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(1+1)-d Integrable QFT

CΦ1Φ2(x1 − x2, t1 − t2) = ⟨0 |Φ1(x1, t1)Φ2(x2, t2) |0⟩

−⟨0 |Φ1(x1, t1) |0⟩⟨0 |Φ2(x2, t2) |0⟩

In a boring old vacuum



General strategy for IQFT correlators
Form factor expansion

CΦ1Φ2(x1 − x2, t1 − t2) = ∑
n∈ excited states

⟨0 |Φ1 |n⟩⟨n|Φ2 |0⟩ eipn⋅(x1−x2)−iEn⋅(t1−t2)

Excited states in Relativistic IQFT

|n⟩ = |θ1, θ2, …, θn⟩, E = m cosh θ, p = m sinh θ .

f Φ1(θ1, …, θn) = ⟨0 |Φ1(0,0) |θ1, …, θn⟩

First few particle states are enough for long distance properties

CΦ1Φ2(x1 − x2, t1 − t2) ≈ ∫ dθ f Φ
1 (θ)(f Φ2(θ))* eim cosh θ(x1−x2)−im sinh θ(t1−t2)

Leads generically to exponential behavior, ∼ e−mr, or eimr



A few of the useful form factor properties (axioms)

Crossing symmetry θout → θin + π i

Annihilation poles, f(θ1, …, θn−1, θn+ π i) ∼ f(θ1, …, θn−2)
θn−1 − θn



So, what is Generalized Hydrodynamics?

An effective theory which provides long distance correlation functions 
 on highly excited and possibly inhomogeneous states 

CΦ1Φ2
ρ (x1, x2, t1, t2) = ⟨ρ |Φ1(x1, t1)Φ2(x2, t2) |ρ⟩

⟨ρ |ρ⟩

Note the state can break translation invariance

Particularly useful for slow space-time dependent states, for example:

⟨ρ |Φ(x,0) |ρ⟩
⟨ρ |ρ⟩ = 1

Z
Tr (e−∫ dx′ �βi(x′ �)qi(x′�)Φ(x,0))

Q = i ∫ d x′�qi(x′�), [H, Qi] = 0



How does GHD work?

Cut space-time into large (but also small) cells 
Each cell is approximately a GGE

⟨ρ |Φ(x, t) |ρ⟩
⟨ρ |ρ⟩ ∼ 1

Zx,t
Tre−βx,t

i Qi Φ

Find effective evolution equation for βx,t
i



Our goal: 

We focus on two particularly simple predictions  
from GHD formalism, and we want to reproduce them 

Without using GHD assumptions, from a form factor expansion

Two point function on a homogenous excited state:

lim
Δx∼ Δt→∞

Δt
⟨ρ |Φ1(x1, t1)Φ2(x2, t2) |ρ⟩

⟨ρ |ρ⟩

One point function on a inhomogeneous excited state:

lim
x1∼ t1→∞

⟨ρ[x, t] |Φ(x1, t1) |ρ[x, t]⟩
⟨ρ[x, t] |ρ[x, t]⟩

For causally connected operators

B. Doyon, SciPost Phys. 5, 054 (2018)



What do (homogeneous) excited states look like?

Finite density of particles:

lim
N,L→∞

N
L

= ρ̄ = ∫ dθ ρ(θ)

Eρ = mL∫ dθ cosh(θ)ρ(θ)

Thermodynamic “ground state” energy



Excitations over thermodynamic ground state

Pick a particular microscopic realization of  ρ(θ)

Insert additional particles

|ρ⟩ → |ρ′�; θ1, θ2, …⟩

Adding particles shifts the background particles, 
Leads to “dressed”quantities.

We can also Remove particles now (add a hole)

Equivalent to θ1 → θ1 + π i



Low lying contributions to the two point function

One particle above thermodynamic ground state:

f Φ
ρ (θ) ≡ ⟨ρ |Φ |ρ′�; θ⟩

⟨ρ |ρ⟩
Leads to qualitatively similar behavior  

as in vacuum (exponential)

One particle removed from thermodynamic ground state:

f Φ
ρ (θ + π i) Also leads to exponential behavior 

(supressed at low densities)

Both contributions vanish in the GHD regime

The relevant excitations are particle-hole pairs (no analog in vacuum)

f Φ
ρ (θ1, θ2 + π i)



f Φ
ρ (θ1, θ2 + π i)A grotesque calculation of 

For long distance correlation function,  
s.p. approximation: we just need the limit,

lim
κ→0

f Φ
ρ (θ, θ + π i + κ)

Strategy: regularize at finite volume/number of background particles, 
Find how all the background particles behave as κ → 0

f Φ
ρ (θ, θ + π i + κ) = lim

L,n→∞

f Φ({θ′�i + π i}n, {θ′�i + Δ[θ′�, θ, κ]}n, θ, θ + π i + κ)
ρn({θ′�i}n)

We can calculate the shift on each background particle Δ[θ′�i, θ, κ] ∼ κ
L

We know how form factors behave around poles 



Take thermodynamic limit 

lim
κ→0

f Φ
ρ (θ + π i, θ + κ) = 2πρs(θ)VΦ(θ) =

∞

∑
k= 0

1
k! ∫

k

∏
j= 1 (

dθj

2π
ϑ(θj)) f Φ

c (θ1, …, θk, θ)

Sum over standard (connected) form factors

Quickly convergent series,  
similar to Leclair-Mussardo formula (if you know what that is)

CΦ1Φ2(ξ, t) = t−1 ∑
θ

∈ θ*(ξ)
ρp(θ)(1 − ϑ(θ))

| (veff)′�(θ) |
VΦ1(θ)VΦ2(θ) + /(1/t2),

Perfectly matches GHD correlation function, 
Our formalism gives direct understanding higher corrections



One-point function, inhomogeneous background

⟨ρ |Φ(x, t) |ρ⟩
⟨ρ |ρ⟩ = 1

Z
Tr (e−∫ dx′ �βi(x′ �)qi(x′�)Φ(x, t))

Assume βi(x′�) is slow enough that it can be split into large cells

∫ d x′�βi(x′�)qi(x′�) = ∑
K

∫
K+ l/2

K−l/2
d x′�βK

i qi(x′�)

βK
i constant within each cell K

Extract an arbitrary  overall  β̄i,   redefine β̃K
i = βK

i − β̄i

⟨ρ |Φ(x, t) |ρ⟩
⟨ρ |ρ⟩ ≈

Tr (e−β̄iQi (∏K OK) Φ(x, t))
Tr (e−β̄iQi∏K OK)

Now a ratio of many-point functions
Free to choose the most convenient β̄i

At large �



Many-point function 

Not all of the many operators are Causally connected! (exponential decay)

Only correlations between Φ(x, t) and each  OK are important!



⟨ρ |Φ(x, t) |ρ⟩
⟨ρ |ρ⟩ = ⟨{β̄i} |Φ(0,0) |{β̄i}⟩

⟨{β̄i} |{β̄i}⟩
+ ∑

K∈ light cone
CΦOK

{β̄i}
(x − xK, t) + /(1/ t)

Sum of Homogeneous two-point functions

Each  two-point correlator decays like 1/t, but there are ~t terms

We know how to compute the 
 leading contributions to these correlators

The punchline: there is a unique optimal choice of            
Which kills all of the K terms

{β̄i}

Only the first term survives with             
Given by 

{β̄ Simplest
i }

{βGHD
i (x /t)}

Leading term is the GHD prediction, without using GHD!



Future wishlist

Two (and more) point function, inhomogeneous

Leading corrections/ compare with QGHD and Diffusive GHD

Classical and/or non-relativistic limits

…


