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under atom losses Iin the 1D Bose gas
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Slow losses in a chaotic/ergodic gas (2D hard spheres)
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after short relaxation time Trelax , the macrostate in the box is entirely characterized by 1, u, €
(particle density, mean velocity, mean energy per particle)



Slow losses in a chaotic/ergodic gas (2D hard spheres)

imagine that some of the particles are lost, at a rate I’

1.0

0.8 +

0.6

0.4t

0.2}

0.0

aslong as I' < 1/7relax, the system always has time to relax.
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Trelax ~ 1 Trelax ~ 1 Trelax time

So the macrostate in the box is still characterized by 1, U, €, but:
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Slow losses in a integrable gas (1D hard spheres or hard rods)




Slow losses in a integrable gas (1D hard spheres or hard rods)
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to characterize the macrostate in the box, one needs the entire distribution of velocities:

p(0) = 7360 —w)
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Slow losses in a integrable gas (1D hard spheres or hard rods)

imagine that some of the particles are lost, at arate I' < 1/7pelax
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The distribution of velocities evolves according to Ep(v) = —I'p(v) in this toy model.
More generally, in this talk we will have:
tp(v) -

d

= p(v) = T Flp)(v)

and the problem will be to determine
the functional F'[p].

cﬂ"\\ A




Losses in the 1D Bose gas

L
The 1D Bose gas is described by the Hamiltonian H = / sz (—%82 + gzﬂzp> Y dx
0
where [¢)(z), 9" (y)] = d(z — y) 7 ! 0 )
= 1M =

Kinetic term contact repulsion

K -body losses: when K atoms are at the same position, they can escape the system

K atoms at the
same position
can escape

the system
“— —> — — —>
- - - - - - S

L

This is described by the Lindblad equation for the density matrix:

p _ —i[H,p| + G / (szﬁwTK - %{W%K, ﬁ}) dz

dt
T \ typical loss rate: I' = Gn* 1
removes K atoms

K-body loss rate enforces tr p = 1 with atom density 1 = <¢T¢>
unitary evolution G| = [lengthK —1 /time]



Rapidities in the 1D Bose gas

The eigenstates of the Hamiltonian are
superpositions of products of plane
waves labeled by the rapidities

]{vl,vg,vg,...,vN}> < L

- - _— - bl o — S

v

i.e., for each eigenstate the wave function is of the form [Lieb, Liniger, Phys. Rev. 130 (1963)]

<O| w(xl) “ . w(Q?N) ‘{Ul, . ,’UN}> — Z eiSDJ({Uj})67;’00(1)901+iva(2)$2+'--+ivJ(N)mN

. perm. o
where €?>({%i}) is a known phase. These eigenstates are called ‘Bethe states’.

The rapidities can be thought of the asymptotic velocities, when one lets the system expand in 1D:

’{’01,1)2,...,’0]\[}> | =» - =

V1 < Vg < -+ <UN

Time

1
The rapidity distribution is: | p(v) = = 8(v — v;)




Rapidities in the 1D Bose gas

|ae-#sl— o
The rapidities (i.e. asymptotic velocities) collisions
can be measured by letting the gas expand during
in 1D [Rigol-Muramatsu, PRL 94, 2005; Minguzzi- expansion
Gangardt, PRL 94, 2005; Jukic-Pezer-Gasenzer-Buljan, v

PRA 78, 2008; Bolech-Heidrich-Meisner-Langer-McCulloch-
Orso-Rigol, PRL 109, 2012; Bolech-Heidrich-Meisner-
Langer-McCulloch-Orso-Rigol, J.o. Physics: Conference

Time

no collision l

Series 414 2013, Campbell-Gangardt-Kheruntsyan, PRL - - - - - T
114, 2015; Caux-Doyon-JD-Konik-Yoshimura, SciPost 6, U1 V2 UN
2019, ...]

Science

QUANTUM GASES
Observation of dynamical fermionization

Joshua M. Wilson, Neel Malvania, Yuan Le, Yicheng Zhang, Marcos Rigol, David S. Weiss*

from bosonic to fermionic after its axial confinement is removed. The asymptotic momentum distribution
after expansion in one dimension is the distribution of rapidities, which are the conserved quantities
associated with many-body integrable systems. Our measurements agree well with T-G gas theory. We
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From Lindblad to the rapidity distribution

The charges () that would be conserved under unitary evolution (i.e. [Q, H| = () are no longer
conserved under Lindblad evolution. Assuming losses are slow compared to relaxation, i.e.

‘ I' < 1/7-relax

after each loss event the density matrix quickly relaxes towards a density matrix such that [p, H| = [p,Q] = 0
then the expectation value (Q) = tr[pQ]evolves as follows:
1d{Q)
— G TK’ K

In particular, we can apply this to the rapidity distribution itself (up to some smoothening)
Qo(v) {v1,...,on}) = 25 ) [ {v1,...,on})

where 0, is a smoothed Dirac delta function (e.g. a Gaussian of width ¢ ). This gives the evolution of
the rapidity distribution:

9 pw)=-TFpl(w)  win  Flp)(v) = lim n* T ([Qa (), v ")

dt - / \

B|g cha"enge: evaluate expectation value w.rt macrostate local operator

the functional parameterized by (v) (exp. decaying tails)
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The functional F'|p|: results

1. Ideal Bose gas regime: when € > gn, mgQ/hQ, the atoms behave like non-interacting bosons.
energy per atom T scattering energy
repulsion energy

In that regime, the rapidities are nothing but the (non-interacting) atoms’ velocities. Then:

| Flpl(v) = K K!p(v)
| (1K)

K atoms lost in comes from 7
each loss event (Tp)

(Wick’s theorem for bosons)

= K|

2. Hard-core regime: when e < mgQ/h2, an exact calculation is possible by mapping to free fermions:

body loss: | Flo](0) = p(o) 4 2 / p) = P00 1y o (p(v)2_ (1 / P(w)dw>2>

T (v —w) T v —w

(and F'[p] =0 for K > 2 because two or more atoms cannot be at the same position).

This formula shows that: — in general, the effect of losses is non-linear in the rapidity distribution
— it is non-local in rapidity space, i.e. F'|p|(v) is a function of p(w) for all w
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The functional F'|p|: results

3. General case: Markov chain summation over Bethe states [J.-S. Caux and P. Calabrese, Physical Review A74,031605 (2006),
J.-S. Caux, P. Calabrese, and N. A. Slavnov, Journalof Statistical Mechanics: Theory and Experiment2007,P01008 (2007), J.-S. Caux, J. Math. Phys. 50,
095214 (2009), J.-S. Caux and R. M. Konik, Physical review letters109,175301 (2012), V. Alba, arXiv preprint arXiv:1507.06994 (2015), ...]

N N-K
= > > p(uihp{{wl{vi}) [ ngx({v}) x | Y d(v—v) = D do(w—w;)
|{Uz {w;}) i=1 j=1
/ sum over
sum over pre- post-loss g=1, ng=1, 71,,=02
loss states states ' ' /--\ ' i i | 10.6
The conditional probability of a post-loss 03} 100V "Vf/\\w‘\ I A A loa
state given the pre-loss state |{v;}) is: 0ol // \\ _ I//\ (\‘ |
® ) /- \_/\ |-
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Summary

1. It is important (experimentally relevant) to understand the effect of atom losses on the rapidity
distribution in the 1D Bose gas:

dp(v)/dt = =T'F|p|(v)

Evaluating the functional F'[p] is challenging.

2. In arXiv:2006.03583, we have computed F'[p| in the ideal Bose gas regime (trivial result) and
hard-core regime (non-trivial result), and implemented a numerical method based on sampling of
Bethe states, which works for arbitrary parameters but is computationally heavy.

3. Many open questions remain: what about the quasi-condensate regime ([Rauer-Grisins-Mazets-

Schweigler-Rohringer—Langen-Schmiedmayer, PRL 116, 2016; Grisins-Rauer-Langen-Schmiedmayer-Mazets, PRA 93, 2016;
Bouchoule-Schemmer-Henkel, SciPost 5, 2018; Johnson, Szigeti, Schemmer, Bouchoule, PRA 96, 2017; Schemmer-Bouchoule,

PRL121, 2018])?

Can one find good approximations to evaluate F'[p| more efficiently? [Caux-Doyon-JD-Konik-Yoshimura,

SciPost 6, 2019; Mallayya-Rigol-de Roeck, PRX 9, 2019; Friedman-Gopalakrishnan-Vasseur, PRB 101, 2020; Bastianello-De Nardis-
De Luca, arXiv:2003.01702; Durnin-Bhaseen-Doyon, arXiv:2004.11030; Lopez-Piqueres-Ware-Gopalakrishnan-Vasseur, arXiv:
2005.13546]

Analytical progress needed on form factors and their summation...

Thank you!
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Calculating F'|p|: remarks

A. Using typicality of eigenstates (‘Generalized ETH’), one might replace the double sum by a single sum
over post-loss states. For a given ‘representative eigenstate’ [{v; }):

Flolw) o 3 [l 9% o) [ 32 dolo ) = 3 bofw— )

|{wj}>v\ sum over post-
loss states

However, numerically, this does not work well: we find that, to evaluate [+ [,0] numerically, it is better to
sum also over pre-loss states. But, analytically, this would be the way to go.

B. Analytical progress on summation of form factors crucially needed!

repulsion

scattering ener
energy 9 9y

energy per atom

C. What about the quasi-condensate regime, € =~ gn > mg”/h*? How to calculate F[p]there?

Connection to theoretical and experimental works in that regime? [Rauer-Grisins-Mazets-Schweigler-Rohringer—
Langen-Schmiedmayer, PRL 116, 2016; Grisins-Rauer-Langen-Schmiedmayer-Mazets, PRA 93, 2016; Bouchoule-Schemmer-Henkel, SciPost
5, 2018; Johnson, Szigeti, Schemmer, Bouchoule, PRA 96, 2017; Schemmer-Bouchoule, PRL121, 2018]

D. In recent related works, various approximations have been proposed to tackle effects of integrability

breaking. Is it possible to use one of these to describe atom losses?

[Caux-Doyon-JD-Konik-Yoshimura, SciPost 6, 2019; Mallayya-Rigol-de Roeck, PRX 9, 2019; Friedman-Gopalakrishnan-Vasseur, PRB 101,
2020; Bastianello-De Nardis-De Luca, arXiv:2003.01702; Durnin-Bhaseen-Doyon, arXiv:2004.11030; Lopez-Piqueres-Ware-Gopalakrishnan-
Vasseur, arXiv:2005.13546]

This is not obvious. In particular, for losses, the sum over particle-hole excitations does not truncate.

E. In the hard-core limit, the equation dp(v)/dt = —I'F[p|(v) turns out to be exactly solvable. A special
role is played by the (non-hermitian) charges: Ny
Q(z{vi}) =) , z€C. Why is that so?

Z—
i=1 ¢
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Inhomogeneous profiles: GHD with losses

PRL 117, 207201 (2016) PHYSICAL REVIEW LETTERS 11 NOVEMBER 2016

For comparison with experimental data, it is also
important to consider inhomogeneous settings.
Thanks to the 2016 breakthrough of GHD,

Transport in Qut-of-Equilibrium XXZ Chains: Exact Profiles of Charges and Currents

Bruno Bertini,1 Mario Collura,l‘2 Jacopo De Nardis,3 and Maurizio Fau.’,otti3

nowadays this is straightforward: PHSICAL REVIEW X 6, 041065 G016
— Emergent Hydrodynamics in Integrable Quantum Systems Out of Equilibrium
Orp + Oz [0 p] — (8:V)Bpp = —Gn™ "1 F[p]
X X v

Olalla A. Castro-Alvaredo,' Benjamin Doyon,” and Takato Yoshimura®

(Also [Caux-Doyon-JD-Konik-Yoshimura, SciPost 6, 2019; Friedman-
Gopalakrishnan-Vasseur, PRB 101, 2020; Bastianello-De Nardis-De Luca,
arXiv:2003.01702; Durnin-Bhaseen-Doyon, arXiv:2004.11030; Lopez-Piqueres-

Ware-Gopalakrishnan-Vasseur, arXiv:2005.13546] for similar equations for
other problems -not losses- )

V() 40 1
\/\-/ density
x 1 (atom/um)
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10

time (ms) 180 —200

position (um)
number of atoms N has /

dropped by 15%,
compared to t=0. Losses
cannot be neglected

—-400 —-200 0
position (um)

another good reason
to calculate F'|p]!
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Rapidities in the 1D Bose gas

|49-&8l— T
The rapidities (i.e. asymptotic velocities) collisions
can be measured by letting the gas expand during
in 1D [Rigol-Muramatsu, PRL 94, 2005; Minguzzi- expansion
Gangardt, PRL 94, 2005; Jukic-Pezer-Gasenzer-Buljan, v

PRA 78, 2008; Bolech-Heidrich-Meisner-Langer-McCulloch-
Orso-Rigol, PRL 109, 2012; Bolech-Heidrich-Meisner-
Langer-McCulloch-Orso-Rigol, J.o. Physics: Conference

Time
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Series 414 2013, Campbell-Gangardt-Kheruntsyan, PRL v v v—@ o T
114, 2015; Caux-Doyon-JD-Konik-Yoshimura, SciPost 6, U1 Vo UN
2019, ...]

Science To measure the effect of losses on the rapidity distribution,

one imagine doing something like this:
QUANTUM GASES nitial n(z) A ()
initial .,
Observation of dynamical fermionization profile = -

Joshua M. Wilson, Neel Malvania, Yuan Le, Yicheng Zhang, Marcos Rigol, David S. Weiss*

from bosonic to fermionic after its axial confinement is removed. The asymptotic momentum distribution t=0 t =1 1
after expansion in one dimension is the distribution of rapidities, which are the conserved quantities
associated with many-body integrable systems. Our measurements agree well with T-G gas theory. We
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