Scientific Calendar Event



Starts 21 Jan 2020 11:30
Ends 21 Jan 2020 12:00
Central European Time
SISSA, Via Bonomea 265
When non-interacting Bose-Einstein condensate is confined to a quasi one-dimensional channel it will spread due to dispersion as dictated by the Schrödinger equation. The spreading rate can be affected by changing the interaction between the atoms via the Feshbach resonance. If the interaction is set to just the right value, the attraction between atoms exactly compensates the dispersion. In this case the BEC doesn't spread and we get a bright matter-wave soliton. The maximum number of atoms in a soliton is limited by the frequency of the channel and the interaction between atoms. By setting the inter-atom interaction to different attractive values we are able to create soliton trains with different number of solitons from elongated BECs.