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(1+1)-d Integrable QFT

In a boring old vacuum
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General strategy for IQFT correlators

Form factor expansion
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n € excited states

Excited states in Relativistic IQFT

ln) =16,,6,,...,0,), E =mcosh@,p =msinh@.

A, ....0,) = (0]®(0,0)]6y, ..., 6,)

First few particle states are enough for long distance properties
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Leads generically to exponential behavior, ~e ™ or e"™



A few of the useful form factor properties (axioms)

Crossing symmetry 6°“ — @™ + zi
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So, what is Generalized Hydrodynamics?

An effective theory which provides long distance correlation functions
on highly excited and possibly inhomogeneous states

(P D (x1, 1) Dy(x, 1) | )
(plp)

Cpq)lq)z(xl, x2, tl, tz) —

Note the state can break translation invariance

Particularly useful for slow space-time dependent states, for example:
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How does GHD work?

Cut space-time into large (but also small) cells
Each cell is approximately a GGE
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Find effective evolution equation for 5"



Our goal:

We focus on two particularly simple predictions
from GHD formalism, and we want to reproduce them
Without using GHD assumptions, from a form factor expansion

Two point function on a homogenous excited state:
B. Doyon, SciPost Phys. 5, 054 (2018)
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One point function on a inhomogeneous excited state:
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What do (homogeneous) excited states look like?

Finite density of particles:

N
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Thermodynamic “ground state” energy

E, = mL"dH cosh(8)p(0)



Excitations over thermodynamic ground state

Pick a particular microscopic realization of p(0)

Insert additional particles
|p) = 1p"0,,0,,...)

Adding particles shifts the background particles,
Leads to “dressed”quantities.

We can also Remove particles now (add a hole)

Equivalent to 0, = 0, + n1



Low lying contributions to the two point function

One particle above thermodynamic ground state:

(p|D|p;0) Leads to qualitatively similar behavior
(p|p) as in vacuum (exponential)

f76) =

One particle removed from thermodynamic ground state:

20 + i) Also leads to exponential behavior
P (supressed at low densities)

Both contributions vanish in the GHD regime

The relevant excitations are particle-hole pairs (no analog in vacuum)
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A grotesque calculation of  f,(6,,6, + i)

For long distance correlation function,
s.p. approximation: we just need the limit,

lim f;b(é’, 0+ 71+ k)

k—0

Strategy: regularize at finite volume/number of background particles,
Find how all the background particles behaveas «x— 0
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K
We can calculate the shift on each background particle A[0;,0,x] ~ 7

We know how form factors behave around poles



Take thermodynamic limit

00 k
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Sum over standard (connected) form factors

Quickly convergent series,
similar to Leclair-Mussardo formula (if you know what that is)
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Perfectly matches GHD correlation function,
Our formalism gives direct understanding higher corrections



One-point function, inhomogeneous background
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Assume //(x) is slow enough that it can be split into large cells
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BX constant within each cell K

Extract an arbitrary overall f;, redefine pX=p%-5
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Now a ratio of many-point functions i
Free to choose the most convenient S,

At large ¢




Many-point function
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Not all of the many operators are Causally connected! (exponential decay)

Only correlations between ®(x,f) and each Ox are important!



Sum of Homogeneous two-point functions
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Each two-point correlator decays like 1/t, but there are ~t terms

We know how to compute the
leading contributions to these correlators

The punchline: there is a unique optimal choice of {3}
Which Kkills all of the K terms

Only the first term survives with {g>mPles)
Given by {5°"(x/1)}

Leading term is the GHD prediction, without using GHD!



Future wishlist

Two (and more) point function, inhomogeneous

Leading corrections/ compare with QGHD and Diffusive GHD

Classical and/or non-relativistic limits



