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What is normal transport?

I First, what is normal transport? Three generic scenarios in
classical many-body systems:

1. Free particles, different velocities lead to dispersion: ballistic
transport.

2. Interacting particles in the hydrodynamic regime: ballistic
transport with diffusive corrections.

3. Microscopic Brownian motion: diffusive transport.

I Broadly speaking, we expect the same pattern in quantum
many-body systems.

I Today’s talk: how one-dimensional quantum systems can
confound these expectations



Classical intuition for anomalous transport
Anomalous transport is well-studied in classical systems. There are
phenomena associated with anomalous diffusion in arbitary
dimensions:

I Fractional diffusion e.g. the fractional heat equation,

∂tu = −(−∇2)s/2u, s 6= 2

I Nonlinear diffusion e.g. the porous medium equation,

∂tu = ∇2um, m 6= 1

as well as fluctuation-dominated phenomena that are enhanced in
low dimensions:

I Nonlinear fluctuating hydrodynamics e.g. the stochastic
Burgers equation in d = 1:

∂tu + ∂x (u2 − D∂xu + ζ) = 0

Each exhibits space-time scaling |x | ∼ tα with exponent distinct
from “normal” possibilities, α = 1

2 , 1.



New examples of anomalous transport in 1D quantum
systems

I Subdiffusion: Approaching the MBL transition from the
ergodic side, charge transport appears to be subdiffusive, with
a spreading exponent x ∼ tα and 0 < α < 1/2 (e.g. recent
review article Gopalakrishnan, Parameswaran, ’19)

I Superdiffusion:
I One-dimensional metals at low temperature can support

nonlinear diffusion of heat, with x ∼ tα and 2/3 < α < 1
(VBB, Karrasch, Moore, ’19).

I Isotropic quantum magnets exhibit “integrability protected”
superdiffusion in the KPZ universality class, with α = 2/3
(exponent first observed in Žnidarič, ’11, with many
subsequent studies).

I More exotic possibilities, e.g. α = 3/4 in easy-plane XXZ,
originating from infinite number of quasiparticle flavours
(Agrawal, Gopalakrishnan, Vasseur, Ware, ’19)

I Today’s talk will focus on two of the superdiffusive examples:
nonlinear diffusion in metals and KPZ in spin chains.
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Anomalous transport in one-dimensional metals

I Will argue that interacting, one-dimensional metals that
exhibit generic, thermalizing behaviour in all other respects
(level statistics, charge transport, . . . ) can exhibit
superdiffusion of heat at low temperatures.

I This type of superdiffusion persists at long times in
non-integrable systems and should be observable in
time-resolved experiments on quantum wires involving laser
irradiation of a small region (c.f. Hensel, Dynes, ’77)

I Unexpected violation of Fourier’s law in a well-studied class of
physical systems.



One-dimensional metals as perturbed Luttinger liquids

I Ideal 1D metals are described by the free, Luttinger liquid
theory, yielding divergent linear response transport coefficients
(ballistic transport).

I Unperturbed Hamiltonian maps to free bosons,

H0 =
u

2

∫ L

0
dx
(
Π2 + (∂xφ)2

)
.

I Realistic 1D metals have finite transport coefficients, due to
interactions or disorder (diffusive transport).

I Typical 1D interactions generate density-wave instabilities. In
the metallic phase, these show up as irrelevant vertex
operators:

δH ∼ cosαφ, α2 > 8π.



Lattice realization of perturbed Luttinger liquid
I A microscopic realization of an interacting Luttinger liquid is

spin-1/2 XXZ in an integrability-breaking staggered field:

H =
N∑

i=1

Sx
i S

x
i+1 + Sy

i S
y
i+1 + ∆Sz

i S
z
i+1 + (−1)ihSz

i . (1)

I Low-energy field theory has the form

H =
u

2

∫ L

0
dx
(
Π2 + (∂xφ)2

)
+ ch

∫ L

0
dx cos

(
2
√
πKφ

)
+ . . .

i.e. staggered field is the most relevant perturbation.
I A previous work (Huang, Karrasch, Moore, ’13) numerically

verified non-integrability for h > 0:
1. For h > 0, level statistics flow from Poisson to Wigner-Dyson.
2. Charge transport is diffusive, with linear-response conductivity

matching the analytical result (Luther, Peschel, ’74, Sirker,
Pereira, Affleck, ’11)

σc (T ) ∼ T 3−2K . (2)



Anomalous diffusion model for heat transport
I What about heat transport? Minimal assumption is power-law

divergence, e.g.

κ(T ) ∼ Tλ(K), T → 0 (3)

for some λ(K ) < 0, e.g. WF scaling, λ(K ) = 4− 2K .
I Unfortunately, accessing κ(T ) directly is beyond present

numerical and analytical techniques, and WF need not hold.
I Even so, power-law ansatz has non-trivial, testable

consequence for transport: energy density ρE should satisfy
fast diffusion equation

∂tρE = D∂2x (ρm
E ) , m =

1 + λ

2
(4)

I Fundamental solutions are superdiffusive “Barenblatt-Pattle
profiles”, with anomalous scaling

x ∼ tα, α =
2

λ+ 3
(5)



Testing the theoretical model
I To test this, we simulated XXZ in staggered field, with

localized thermal wavepacket initial condition (VBB,
Karrasch, Moore, ’19)

β(x) = β − (β − βM)e−(x/L)2 (6)

and low bulk temperature β � 1.
I Can probe space-time scaling by looking at logarithmic

derivatives of moments:

1

n

d log 〈|x |n〉(t)

d log t
→ α, t →∞. (7)

I Non-trivial prediction of our model: these should converge to
the same, superdiffusive exponent, 2/3 < α < 1.

I At any non-zero bulk temperature, expect eventual crossover
to diffusive behaviour on a timescale

τD(T ) ∼ Tλ−1. (8)



Numerical results for anomalous diffusion of heat
I Clear numerical evidence for superdiffusive, rather than

diffusive, spreading of wavepacket (βJ = 12):

t = 0

t = 30

(1a) (1b)

(1c)

(2a)

(2b)

I Long-time shape of profiles inconsistent with simple nonlinear
diffusion model - kinetic description? proximate integrability?
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Numerical observations
I A large body of work has confirmed “integrability protected”

KPZ physics in one-dimensional magnets with isotropic
symmetry.

I Diagnostic is the long-time behaviour of the spin
autocorrelation function

〈S(x , t) · S(0, 0)〉β ∼ t−αf (x/tα), t →∞. (9)

I Numerics: α = 2/3 for integrable models and α = 1/2 for
non-integrable models (with divergent log correction and
crossover from α = 2/3, next talk by Jacopo de Nardis).

I Some recent numerical studies:
Classical: Das, Kulkarni, Spohn, Dhar, ’19, Krajnik, Prosen,
’19, de Nardis, Medenjak, Karrasch, Ilievski, ’20, Krajnik,
Ilievski, Prosen, ’20, Quantum: Ljubotina, Žnidarič, Prosen,
’19, de Nardis, Medenjak, Karrasch, Ilievski, ’19, Dupont,
Moore, ’19, Weiner, Schmitteckert, Bera, Evers, ’19, Fava,
Ware, Gopalakrishnan, Vasseur, Parameswaran, ’20



State of theory

I Until recently, the closest approach to a theoretical
explanation for the dynamical exponent α = 2/3 was a
self-consistent derivation (Gopalakrishnan, Vasseur, ’19) for
the spin-1/2 Heisenberg model, based on generalized
hydrodynamics (Bertini, Collura, de Nardis, Fagotti, ’16,
Castro-Alvaredo, Doyon, Yoshimura, ’16)

I However, three fundamental questions had not been
addressed:

1. Why does the same phenomenon occur for both quantum and
classical systems?

2. Why are both integrability and isotropic symmetry necessary
for this phenomenon to be stable at long times? (Dupont,
Moore, ’19, Krajnik, Prosen, ’19)

3. Why is a collapse to universal, Kardar-Parisi-Zhang scaling
functions observed numerically? (Ljubotina, Žnidarič, Prosen,
’19, Das, Kulkarni, Spohn, Dhar, ’19)

I These questions reflected a basic lack of understanding of the
physical mechanism underlying this phenomenon



Kardar-Parisi-Zhang universality from soft gauge modes
I Recently, we pointed out that certain local equilibrium states

support “soft modes” of the magnetization, that are missed
by standard hydrodynamic approaches (VBB, ’19).

I These modes are nonlinear and separated in scale from
short-wavelength hydrodynamics, yielding a channel for
superdiffusive spin transport.

I Provides a physical mechanism for the emergence of KPZ
physics in isotropic spin chains, similar to 1D Bose gases
(Arzamasovs, Bovo, Gangardt, ’14)



Example: spin-1/2 Heisenberg
I Consider the spin-1/2 Heisenberg Hamiltonian

H = −J
N∑

i=1

Si · Si+1 − 2h ·
N∑

i=1

Si . (10)

Recall that Bethe’s ansatz builds eigenstates out of spin-waves
on the “pseudovacuum”, |Ω〉 = |↑↑ . . . ↑〉.

I In the absence of an applied magnetic field, h = 0, Bethe’s
solution is SU(2) symmetric - direction of the pseudovacuum,
Ω ∈ S2, is arbitrary.

I An applied magnetic field h 6= 0 breaks this symmetry; only
pseudovacuum directions Ω ‖ h are allowed. TBA predicts

〈S〉/` = Ω

[
1

2
−
∞∑

n=1

∫ ∞
−∞

dk nρn
k

]
. (11)

I In local equilibrium states, formation of a local magnetization
on a fluid cell spontaneously breaks SU(2) symmetry -
pseudovacuum becomes a dynamical degree of freedom.



Coarse-grained pseudovacuum dynamics
I Effective, long-wavelength vacuum dynamics Ω is described by

the Landau-Lifshitz equation:

∂tΩ = λΩ× ∂2x Ω (12)

I Curvatures in the Frenet-Serret frame of a fictitious space
curve with t̂(s) ≡ Ω(x) yield SU(2) invariant hydrodynamic
modes (c.f. Lakshmanan, Ruijgrok, Thompson, ’76)

I Nonlinear fluctuating hydrodynamics (Van Beijeren, ’11,
Spohn, ’13) of the pseudovacuum is stochastic Burgers
equation for the torsion:

∂tτ + ∂x (λτ2 − D∂xτ + σζτ ) = 0, (13)

(by fluct.-diss. 〈ττ〉µ = σ2/2D).
I Follows that “height function” η, defined by τ = ∂xη, satisfies

the KPZ equation, and that the correlation functions of the
torsional mode have superdiffusive scaling form
C (x , t) = E[τ(x , t)τ(0, 0)] = fKPZ (x/(Γt)3/2)/(Γt)3/2, where
Γ = 2

√
2λ (Spohn, ’13).



A hydrodynamic explanation for integrability protection

I Short answer: integrable models support distinct “gauge” and
“quasiparticle” excitations of spin. No such distinction exists
in non-integrable models.

I For the “Landau-Lifshitz” states that we considered earlier,
the only difference in the short-wavelength hydrodynamics is
the nature of the scalar bath.

I Non-integrable models: two scalar conserved modes {S ,E}
per fluid cell. Total variance scales as σ2` ∼ `−1. As `→∞,
hydrodynamics of S becomes deterministic1 and recouples to
slow dynamics of Ω

I Integrable models: extensively many scalar modes
{S ,E ,Q3, . . . ,Qn}n∼`, whose variance scales as σ2` ∼ `0. As
`→∞, S continues to fluctuate as part of a bath.

1in fact, decay renders nonlinearity in Ω marginally irrelevant, see next talk!



Summary and outlook

I We identified the nonlinear modes giving rise to KPZ physics
in isotropic quantum and classical magnets.

I The “soft gauge mode” effective theory has since been:
I tested in a wide range of classical and quantum spin models

(De Nardis, Medenjak, Karrasch, Ilievski, ’20)
I justified microscopically within GHD (De Nardis,

Gopalakrishnan, Ilievski, Vasseur, ’20)
I succesfully applied to the SU(2)× SU(2) symmetric 1D

Hubbard model (Fava, Ware, Gopalakrishnan, Vasseur,
Parameswaran, ’20)

I An exciting goal: extend to superuniversality, i.e. observation
of same physics for higher internal symmetry groups
G = SU(3), SO(5) etc. (Dupont, Moore, ’19, Krajnik, Ilievski,
Prosen, ’20)



Thank you for listening!

Relevant papers:

I Superdiffusive transport of energy in one-dimensional
metals: VBB, Christoph Karrasch, Joel E. Moore, PNAS
1916213117 (2020)

I Kardar-Parisi-Zhang universality from soft gauge modes:
VBB, PRB Rapid Communication, 101, 041411 (2020)



A primer on nonlinear diffusion
I The nonlinear diffusion equation is given by

∂tu = D∇2um (14)

i.e. effective diffusion constant is nonlinear,

Deff [u] = mDum−1.

I For m = 1, recover normal diffusion. For m > 1, this is the
“porous medium equation”. For m < 1, this is the “fast
diffusion equation” (for a review: Vázquez, ’06).

I Fundamental solutions for m 6= 1 are non-Gaussian. Instead,
nonlinearity yields Barenblatt-Pattle profiles, characterized
by anomalous space-time scaling.

I e.g. in d = 1, these have the form

uB.P.(x , t) = t−αmax[(C − k(x/tα)2)−
1

m−1 , 0] (15)

with space-time scaling exponent α = 1/(m + 1), k = k(m)
constant and C fixed by initial area.



Numerical results for anomalous diffusion of heat II

I Increasing strength of integrability-breaking field lowers
superdiffusive exponent (main figure):

I Sanity checks : expansion into ground state yields
superdiffusion, higher temperatures begin to recover normal
diffusion (inset, at β = 1, h = 0.49).



Landau-Lifshitz states in isotropic integrable magnets
I Consider local equilibrium states with constant quasiparticle

occupancies per fluid cell and a pseudovacuum Ω(x , t) ∈ S2

varying on a scale `Ω � `:

I In the limit `/`Ω → 0, the quasiparticle dynamics is decoupled
from the gauge dynamics.

I Slow modulations of the pseudovacuum are mean-field states
by definition, with effective dynamics (λ = J/2)

∂tΩ = λΩ× ∂2x Ω +O(`−4Ω ). (16)

I At zero temperature, recovers previous results (Gamayun,
Miao, Ilievski, ’19, Misguich, Pavloff, Pasquier, ’19). At finite
temperature, Eq. (16) is coupled to a thermal bath.



Coarse-grained Landau-Lifshitz dynamics I

I Effective field theory describing KPZ physics is
Landau-Lifshitz dynamics at finite temperature. We
therefore consider nonlinear fluctuating hydrodynamics of this
equation. First we need the Euler hydrodynamics.

I Since integrability is broken microscopically, mean-field
evolution is not integrable and there are two conserved modes.
Exactly the same reasoning as discretized GPE (Kulkarni,
Huse, Spohn, ’15).

I Standard parameterizations of the sphere (e.g. spherical
polar) are not gauge invariant. An elegant solution is to
regard x as arc-length and Ω as the tangent vector of a space
curve (Lakshmanan, Ruijgrok, Thompson, ’76).

I In terms of the curvature κ and torsion τ of this curve, the
Landau-Lifshitz evolution becomes

κ̇+λ(2κ′τ +κτ ′) = 0, τ̇ +λ(τ2−κ′′/κ−κ2/2)′ = 0. (17)



Coarse-grained Landau-Lifshitz dynamics II
I Discarding the dispersive term and changing variable from κ

to energy density E = κ2/2 yields

∂tE + ∂x [λ(2Eτ)] = 0, (18)

∂tτ + ∂x [λ(τ2 − E)] = 0. (19)

I Linearizing, we find imaginary velocities and violation of sum
rules - instability. Suggests that two-mode hydrodynamics of
Landau-Lifshitz is unphysical.

I Intuition: soft modes can’t transport extensive energy. More
precisely, total energy in a fluid cell of characteristic length `Ω

is subextensive, E ∼ 1/`Ω. Thus energy is not a true
hydrodynamic variable and tends to zero as `Ω →∞.

I This leaves a single Burgers equation for the torsion (i.e.
magnetization density),

∂tτ + ∂x (λτ2) = 0. (20)



Coarse-grained Landau-Lifshitz dynamics III

I Mesosopic coupling to noise and dissipation yields stochastic
Burgers equation

∂tτ + ∂x (λτ2 − D∂xτ + σζτ ) = 0, (21)

with coefficients constrained by fluctuation dissipation relation
〈ττ〉µ = 2σD.

I Follows that “height function” η, defined by τ = ∂xη, satisfies
the KPZ equation, and that the correlation functions of the
torsional mode have superdiffusive scaling form
C (x , t) = E[τ(x , t)τ(0, 0)] = fKPZ (x/(Γt)3/2)/(Γt)3/2, where
Γ = 2

√
2λ (Spohn, ’16).
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