n-body
correlations that are used in statistical theories of liquids

o Linear models built on [p;””; g — ¢) yield (v + 1)-body potential expansion
V(A,) = Z’/ V(Z) (I',j) + Z’/ V(3) (I','j7 I','k,w,'jk) -

1 IR SRR B 1 TRV R S N A A

0 05 1 15 2 25

L r/ao
V(4;) = [dr(V]ar){ar|p$) ~ > Va(rij)

Willatt, Musil, MC, JCP (2019); Drautz, PRB (2019); Glielmo, Zeni, De Vita, PRB (2018)
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A universal feature construction

o Rotationally-averaged representations are essentially the same n-body
correlations that are used in statistical theories of liquids

o Linear models built on [p;””; g — ¢) yield (v + 1)-body potential expansion
V(A,) = Z’/ V(Z) (I',j) + Z’/ V(3) (I','j7 I','k,w,'jk) -
o Basically any atom-centred feature can be seen as a projection of [p}")

-0.2

|
©
o~

0.5 1 1.5 2 2.5
L r/ao
V(4;) = [dr(V]ar){ar|p$) ~ > Valrij)
Willatt, Musil, MC, JCP (2019); Drautz, PRB (2019); Glielmo, Zeni, De Vita, PRB (2018)
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Variations on a theme
e Most of the existing density-based representations and kernels emerge

as special cases of this framework o
o Basis set choice - e.g. plane waves basis for |p{?) (Ziletti et al. N.Comm 2018)

(KA p77) = 3 ek

ijeA

Simple cubic Face-centered-cubic
(sc) structure (fce) structure
spgroup = 221 spgroup = 225
-
Diamond Body-centered-cubic . .
(diam) structure (bee) structure
spgroup = 227 spgroup = 229

willatt, Musil, MC, JCP (2019), https://arxiv.org/pdf/1807.00408

Equivariant Representations for Atomistic Machine Learning
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Variations on a theme

e Most of the existing density-based representations and kernels emerge
as special cases of this framework
o Basis set choice - e.g. plane waves basis for \p,@z) (Ziletti et al. N.Comm 2018)
o Projection on symmetry functions (Behler-Parrinello, DeepMD)

(abGalpP") = baq / dr G, (r) (brlp?"; g — &)

N rrrrrrrrrrp T
0.4f ]
o 0.3F \ .
> - \Y
T
o 0.2F > ]
<,) N
0.1F X ]
of
0 1 2 3 4 5 6

r[A]

willatt, Musil, MC, JCP (2019), https://arxiv.org/pdf/1807.00408
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Density expansion and SOAP

o What if we use radial functions and spherical harmonics?

l
() — [ i (o) B (YA )
Bartok, Kondor, Csanyi, PRB (2013); Willatt, Musil, MC, JCP (2019); Drautz, PRB (2019)
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Density expansion and SOAP

o What if we use radial functions and spherical harmonics?
o Symmetrized tensor product — SOAP power spectrum!

(nn'l]pP%) = 32, (nlm|pi)" (n'lm|p:)

— *
Pnn'1 = m CnlmCn/lm

Bartok, Kondor, Csanyi, PRB (2013); Willatt, Musil, MC, JCP (2019); Drautz, PRB (2019)
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Density expansion and SOAP

10

o What if we use radial functions and spherical harmonics?
o Symmetrized tensor product — SOAP power spectrum!
e Easily generalized to higher body order.

d-distribution limit — atomic cluster expansion

(nll}ml; nglzn}z; . nl,l,,m,,|pl®”A) =
J dR(nilyma|R|p;) - - - (nylymy | R|p;) =
2o ooy, (malimi [ pi) - - (o lym, [ pi)
® l o 1, ®
Bartok, Kondor, Csanyi, PRB (2013); Willatt, Musil, MC, JCP (2019); Drautz, PRB (2019)
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Are these representations complete?

e Itiis well-known that 2-body correlations are ambiguous: can build
tetrahedra with same pair distances that are different

Figure from Bartok, Kondor, Csanyi, PRB (2013)
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Are these representations complete?

e Itiis well-known that 2-body correlations are ambiguous: can build
tetrahedra with same pair distances that are different

e One can also build examples of pairs of environments that have the same
3B and 4B correlations. Problem becomes important as model accuracy is

increased
a) b)
Y
o+ X
z
y A = (az,ay,0)
B,B' = (ibw,iby,bz)

" c* = (0, %cy, c2)

Pozdniakov, Willatt, Barték, Ortner, Csanyi, MC, arxiv:2001.11696
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There are more things in
heaven and earth, Horatio, than
those transforming like a scalar



Machine-learning for tensors

o What if we want to learn vectors or general tensors? We need features
that are equivariant to the tensor under rotations.

e () = [ X (elx) (X1 7 )

/dX |XZ % (R) (X|A; o7 M)

/}—?\

Glielmo, Sollich, De Vita, PRB (2017); Grisafi, Wilkins, Csanyi, & MC, PRL (2018)
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http://dx.doi.org/10.1103/PhysRevLett.120.036002

Symmetrized-field equivariants

o Include a |A\u) in the Haar integral to obtain SO(3) equivariants
[ SRR 100 1 RIpi) (67 RIN) = (070801577520

o Easier to compute by expanding the density in R, (r) Y}, (7): explicit
power-spectrum-like representation

(mb; nab|pP? Ay =3, (mbimlp;) (n2l (e — m)|pi) (bm; G (e — m)| M)

T®2. ..
Grisafi, Wilkins, Csényi, & MC, PRL (2018) <TT w9¢ | IOZ AILL>
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http://dx.doi.org/10.1103/PhysRevLett.120.036002

A hierarchy of equivariant features

o A generalization of the definition yields N-body features that transform
like angular momenta

(X[p7"; 5 A
e Recursive construction based on sums of angular momenta and an
expansion of the atom density

(mbke PN M) = (M (—1)]pi) 31,30k 1001 = (m\p s AL

(..;mLky; nlk|pf§(”+1); O3 AL) = O ((—1ytrktrg) Coa X
> (mikql) < nllpf T im > (0 lk, |0 s kq)

qm

o Can be used to compute efficiently invariant features |p?";0;00)

Nigam, Pozdnyakov, MC, https://arxiv.org/pdf/2007.03407 (2020)
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NICE features for ML

e Problem: number of features grows exponentially with v
o Solution: an N-body iterative contraction of equivariants (NICE)
framework
o After each body order increase, the most relevant features are selected and
used for the next iteration

body-order (NY; nlk| g+ )

(n]o"1m)
iteration

>

contraction

(N*[p?"kq)

(nik]|
[Aua)

(NV‘ <Nu+1 ‘P?wrl)\ll«)

Nigam, Pozdnyakov, MC, https://arxiv.org/pdf/2007.03407 (2020)
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rmse%
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NICE features for ML

e Problem: number of features grows exponentially with v
o Solution: an N-body iterative contraction of equivariants (NICE)

framework

o After each body order increase, the most relevant features are selected and

used for the next iteration

o Systematic convergence with v and contraction truncation

— v=1 — v=3 — NICE full — Conly
e — p=a NN C+H
0:°60:00,:0:0:.0.0:06-0:0::9:0:0 00000 100
0. e ‘» g
”8:.5‘,' 0.0 ot ®:a0-00..0.0:00.0000 L ] £ *_\\
. - ] T3
10 - Yoary 5 Y
g eneens | X 2
RO R tRren g =
.......:' 8 ‘ v\\\-‘ 10
.‘.“. [, = 10 et eeveosoeoe.,,
- o e 100 10! 10?2

Ntrain

rmse, kcal/mol

Nigam, Pozdnyakov, MC, https://arxiv.org/pdf/2007.03407 (2020)
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The charged elephant
in the other room



Understanding the range of interactions

o Environment kernels can be built for different cutoff radii
o Dimensionality/accuracy tradeoff, a measure of the range of interactions

Bartok, De, Poelking, Kermode, Bernstein, Csanyi, MC, Science Advances (2017) [data: QMS9, von Lilienfeld&C]
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Understanding the range of interactions

o Environment kernels can be built for different cutoff radii
o Dimensionality/accuracy tradeoff, a measure of the range of interactions

rclAl] 2—25—3—35—4 5

SN 1Fe 13
:‘5 \\\ _525:
o ¢ | ‘\ ] (@)
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willatt, Musil, MC, PCCP (2018)
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Understanding the range of interactions

e Environment kernels can be built for different cutoff radii
o Dimensionality/accuracy tradeoff, a measure of the range of interactions
o Amulti-scale kernel K (A, B) = Y~; w;K; (A, B) yields the best of all worlds.

Same results can be achieved by optimized radial scaling of (r|@)

18
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The problem with electrostatics

o Electrostatic interactions decay as 1/r, leading to very slow convergence
of properties with interaction cutoff
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The problem with electrostatics

o Electrostatic interactions decay as 1/r, leading to very slow convergence
of properties with interaction cutoff

e Local ML models are hopeless to capture long-range effects, e.g. binding
curves of charged fragments

DFT local local+LODE(2)

1 I o me—
— —0.05 1
S
B, ¢
L5
&, ®p P
o,
‘u’ L% (*)
1
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Long-distance equivariant representation

o Idea: get a local representation that reflects long-range correlations, with
proper asymptotics

Grisafi, MC, JCP (2019)
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Long-distance equivariant representation

o Idea: get a local representation that reflects long-range correlations, with
proper asymptotics
© Define an atom-density potential (ar|V) = [ (ar'|p) /|F' — r|dr’

(ar|p) = >_; daa, 9(r — 17)

Grisafi, MC, JCP (2019)
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Long-distance equivariant representation

o Idea: get a local representation that reflects long-range correlations, with
proper asymptotics
© Define an atom-density potential (ar|V) = [ (ar'|p) /|F' — r|dr’

(arlp) = ¥, buag(r —x))  (ar|V) = [ (ar'|p) /|t — x| dr’

Grisafi, MC, JCP (2019)
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Long-distance equivariant representation

o Idea: get a local representation that reflects long-range correlations, with
proper asymptotics
© Define an atom-density potential (ar|V) = [ (ar'|p) /|F' — r|dr’
@ Do the usual gig: symmetrize, decompose locally, learn!
e Can be computed efficiently in reciprocal space

Grisafi, MC, JCP (2019)
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Predicting binding curves for charged molecules

o A challenging test: rigid-molecule binding curves of charged dimers from

the BioFragmentsDB
e Train on ~600 dimers, separations <8A; test on ~60 dimers, up to > 50A
o Local ML alone fails, but SOAP+LODE combination extrapolates greatly
for both monopole-monopole and monopole-dipole interactions

0.001

—0.101
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Grisafi, MC, JCP (2019)
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Predicting binding curves for charged molecules

o A challenging test: rigid-molecule binding curves of charged dimers from
the BioFragmentsDB

e Train on ~600 dimers, separations <8A; test on ~60 dimers, up to > 50A

o Local ML alone fails, but SOAP+LODE combination extrapolates greatly
for both monopole-monopole and monopole-dipole interactions

DFT local local+LODE(2)

~
~~o
~—
~~~~~

0.0{ ====k=s=ccococcccccccocococooooooos

Grisafi, MC, JCP (2019)
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Predicting binding curves for charged molecules

o A challenging test: rigid-molecule binding curves of charged dimers from
the BioFragmentsDB

e Train on ~600 dimers, separations <8A; test on ~60 dimers, up to > 50A
o Local ML alone fails, but SOAP+LODE combination extrapolates greatly
for both monopole-monopole and monopole-dipole interactions

DFT local local+LODE(2)

0.2

_______
______

Grisafi, MC, JCP (2019)
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Predicting binding curves for charged molecules

o A challenging test: rigid-molecule binding curves of charged dimers from
the BioFragmentsDB

e Train on ~600 dimers, separations <8A; test on ~60 dimers, up to > 50A

o Local ML alone fails, but SOAP+LODE combination extrapolates greatly
for both monopole-monopole and monopole-dipole interactions

DFT local local+LODE(2)

0.10

Grisafi, MC, JCP (2019)
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Predicting binding curves for charged molecules

o A challenging test: rigid-molecule binding curves of charged dimers from
the BioFragmentsDB

e Train on ~600 dimers, separations <8A; test on ~60 dimers, up to > 50A

o Local ML alone fails, but SOAP+LODE combination extrapolates greatly
for both monopole-monopole and monopole-dipole interactions

21

DFT local local+LODE(2)
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Predicting binding curves for charged molecules

o A challenging test: rigid-molecule binding curves of charged dimers from
the BioFragmentsDB

e Train on ~600 dimers, separations <8A; test on ~60 dimers, up to > 50A

o Local ML alone fails, but SOAP+LODE combination extrapolates greatly
for both monopole-monopole and monopole-dipole interactions

DFT local local+LODE(2)

Grisafi, MC, JCP (2019)
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... and beyond

e "Multi-scale” LODE features |p; ® V;) map to multipole electrostatics but
enable learning all sorts of long-range physics

a) charged-charged b) charged-polar c) charged-apolar
0 0.0
0.0
-1 :3 .}0 -0.2
-2 -0.1 —_——
3 5 -0.4 QM
-
” -06 -02 .i.
: X
-5 -0.8 J‘ %‘ -03
25 50 55 60 65 70 S0 55 60 65 70 75 50 55 60 65 70 75 80 PP
d) polar-polar e) polar-apolar f) apolar-apolar
03 0.075
—
0.2 >0 0.050 p ® V
0.1

0.025

V

Ulev]

00
“o1 v

-0.2

0.000 \
—0.025 tt %
—-0.050

40 45 50 5. 45 50 55 60 65 70 75
RIA]

5 60 65 7.0
R[A]

Grisafi, Nigam, MC, arXiv:2008.12122 (2020)
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... and beyond

e "Multi-scale” LODE features |p; ® V;) map to multipole electrostatics but
enable learning all sorts of long-range physics

0.3 1
0.2 1
S
2 0.11
-]
0.0 1
—0.1 1
2 4 6 8
z (A)

Grisafi, Nigam, MC, arXiv:2008.12122 (2020)
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Conclusions & outlook

e Representations play a central role in any data-driven application
o Symmetries of representations and target quantities are key
o Locality, additivity, smoothness, conservation laws. . .
o Incorporating long-range interactions in a physics-inspired way
e Very useful to keep the treatment abstract, and to understand whether
different representations are substantially different, or just a matter of
practical implementation

%
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Conclusions & outlook

e Representations play a central role in any data-driven application
o Symmetries of representations and target quantities are key
o Locality, additivity, smoothness, conservation laws. . .
o Incorporating long-range interactions in a physics-inspired way
e Very useful to keep the treatment abstract, and to understand whether
different representations are substantially different, or just a matter of
practical implementation

Deep connections between most representations.............. Willatt et al. JCP (2019)
Strategies to reduce the computational cost..... Imbalzano et al. J. Chem. Phys. (2018)
Feature optimization: efficiency andinsight .................. Willatt et al. PCCP (2018)
Fast and accurate error estimation...........ccovvviiniininn... Musil et al. JCTC (2019)
Symmetry-adapted regression for tensors:......... Grisafi et al., Phys. Rev. Lett. (2018)
Completeness of representations ................. Podznyakov et al. arXiv:2001.11696
NICE FRALUIMES « vttt ettt e eeenes Nigam et al., arXiv:2007.03407
Comparing features........ccovviiiiiiiiiiinnannann Goscinski et al., arXiv:2009.02741
Multi-scale equivariants.............oooiiiiiiiia.L. Grisafi et al., arXiv:2008.12122

https://tinyurl.com/ceriotti-sissa-ictp-2020
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A data-driven periodic table of the elements

e How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H), |O), . . .
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A data-driven periodic table of the elements

e How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H), |O), . . .
e Expand each ket in a finite basis, |a) = >, u,,|J). Optimize coefficients
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Empedocles et al. (ca 360BC). Metaphor courtesy of Albert Bartéok
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A data-driven periodic table of the elements

e How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H), |O), . . .

e Expand each ket in a finite basis, |a) = >~ , u,, |J). Optimize coefficients

o Dramatic reduction of the descriptor space, more effective learning. . .
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A data-driven periodic table of the elements

e How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H), |O), . . .

e Expand each ket in a finite basis, |a) = >~ , u,, |J). Optimize coefficients

o Dramatic reduction of the descriptor space, more effective learning. . .

o ... and as by-product get a data-driven version of the periodic table!

B C N O F Ne
Al Si P S Cl Ar

Ga Ge As Se Br Kr
In Sn Sb Te | Xe
Tl Pb Bi

Willatt, Musil, MC, PCCP (2018); [data: Elpasolites, von Lilienfeld&C]
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