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The problem of representation
Mapping an atomic structure to a mathematical representation suitable
to ML is the first and perhaps most important step for atomistic machine
learning
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A phylogenetic tree of ML representations

Cartesian 
coordinates

atom 
density
fields

internal 
coordinates

atom
centred

distributions

density
correlation
features

atomic
symmetry
functions

distance
histograms

sorted
distances

molecular
graphspermutations rotations &

translations

translations

rotations,
(density products)

permutations
(histogram)

permutations
(sorting)

symmetry

family of features

other relation

molecular
matrices

sorted 
eigenvalues

equivalent

Wasserstein
metricsharp

smooth

δ limit

blur

permutation
invariant

polynomials

permutations
(average)

Behler-Parrinello
DeepMD

GTTPprojection

ACE
MTP

SNAP
SHIP

SOAP
FCHL

Wavelets
NICE

g(r)
MBTR

3D Voxel
Diffraction FP

potential
fields

translations,
rotations

symmetrized
local field

LODE

PIV
Sorted CM

BoB

SPRINT
overlap matrix

Z matrix

aPIPs

3 Michele Ceriotti - cosmo.epfl.ch Equivariant Representations for Atomistic Machine Learning



What we want from a representation
Structure representations should: 1. reflect basic physical symmetries; 2.
be complete (injective); 3. be smooth, regular; 4. exploit additivity
Cartesian coordinates fulfill only 2 and 3
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Additivity, and locality

A representation of a structure in terms of a sum over atom-centered
terms implies (for a linear model or an average kernel) an additive form of
the property
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A Dirac notation for representations

features 
index

representation
target & nature

radial indices

angular channels

structure

center
field

correlation
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rot. 
symmetry

A representation maps a structure A (or one environment Ai ) to a vector
discretized by a feature index X
Bra-ket notation 〈X |A; rep.〉 indicates in an abstract way this mapping,
leaving plenty of room to express the details of a representation
Dirac-like notation reflects naturally a change of basis, the construction
of a kernel, or a linear model

〈Y |A〉 =
∫

dX 〈Y |X〉 〈X |A〉
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k(A,A′) = 〈A|A′〉 ≈
∫

dX 〈A|X〉 〈X |A′〉
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discretized by a feature index X
Bra-ket notation 〈X |A; rep.〉 indicates in an abstract way this mapping,
leaving plenty of room to express the details of a representation
Dirac-like notation reflects naturally a change of basis, the construction
of a kernel, or a linear model

E(A) = 〈E |A〉 ≈
∫

dX 〈E |X〉 〈X |A〉
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Symmetrized field construction
Start from a non-symmetric representation (Cartesian coordinates)
Define a decorated atom-density |ρ〉 (permutation invariant)
Translational average of a tensor product |ρ〉 ⊗ |ρ〉 yields atom-centred
(and t̂ invariant) |ρi〉
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A universal feature construction
Rotationally-averaged representations are essentially the same n-body
correlations that are used in statistical theories of liquids
Linear models built on |ρ⊗ν

i ; g → δ〉 yield (ν + 1)-body potential expansion

V (Ai) =
∑

ij V
(2)
(
rij
)
+
∑

ij V
(3)
(
rij , rik , ωijk

)
. . .

Basically any atom-centred feature can be seen as a projection of |ρ⊗ν
i 〉

*
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Variations on a theme
Most of the existing density-based representations and kernels emerge
as special cases of this framework

Basis set choice - e.g. plane waves basis for |ρ⊗2
i 〉 (Ziletti et al. N.Comm 2018)

Projection on symmetry functions (Behler-Parrinello, DeepMD)

〈k|A; ρ⊗2〉 =
∑
ij∈A

eik·rij
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i 〉 (Ziletti et al. N.Comm 2018)

Projection on symmetry functions (Behler-Parrinello, DeepMD)

〈abG2|ρ⊗1i 〉 = δaai

∫
dr G2 (r) 〈br |ρ⊗1i ; g → δ〉
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Density expansion and SOAP

What if we use radial functions and spherical harmonics?

Symmetrized tensor product→ SOAP power spectrum!

Easily generalized to higher body order.
δ-distribution limit→ atomic cluster expansion
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Are these representations complete?

It is well-known that 2-body correlations are ambiguous: can build
tetrahedra with same pair distances that are different

One can also build examples of pairs of environments that have the same
3B and 4B correlations. Problem becomes important as model accuracy is
increased
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Are these representations complete?

It is well-known that 2-body correlations are ambiguous: can build
tetrahedra with same pair distances that are different

One can also build examples of pairs of environments that have the same
3B and 4B correlations. Problem becomes important as model accuracy is
increased

a) b) c)
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There are more things in
heaven and earth, Horatio, than
those transforming like a scalar



Machine-learning for tensors

What if we want to learn vectors or general tensors? We need features
that are equivariant to the tensor under rotations.

ελµ (Ai) =

∫
dX 〈ε|X〉 〈X |A; ρ⊗ν

i ;λµ〉

ελµ

(
R̂Ai

)
=

∫
dX 〈ε|X〉

∑
µ′

Dλ
µµ′(R̂) 〈X |A; ρ⊗ν

i ;λµ′〉
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http://dx.doi.org/10.1103/PhysRevLett.120.036002


Symmetrized-field equivariants
Include a |λµ〉 in the Haar integral to obtain SO(3) equivariants∫

dR̂ 〈r| R̂ |ρi〉 〈r′| R̂ |ρi〉 〈r′′| R̂ |λµ〉 → 〈rr ′ω θφ|ρ⊗2i ;λµ〉

Easier to compute by expanding the density in Rn (r)Y l
m

(
r̂
)
: explicit

power-spectrum-like representation

〈n1l1; n2l2|ρ⊗2i ;λµ〉 =
∑

m 〈n1l1m|ρi〉 〈n2l2(µ−m)|ρi〉 〈l1m; l2(µ−m)|λµ〉

*
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A hierarchy of equivariant features

A generalization of the definition yields N-body features that transform
like angular momenta

〈X |ρ⊗ν
i ;σ;λµ〉

Recursive construction based on sums of angular momenta and an
expansion of the atom density

〈n1l1k1|ρ⊗1i ;λµ〉 ≡ 〈n1λ (−µ)|ρi〉 δl1λδk1λδσ1 ≡ 〈n1|ρ⊗1i ;λµ〉

〈. . . ; nν lνkν ; nlk|ρ⊗(ν+1)
i ;σ;λµ〉 = δσ((−1)l+k+λs)ckλ×∑
qm

〈lm; kq|λµ〉 < n||ρ⊗1i ; lm > 〈. . . ; nν lνkν |ρ⊗ν
i ; s; kq〉

Can be used to compute efficiently invariant features |ρ⊗ν
i ;0;00〉
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Nigam, Pozdnyakov,MC, https://arxiv.org/pdf/2007.03407 (2020)



NICE features for ML
Problem: number of features grows exponentially with ν
Solution: an N-body iterative contraction of equivariants (NICE)
framework

After each body order increase, the most relevant features are selected and
used for the next iteration
Systematic convergence with ν and contraction truncation

body-order
iteration

contraction
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The charged elephant
in the other room



Understanding the range of interactions
Environment kernels can be built for different cutoff radii
Dimensionality/accuracy tradeoff, a measure of the range of interactions
A multi-scale kernel K (A,B) =

∑
i wiKi (A,B) yields the best of all worlds.

Same results can be achieved by optimized radial scaling of 〈r|ρ⊗ν
i 〉

*

*
*
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The problem with electrostatics

Electrostatic interactions decay as 1/r , leading to very slow convergence
of properties with interaction cutoff

Local ML models are hopeless to capture long-range effects, e.g. binding
curves of charged fragments
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The problem with electrostatics

Electrostatic interactions decay as 1/r , leading to very slow convergence
of properties with interaction cutoff

Local ML models are hopeless to capture long-range effects, e.g. binding
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Long-distance equivariant representation
Idea: get a local representation that reflects long-range correlations, with
proper asymptotics

1 Define an atom-density potential 〈ar|V 〉 =
∫
〈ar′|ρ〉 / |r′ − r|dr′

2 Do the usual gig: symmetrize, decompose locally, learn!
Can be computed efficiently in reciprocal space
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Predicting binding curves for charged molecules
A challenging test: rigid-molecule binding curves of charged dimers from
the BioFragmentsDB
Train on ~600 dimers, separations <8Å; test on ~60 dimers, up to> 50Å
Local ML alone fails, but SOAP+LODE combination extrapolates greatly
for both monopole-monopole and monopole-dipole interactions

DFT local local+LODE(2)
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... and beyond

‘‘Multi-scale’’ LODE features |ρi ⊗ Vi〉map to multipole electrostatics but
enable learning all sorts of long-range physics
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Grisafi, Nigam,MC, arXiv:2008.12122 (2020)



Conclusions & outlook
Representations play a central role in any data-driven application

Symmetries of representations and target quantities are key
Locality, additivity, smoothness, conservation laws. . .
Incorporating long-range interactions in a physics-inspired way

Very useful to keep the treatment abstract, and to understand whether
different representations are substantially different, or just a matter of
practical implementation
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A data-driven periodic table of the elements
How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H〉, |O〉, . . .
Expand each ket in a finite basis, |α〉 =

∑
J uαJ |J〉. Optimize coefficients

Dramatic reduction of the descriptor space, more effective learning . . .
. . . and as by-product get a data-driven version of the periodic table!

*

*

*
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Empedocles et al. (ca 360BC). Metaphor courtesy of Albert Bartók
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Willatt, Musil,MC, PCCP (2018); [data: Elpasolites, von Lilienfeld&C]

http://dx.doi.org/10.1039/C8CP05921G



