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Voronoi tessellation

Given  tracers at positions  with  , the Voronoi tessellation 
is a partition of space into  cells  such that, for a given tracer ,  is  
the set of points closer to  than to any other .

Ntrc {xt} 1 ≤ t ≤ Ntrc
Ntrc {𝒞t} t 𝒞t

t t′ 

SciPy implementation of Voronoi tessellation of uniformly 
distributed 2d tracers.

— Used in various fields such as 
meteorology, epidemiology, 
geophysics, computational fluid 
dynamics (e.g. AREPO) etc. 

— Several applications in cosmology 
too. E.g., cosmic web classification, 
void identification, etc.

This talk:  
Volume function of Voronoi cells 
of 3d clustered tracers



Voronoi tessellation

simulation: 
WMAP7 CDM 

tracers: 
mass-thresholded 
haloes at  

tessellation: 
Monte Carlo 
algorithm 

colour: 

Λ

z = 0

1 + δtrc = (ntrcV )−1



✦ Definition of Voronoi volume function (VVF) 

✦ Known results and analytical expectations 

• Connection to void probability function 

✦ Results from simulations 

• Effects of cosmology, substructure and RSD 

✦ Preliminary comparisons with GAMA results

Outline



Voronoi volume function
Definitions

If  is volume of cell  containing tracer  then  

         

Define  

            

We will denote the probability distribution  as the Voronoi volume 
function (VVF). 

Clearly .

V(t) 𝒞t t

⟨V⟩ =
1

Ntrc ∑
t

V(t) =
Vtot

Ntrc
= n−1

trc

y ≡ V/⟨V⟩ = ntrcV

p(y)

⟨y⟩ = ∫ dy p(y) y = 1



Voronoi volume function
Uniformly distributed (Poisson) tracers

For uniformly distributed (Poisson) tracers,  is known analytically [Gilbert 1962] 

  

where   

with . 

Although  is not known analytically, accurate fitting functions exist, e.g.: 

 

with  [Tanemura 2003]

⟨y2⟩

⟨y2⟩Poisson =
8π2

3 ∫
∞

0
dz z2 ∫

1

−1
dμ

1
v(z, μ)2

≃ 1.179

v(z, μ) =
π
3 [2z3 + 3μz(z2 + 1) − (3μ2z2 + 1)z + 3(1 − μz)T + 2T3/2]

T = z2 + 1 − 2μz

p(y)

pPoisson(y) =
c ba/c

Γ(b/c)
ya−1exp(−byc)

a = 4.8065, b = 4.06342, c = 1.16391



Voronoi volume function
Clustered tracers

For clustered tracers, generalising [Gilbert 1962] we can write 

  

where  is the void probability function for the volume  [White 1979]: 

 

where  is the connected -point correlation function averaged  
over .  

Thus  depends on the infinite hierarchy of tracer correlation functions. 

[For Poisson distributed tracers,  and we recover .]

⟨y2⟩ =
8π2

3 ∫
∞

0
dz z2 ∫

1

−1
dμ

1
v(z, μ)2

n2
trc ∫

∞

0
dVU VU exp (W0(ntrc, VU))

exp (W0(ntrc, V )) V

W0(ntrc, V ) =
∞

∑
k=1

(−ntrcV)k

k!
ξ̄k(V ) ≡ (−ntrcV) χ(ntrc, V )

ξ̄k(V ) k
V

⟨y2⟩

χ(ntrc, V ) = 1 ⟨y2⟩Poisson ≃ 1.179



Simulation suite

Cold Dark Matter 
P13  
L150_N512 

WMAP7  
L150_N1024, L300_N1024, L600_N1024 

P18  
L200_N1024

(Ωm = 0.315, h = 0.673, σ8 = 0.829)

(Ωm = 0.276, h = 0.7, σ8 = 0.811)

(Ωm = 0.306, h = 0.678, σ8 = 0.815)

Dark matter only GADGET-2 N-body runs
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Figure 10. Linear power spectra (shown extrapolated to z =
0) used for generating initial conditions for the WMAP7 (red)
and P18 (blue) cosmologies, computed using the codes camb and
class, respectively. Thick curves correspond to CDM spectra
while thin curves show the WDM (red, WMAP7) and BDM (blue,
P18) models used in this work. See text for a description of these
models and the parameters defining them.

The second non-standard model we explore displays a
di↵erent type of small-scale feature – namely, oscillations – in
the initial power spectrum. Such models have been discussed
extensively in the context of possible acoustic oscillations
due to interactions in the dark sector (Cyr-Racine et al. 2016;
Vogelsberger et al. 2016). We focus on the so-called “ballistic”
dark matter BDM model recently proposed by Das et al.
(2019).

This model contains a dark matter component which
remained relativistic and collisional until relatively late times,
before becoming cold and collisionless through a phase tran-
sition. The acoustic oscillations of this component prior to
this phase transition leave an imprint during its collisionless
phase in the form of large coherent peculiar velocities which
leads to a ballistic evolution (hence the name) until these
velocities are damped away due to Hubble expansion. As
a result, the initial power spectra for non-linear structure
formation in such a model contain oscillatory features whose
peak structure and overall amplitude is sensitive to the frac-
tion fbdm of the total dark matter that comprises the ballistic
species and the redshift z⇤ of the phase transition. Here we
choose z⇤ = 105 and fbdm = 0.5 which are approximately
consistent with Planck measurements of CMB anisotropies
at the ⇠ 2� level (Das et al. 2019). The initial conditions for
this simulation were generated using the same random seed
as for the L200 N1024 P18 CDM simulation.

Thus, both our choices of non-standard dark matter
models reflect extreme situations that will help exemplify
the sensitivity of the VVF to such physics. Figure 10 shows
the linear theory matter power spectra in these models (ex-
trapolated to z = 0) which were used to generate the initial
conditions of our simulations. The WMAP7 (P18) CDM

transfer functions were generated using camb (class). The
WDM transfer function was generated using the fitting func-
tion (16) as described above. The BDM transfer function
(along with its CDM counterpart) was kindly provided by
Anirban Das. For our choice of parameter values, at scales
with k & 1h/Mpc this model shows peaks of alternating
heights, with an overall average power that is larger than
that in CDM.

The halo mass functions for the WDM and BDM cos-
mologies at z = 0 are compared with their CDM counterparts
in Figure 1. As noted earlier, at high masses all cosmologies
behave similarly. At lower masses, the WDM model displays
a characteristic suppression of number counts below the half-
mode mass scale (e.g., Schneider et al. 2012); the origin of
this suppression can be understood using peaks theory and
the excursion set formalism (Hahn & Paranjape 2014). The
BDM model, on the other hand, shows a dip near the mass
scale associated with the first oscillation in its initial power
spectrum, with an enhancement compared to CDM at lower
masses, corresponding to the enhanced average power at high
k in the initial conditions.

Collisionless N -body simulations with a truncation of
initial power are known to be plagued by numerical artefacts
(essentially, discreteness noise which ‘gravitates’ identically
to real density fluctuations) leading to a large number of
spurious objects at mass scales substantially smaller than the
half-mode mass (Wang & White 2007). Careful treatments of
these e↵ects, using both traditional N -body techniques (see,
e.g., Lovell et al. 2012) as well as alternate phase space tes-
sellation techniques (Shandarin et al. 2012; Hahn et al. 2013;
Angulo et al. 2013) have led to well-calibrated mass functions
for WDM cosmologies (Schneider et al. 2013). Figure 1 shows
that these e↵ects are not larger than about ⇠ 10% for our
WDM model (compare the simulated mass function with the
fit from the literature) over the range of mass scales we con-
sider, owing to a combination of our virial cleaning criterion
(section 2; see also Agarwal & Corasaniti 2015) and the fact
that we do not reach mass scales substantially below the
half-mode mass. In the case of BDM, there are no similarly
reliable fitting functions currently available. However, con-
sidering that this model has, on average, more initial power
than CDM at the smallest resolved scales leads us to expect
that BDM-like cosmologies are likely much more robust to
discreteness artefacts than WDM ones. We leave a fuller
investigation of the convergence properties to future work,
noting however that previous simulations with oscillatory
initial power spectra have produced mass function shapes
not dissimilar to the one seen in Figure 1 (Corasaniti et al.
2017; Bose et al. 2019; Sameie et al. 2019, see, e.g., Figure 2
of the latter).

Figure 11 shows the corresponding VVF results for the
all-(sub)halo samples and for samples selected by b1 � �5.
Comparing the two CDM cosmologies with each other, we
see that �VVF and y50 are very insensitive to cosmological
parameters, while the extreme percentiles y97.5 and especially
y2.5 show larger di↵erences, which we also saw in Figure 9.
The WDM model produces nearly the same results as its
CDM counterpart for all the statistics for the same choice of
sample selection. Finally, the BDM results are dramatically
di↵erent from those of the other cosmologies, for both choices
of sample selection, for each statistic in both amplitude and
slope.

MNRAS 000, 1–20 (0000)

Alternate Dark Matter (paired to CDM) 
WMAP7 warm DM  
L150_N1024 

P18 ballistic DM  
L200_N1024

(mDM = 0.4 keV)

(z* = 105, fbdm = 0.5)
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tracers: 
mass-thresholded 
haloes in real space

VVF shape
Dependence on halo mass6 Paranjape & Alam
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Figure 3. Di↵erential VVF for real-space haloes selected by
a mass threshold m200b > mlim at z = 0 for the WMAP7
CDM cosmology, for two choices of mlim (thick blue and yel-
low histograms), compared with the VVF of randomly distributed
(Poisson) points in the same volume (thin red histogram). The
latter is accurately described by the fitting function (6) from
the literature (smooth red curve). We indicate the percentiles
{y2.5, y16, y50, y84, y97.5} = {0.338, 0.585, 0.940, 1.403, 1.964} of
the Poisson VVF as vertical lines (computed using equation 6).
The halo VVFs are clearly sensitive to mlim and broader than
the Poisson VVF. Being unimodal, the VVFs are fully described
by their percentiles, which will be exclusively used in subsequent
plots.

4.2 Tracers selected by halo mass

As the simplest and most intuitive selection criterion, let
us first study the shape of the VVF of haloes selected by a
mass threshold m200b > mlim. Figure 3 shows the di↵erential
VVF of two halo samples selected using mlim = 1011h�1

M�
and 1012.5h�1

M�, respectively, and shown as thick solid
histograms (the higher threshold leads to a narrower distri-
bution). We used the z = 0 snapshot of one of the WMAP7
L150 N1024 CDM boxes for selecting these samples. For
comparison, the thin histogram shows the VVF of randomly
distributed points in the same volume, which is accurately
described by equation (6) (smooth curve). We see that both
the halo VVFs are unimodal and broader than the Poisson
VVF. The latter is easily understood as a consequence of
clustering: imagine ‘moving’ an unclustered set of N points
into a configuration identical to the actual positions of N
haloes in a simulation volume Vbox. This would involve bring-
ing together groups of these points so as to become clustered
near filaments and nodes, while simultaneously emptying un-
derdense voids. Clearly, this will increase the number of, both,
small-volume as well as large-volume cells, while keeping the
mean cell volume intact at Vbox/N , which is equivalent to
broadening the VVF.

The unimodality of the halo VVFs is a feature shared
by all the tracer samples we consider in this work, and allows
us to equivalently describe each VVF by simply reporting
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Figure 4. Percentiles of the VVF for real-space haloes selected
by a mass threshold m200b > mlim at z = 0 (solid) and z = 1
(dashed) for three CDM cosmologies: WMAP7 (red), P13 (yellow)
and P18 (blue). We display the percentiles y2.5, y16, y50, y84 and
y97.5 (from bottom to top, as labelled) as a function of tracer
number density ntrc (see Figure 1 for the corresponding mlim

values). For comparison, the VVF percentiles of Poisson distributed
tracers computed using equation (6) are indicated as horizontal
line segments at the left of the plot. WMAP7 results are averaged
over all available realisations of the configurations L150 N1024 and
L600 N1024 (see Table 1) with error bars indicating the standard
deviation across realisations. Horizontal dotted line indicates the
mean value h y i = 1.

a small number of its percentiles. As an example, we have
indicated the percentiles y50 (solid), y16, y84 (dashed) and
y2.5, y97.5 (dotted) of the Poisson VVF as vertical lines, using
which one can read o↵ the median, central 68% and 95%
regions, respectively, of the distribution. (Hereafter, we will
refer to the p

th percentile of y as yp.) In subsequent plots,
we will exclusively display VVF percentiles instead of di↵er-
ential distributions for all tracer samples, comparing with
the Poisson VVF percentiles. This will allow us to compactly
represent the VVF shapes of multiple tracer populations on
the same graph.

Figure 4 shows the VVF percentiles of various mass-
thresholded samples as a function of their tracer number
density ntrc(> mlim) (see Figure 1). Note that, for each value
of mass threshold mlim, we use all selected haloes to perform
the tessellation and results are then shown for di↵erent mass
thresholds using ntrc(> mlim) rather than mlim as the control
variable. We display the percentiles y2.5, y16, y50, y84 and
y97.5, showing results at z = 0 (solid lines) and z = 1 (dashed
lines).

As noted earlier, all distributions are broader than the
Poisson case (computed using equation 6 and shown as hor-
izontal line segments at the left of the plot). Comparing
between the di↵erent CDM cosmologies, we see essentially
universal behaviour for all the percentiles at fixed redshift.
Additionally, there is a substantial redshift evolution of the
lower percentiles y16 and especially y2.5 (corresponding to

MNRAS 000, 1–20 (0000)



tracers: 
mass-thresholded haloes in real space

VVF percentiles + std dev
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Dependence on halo mass and redshift
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Figure 3. Di↵erential VVF for real-space haloes selected by
a mass threshold m200b > mlim at z = 0 for the WMAP7
CDM cosmology, for two choices of mlim (thick blue and yel-
low histograms), compared with the VVF of randomly distributed
(Poisson) points in the same volume (thin red histogram). The
latter is accurately described by the fitting function (6) from
the literature (smooth red curve). We indicate the percentiles
{y2.5, y16, y50, y84, y97.5} = {0.338, 0.585, 0.940, 1.403, 1.964} of
the Poisson VVF as vertical lines (computed using equation 6).
The halo VVFs are clearly sensitive to mlim and broader than
the Poisson VVF. Being unimodal, the VVFs are fully described
by their percentiles, which will be exclusively used in subsequent
plots.

4.2 Tracers selected by halo mass

As the simplest and most intuitive selection criterion, let
us first study the shape of the VVF of haloes selected by a
mass threshold m200b > mlim. Figure 3 shows the di↵erential
VVF of two halo samples selected using mlim = 1011h�1

M�
and 1012.5h�1

M�, respectively, and shown as thick solid
histograms (the higher threshold leads to a narrower distri-
bution). We used the z = 0 snapshot of one of the WMAP7
L150 N1024 CDM boxes for selecting these samples. For
comparison, the thin histogram shows the VVF of randomly
distributed points in the same volume, which is accurately
described by equation (6) (smooth curve). We see that both
the halo VVFs are unimodal and broader than the Poisson
VVF. The latter is easily understood as a consequence of
clustering: imagine ‘moving’ an unclustered set of N points
into a configuration identical to the actual positions of N
haloes in a simulation volume Vbox. This would involve bring-
ing together groups of these points so as to become clustered
near filaments and nodes, while simultaneously emptying un-
derdense voids. Clearly, this will increase the number of, both,
small-volume as well as large-volume cells, while keeping the
mean cell volume intact at Vbox/N , which is equivalent to
broadening the VVF.

The unimodality of the halo VVFs is a feature shared
by all the tracer samples we consider in this work, and allows
us to equivalently describe each VVF by simply reporting
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Figure 4. Percentiles of the VVF for real-space haloes selected
by a mass threshold m200b > mlim at z = 0 (solid) and z = 1
(dashed) for three CDM cosmologies: WMAP7 (red), P13 (yellow)
and P18 (blue). We display the percentiles y2.5, y16, y50, y84 and
y97.5 (from bottom to top, as labelled) as a function of tracer
number density ntrc (see Figure 1 for the corresponding mlim

values). For comparison, the VVF percentiles of Poisson distributed
tracers computed using equation (6) are indicated as horizontal
line segments at the left of the plot. WMAP7 results are averaged
over all available realisations of the configurations L150 N1024 and
L600 N1024 (see Table 1) with error bars indicating the standard
deviation across realisations. Horizontal dotted line indicates the
mean value h y i = 1.

a small number of its percentiles. As an example, we have
indicated the percentiles y50 (solid), y16, y84 (dashed) and
y2.5, y97.5 (dotted) of the Poisson VVF as vertical lines, using
which one can read o↵ the median, central 68% and 95%
regions, respectively, of the distribution. (Hereafter, we will
refer to the p

th percentile of y as yp.) In subsequent plots,
we will exclusively display VVF percentiles instead of di↵er-
ential distributions for all tracer samples, comparing with
the Poisson VVF percentiles. This will allow us to compactly
represent the VVF shapes of multiple tracer populations on
the same graph.

Figure 4 shows the VVF percentiles of various mass-
thresholded samples as a function of their tracer number
density ntrc(> mlim) (see Figure 1). Note that, for each value
of mass threshold mlim, we use all selected haloes to perform
the tessellation and results are then shown for di↵erent mass
thresholds using ntrc(> mlim) rather than mlim as the control
variable. We display the percentiles y2.5, y16, y50, y84 and
y97.5, showing results at z = 0 (solid lines) and z = 1 (dashed
lines).

As noted earlier, all distributions are broader than the
Poisson case (computed using equation 6 and shown as hor-
izontal line segments at the left of the plot). Comparing
between the di↵erent CDM cosmologies, we see essentially
universal behaviour for all the percentiles at fixed redshift.
Additionally, there is a substantial redshift evolution of the
lower percentiles y16 and especially y2.5 (corresponding to

MNRAS 000, 1–20 (0000)



tracers: (mass + bias)-thresholded haloes in real space at z = 0

Dependence on halo clustering

VVF percentiles + std dev

[AP, Hahn & Sheth 2018]

8 Paranjape & Alam
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Figure 6. E↵ects of halo clustering: (Left panel:) Halo number density as a function of linear bias threshold b1,lim, for three
di↵erent mass thresholds m200b > mlim. (Middle panel:) VVF standard deviation �VVF for the corresponding samples. The horizontal
dashed line segments show the asymptotic values expected from combining the fit in equation (14) with the T08 mass function for the
corresponding thresholds. Horizontal dash-dotted line indicates the value for Poisson distributed tracers. (Right panel:) VVF percentiles
for the corresponding samples. Horizontal line segments indicate the Poisson values. Results are displayed for parent halo samples at
z = 0 in the WMAP7 CDM configurations. Curves of di↵erent thickness correspond to di↵erent box configurations as indicated in the
legend of the middle panel. All results are averaged over all available realisations (see Table 1) with error bars indicating the standard
deviation across realisations. The VVF shape is clearly a strong function of the b1 threshold; see text for a discussion.

4.3.2 Substructure

So far we have been dealing with parent haloes, which are
expected to host central galaxies. Galaxy catalogs typically
also contain a substantial fraction of satellite galaxies which
occupy subhaloes of larger systems. Compared to the Voronoi
cell structure in a catalog containing only centrals/parent
haloes, a catalog containing satellites/subhaloes would con-
tain preferentially smaller Voronoi cells, since the inclusion
of satellites in a group would split the erstwhile Voronoi cell
of the group’s central into smaller chunks. This e↵ect would
be more pronounced at smaller thresholds mlim where the
substructure fraction is higher. We study this e↵ect here
using subhaloes in our N -body simulations.

The yellow solid curves in Figure 7 show the VVF per-
centiles (left panel) and standard deviation (right panel) for
samples containing all haloes and subhaloes with m200b >

mlim
10 as a function of the corresponding ntrc. The purple

dashed curves show the corresponding measurements for sam-
ples containing only parent haloes (repeated from Figures 4
and 5). We see that the VVF distribution – particularly at
small mlim (large ntrc) – broadens towards smaller values of y
and has a larger width �VVF upon including subhaloes. The
percentile y2.5 has a pronounced knee-like feature around
ntrc ⇠ 10�3(h�1Mpc)�3. Thus, the additional clustering
information introduced by substructure produces large ef-
fects in the small-volume (or high-density) tail of the VVF.

10 Strictly speaking, one should account for the e↵ects of tidal
stripping by thresholding on mass definitions such as mpeak which
would account for the subhalo’s entire accretion history. We will
do so later when comparing our simulations with observational
results. For now, we stick to the m200b mass definition which
allows us to use our full suite of simulation configurations; this
would otherwise be curtailed due to the absence of merger trees
for boxes with Lbox � 300h�1Mpc.

This can be potentially very interesting for studies of galaxy
groups, e.g., by placing constraints on the outputs of group-
finder algorithms. It is, however, important to first assess
the role of RSD which can substantially alter the observed
spatial distribution of substructure due to line-of-sight virial
motions. We turn to this next.

4.3.3 Redshift space distortions

The blue dashed curves in Figure 7 show the VVF statistics
for the same parent haloes used for the purple dashed curves,
but first moved into redshift space under the distant observer
approximation by choosing one of the simulation box axes as
the observer line-of-sight. Since this is a parent-only sample,
virial motions are expected to play no role and the entire RSD
e↵ect should be due to large-scale bulk flows (except possibly
when there is a contamination of the sample by splashback
objects, see below). We see that �VVF for the redshift-space
halo sample is always systematically larger than its real-
space counterpart. Correspondingly, y2.5 for the redshift-
space sample is lower than the real-space one, at all but the
largest number densities. Since large-scale bulk flows enhance
the large-scale bias (Kaiser 1987), and we have already seen
that �VVF is a strong function of halo bias (c.f. Figure 6),
the enhancement of �VVF in redshift space compared to real
space is not surprising. This is also consistent with y2.5 in
redshift space being lower than that in real space for most of
the samples. To understand the reversal of the latter trend in
the high-ntrc samples (ntrc & 10�2(h�1Mpc)�3), it is useful
to first consider the e↵ect of substructure.

We next include subhaloes in the samples as in sec-
tion 4.3.2 and move all objects into redshift space. Our
samples are now a↵ected not only by bulk flows but also by
the Fingers-of-God e↵ect due to virial motions of subhaloes
in groups. The red solid curves in Figure 7 show the resulting
VVF statistics. The standard deviation �VVF in the right

MNRAS 000, 1–20 (0000)



tracers: mass-thresholded (sub)haloes in real and redshift space at z = 0

Effects of substructure and redshift-space distortions

VVF percentiles + std dev
Voronoi volume function 9
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Figure 7. Comparing e↵ects of RSD and substructure: VVF percentiles (left panel) and standard deviation �VVF (right panel)
for mass-thresholded samples containing only parent haloes (dashed) in real space (purple) and redshift space (blue), and for samples
additionally containing subhaloes (solid) in real (yellow) and redshift space (red). Dotted curves in the right panel show the fits from
equation (14) (black, lower) and equation (15) (red, upper). Results are displayed for tracers at z = 0 in the WMAP7 CDM configurations.
Curves of di↵erent thickness correspond to di↵erent box configurations as indicated in the legend of the left panel. All results are averaged
over all available realisations (see Table 1) with error bars indicating the standard deviation across realisations.

panel is systematically enhanced compared to all other sam-
ples, a sign of the doubly enhanced clustering due to both
bulk flows and the presence of substructure.

More interestingly, y2.5 in the left panel now shows a
dramatic di↵erence as compared to the real-space sample
with substructure: the knee-like feature has completely disap-
peared and the final result is close to being a single power-law
in ntrc. The enhancement is easily understood as being due
to the preferential elongation of all groups along the observer
line-of-sight which stretches out all subhalo Voronoi cells
along this direction and increases their volumes. Comparing
the solid red and dashed blue curves for y2.5, the RSD e↵ect
for the parent-only sample visually appears to be simply
a milder version of the drastic flattening seen in the sam-
ple containing subhaloes. This could either be caused by
backsplash objects – subhaloes mimicking isolated objects
by being located temporarily far from their host (Gill et al.
2005) – contaminating the parent-only samples, or more gen-
erally due to preferential flows in regions with strong tidal
anisotropy, such as near the nodes of thick filaments. In either
case, the lower percentiles of the VVF are clearly sensitive
to such dynamical e↵ects. This could potentially be of great
practical value in both theoretical and observational studies
that, e.g., seek to robustly separate central objects from
substructure, or characterise the dynamics within di↵erent
cosmic web environments.

Overall, upon including subhaloes as well as RSD in the
otherwise mass-thresholded samples, we see that �VVF as
well as the percentiles of y become nearly single power-laws
in ntrc. We find that �VVF(ntrc) is now well-described by

�VVF|RSD+sub(ntrc) = 2.21⇥

✓
ntrc

1(h�1Mpc)�3

◆0.097

, (15)

(shown as the red dotted curve in the right panel of Figure 7).

Appendix B further shows that the e↵ects of downsam-
pling lead to a characteristic decrease in the width of the
VVF, whose e↵ect on �VVF is accurately captured by the
separable form in equation (B2) for both parent haloes in
real-space as well as redshift-space samples including sub-
structure, while masking leaves no discernable imprint on
the VVF. With this understanding of the dependence of the
VVF on variables related to halo clustering, we next turn to
a comparison with observed galaxy samples.

5 MATCHING GAMA RESULTS

In a forthcoming paper (Alam et al., in preparation; hence-
forth, Paper-II), we analyse luminosity-thresholded samples
in the Galaxies & Mass Assembly (GAMA) survey (Driver
et al. 2009),11 constructing the Voronoi tessellation for each
sample and measuring the corresponding VVF. The GAMA
survey comprises a spectroscopic sample of ⇠ 300, 000 galax-
ies with a magnitude limit r < 19.8 in an area of ⇠ 286deg2

with approximately 98% completeness. Details of our analy-
sis can be found Paper-II, where we show that the GAMA
VVF is well-described by simple power law relations for �VVF

and the percentiles yp, p 2 {2.5, 50, 97.5}, as a function of
ntrc for samples thresholded by r-band absolute magnitude,
with threshold values ranging from �21 to �18. Table 2
summarises these power laws for the publicly available G15
sample. In this section, we construct a halo sample that best
describes the VVF of the GAMA G15 field.

Figures B2 and B3 show that, when samples are thresh-
olded by m200b, the GAMA results cannot be explained by
the inclusion of subhaloes in the sample, RSD, downsampling

11 http://www.gama-survey.org
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tracers: ( +bias)-thresholded (sub)haloes in redshift space at  and vpeak z = 0 z = 0.1

Subhalo abundance matching: CDM simulations

Comparison with data
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Subhalo abundance matching: cosmology dependence

Comparison with data
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★ Voronoi volume function is a novel probe of nonlinear 
structure, sensitive to variety of tracer properties 

• Halo mass 
• Substructure content 
• Kinematics (RSD) 
• Large-scale clustering 
• Redshift evolution 

★ Cosmology dependence (cdm / wdm): 

• VVF of mass-selected samples essentially universal  
• Weak cosmology dependence in realistic (SHAM) samples 

★ Cosmology dependence (bdm): 

• Strong sensitivity to oscillatory features in   P(k)

Conclusions


