- B. Bertini, MF, L. Piroli, and P. Calabrese Entanglement evolution and generalised hydrodynamics: noninteracting systems J. Phys. A 51, 39 LT01 (2018)
- V. Alba, B. Bertini, and MF

Entanglement evolution and generalised hydrodynamics: interacting integrable systems Scipost 7, 005 (2019)

Entanglement evolution

and generalised hydrodynamics

Maurizio Fagotti

Plan

\uparrow Ingredients
\downarrow Entanglement evolution of inhomogeneous states within GHD

Ingredients Bipartite entanglement

$$
\text { entanglement entropy } S_{v N}=-\sum_{n} p_{n} \log p_{n}
$$

Ingredients Bipartite entanglement

in stationary states

Ingredients

Quench dynamics

a many-body system time evolves unitarily

$$
\begin{aligned}
\mid \Psi_{t}> & =e^{-i \hat{H} t} \mid \Psi_{0}>\quad(\hat{\rho}=|\Psi><\Psi|) \\
\hat{\rho}_{t} & =e^{-i \hat{H} t} \hat{\rho}_{0} e^{i \hat{H} t}
\end{aligned}
$$

thermodynamic limit

Local Relaxation

Ournal of Statistical Mechanics: Theory and Experiment -

Quench dynamics and relaxation in isolated integrable quantum spin chains

Ingredients

GHD

Integrable systems

root densities additional fields
density matrix

$$
\hat{\rho}_{t}=e^{-i \hat{H} t} \hat{\rho}_{0} e^{i \hat{H} t}
$$

$$
\hat{\rho}_{t}=\hat{\rho}[\rho_{x, t}(\lambda), \underbrace{. . .]}_{\text {rapidities }}
$$

(used to parametrise stationary states in integrable systems)
$\hat{\rho}[\rho(\lambda), 0, \ldots, 0]$ is stationary

$$
\begin{aligned}
\partial_{t} \rho_{x, t}(\lambda) & =F_{x}\left[\rho_{y, t}(\mu), \text { nothing else? }\right](\lambda) \\
& \approx \frac{1_{x}\left(v\left[\rho_{x, t}(\mu)\right](\lambda) \rho_{x, t}(\lambda)\right)}{1^{\text {st order GHD }}}+O\left(\partial_{x}^{2}\right)
\end{aligned}
$$

clever parametrisation depending - on the class of initial states
classical equation: no trace of \hbar !

- on the Hamiltonian

Ingredients

GHD

Integrable systems

Exactly solvable example: NONINTERACTING SPIN CHAINS

$$
\begin{aligned}
& i \hbar \partial_{t} \rho_{x, t}(p)=\varepsilon_{x}(p) \star \rho_{x, t}(p)-\rho_{x, t}(p) \star \varepsilon_{x}(p) \\
& i \hbar \partial_{t} \psi_{x, t}(p)=\varepsilon_{x}(p) \star \psi_{x, t}(p)+\psi_{x, t}(p) \star \varepsilon_{x}(-p)
\end{aligned}
$$

phase-space formulation of quantum mechanics in
noninteracting spin chains

Moyal star product

Semiclassical picture

$$
\partial_{t} \rho_{x, t}(\lambda)+\partial_{x} v_{x, t}(\lambda) \rho_{x, t}(\lambda)=O\left(\partial_{x}^{2}\right) \quad \stackrel{\text { interpreted as }}{ } \quad \begin{gathered}
\text { density of quasi-localised } \\
\text { (semiclassical) particles }
\end{gathered}
$$

the semiclassical particles time evolve classically: entanglement is simply transported

Semiclassical picture

density of quasi-localised (semiclassical) particles

how is the entanglement of a spatial bipartition connected with the semiclassical particles?

the semiclassical particles time evolve classically: entanglement is simply transported

Semiclassical picture noninteracting systems

$$
\partial_{t} \rho_{x, t}(\lambda)+v(\lambda) \partial_{x} \rho_{x, t}(\lambda)=\hbar^{2} \frac{v^{\prime \prime}(\lambda)}{24} \partial_{x}^{3} \rho_{x, t}(\lambda)+\ldots
$$

Semiclassical picture noninteracting systems

$$
\partial_{t} \rho_{x, t}(\lambda)+v(\lambda) \partial_{x} \rho_{x, t}(\lambda)=\hbar^{2} \frac{v^{\prime \prime}(\lambda)}{24} \partial_{x}^{3} \rho_{x, t}(\lambda)+\ldots
$$

Kournal of Statistical Mechanics: Theory and Experiment

 Entanglement and diagonal entropies after a quench with no pair structure Bruno Bertini', Elena Tartaglia ${ }^{2}$ and Pasquale Calabrese

- low-entanglement assumption:
only finite sets of particles are entangled with each others

Semiclassical picture noninteracting systems

spatial bipartition

$\mathcal{S}=\{k\}$ represents the sets of entangled particles
$\sim \otimes_{J=1}^{\frac{L}{\Delta}} \otimes_{\mathcal{S}} \hat{\rho}_{\mathcal{S}}^{\left(x_{j}\right)}$

some quantum correlations are lost

but they are not expected to contribute at the leading order

$$
\begin{array}{cc}
\mathrm{B} & \mathrm{~A} \\
\operatorname{tr}_{B}[\hat{\rho}] \sim \operatorname{tr}_{\text {particles } \in \mathrm{B}}\left[e^{-i \hat{H} t} \otimes_{J=1}^{\frac{L}{L}} \otimes_{\delta} \hat{\rho}_{\delta}^{\left(x_{x}\right)} e^{i \hat{H} t}\right]
\end{array}
$$

Semiclassical picture noninteracting systems

$$
\hat{\rho}_{A} \sim \operatorname{tr}_{C}\left[\hat{\rho}_{A B C}\right] \operatorname{tr}_{F}\left[\hat{\rho}_{F G}\right]
$$

Semiclassical picture noninteracting systems

at late times, only one of the particles in an entangled set remains in the subsystem

Semiclassical picture integrable systems

local relaxation:

at late times the state becomes locally equivalent to a stationary state

at late times, only one of the particles in an entangled set remains in the subsystem

Thermodynamics of a One-Dimensional System of Bosons with Repulsive Delta-Function Interaction

C. N. Yang

Institute for Theoretical Physics, State University of New York, Stony Brook, New York
AND
C. P. YanG*

Ohio State University, Columbus, Ohio
(Received 10 October 1968)
The equilibrium thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction is shown to be derivable from the solution of a simple integral equation. The excitation spectrum at any temperature T is also found.

I. INTRODUCTION

The ground-state energy of a system of N bosons with repulsive delta-function interaction in one dimension with periodic boundary condition was calculated by Lieb and Liniger. ${ }^{1}$ The Hamiltonian for the system is

$$
\begin{equation*}
H=-\sum_{i}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}}+2 c \sum_{i>j} \delta\left(x_{i}-x_{j}\right), \quad c>0 \tag{1}
\end{equation*}
$$

and the periodic box has length L. Using Bethe's hypothesis ${ }^{2}$ they showed that the k 's in the hypothesis satisfy

$$
\begin{equation*}
(-1)^{N-1} \exp (-i k L)=\exp \left[i \sum_{k^{\prime}} \theta\left(k^{\prime}-k\right)\right] \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta(k)=-2 \tan ^{-1}(k / c), \quad-\pi<\theta<\pi \tag{3}
\end{equation*}
$$

Now, for any set of real I 's, $I_{1}, I_{2}, \cdots, I_{N}$, Eq. (4) has a unique real solution for the k 's, $k_{1}, k_{2}, \cdots, k_{N}$. The proof of this statement (similar to but simpler than the proof of a corresponding statement ${ }^{3}$ for the Heisenberg-Ising problem) follows. Let

$$
\theta_{1}(k)=\int_{0}^{k} \theta(k) d k
$$

Define

$$
\begin{align*}
B\left(k_{1}, \cdots, k_{N}\right)=\frac{1}{2} L \sum_{1}^{N} k_{j}^{2}- & 2 \pi \sum_{1}^{N} I_{j} k_{j} \\
& -\frac{1}{2} \sum_{j, S} \theta_{1}\left(k_{j}-k_{S}\right) . \tag{6}
\end{align*}
$$

Equation (4) is the condition for the extrema of B. Now the second-derivative matrix B_{2} of B is positivedefinite. [The first sum in (6) contributes a positivedefinite part to B_{2}. The second sum contributes

By a continuity argument with respect to c^{-1} we obtain the following:

Theorem: For any set of I 's satisfying (5), no two of which are identical, there is a unique set of real k 's satisfying (4), with no two k 's being identical. With this set of k 's, one eigenfunction of H, of Bethe's form, can be constructed. The totality of such eigenfunctions form a complete set for the boson system.

The numbers I are quantum numbers for the problem.

III. ENERGY AND ENTROPY FOR A SYSTEM WITH $N=\infty$

We now consider the problem for $N=\infty$ and $L=$ ∞ at a fixed density $D=N / L$. For the ground state, the quantum numbers I / L form ${ }^{1}$ a uniform lattice between $-D / 2$ and $D / 2$. The k 's then form ${ }^{1}$ a nonuniform distribution between a maximum k and a minimum k. For an excited state, (5) shows that the quantum numbers I / L are still on the same lattice, but not all lattice sites are taken, and the limits $-D / 2$ and $D / 2$ are no longer respected. We shall call the omitted lattice sites J_{j} / L. We would want to define corresponding "omitted k values" to be called holes. This can be easily done: Given the I 's, Eq. (4) defines the set of k 's as proved in the last section. Now,

$$
\begin{equation*}
L h(p) \equiv p L-\sum_{k^{\prime}} \theta\left(p-k^{\prime}\right) \tag{8}
\end{equation*}
$$

is a continuous monotonic function of p. At $p= \pm \infty$, it is equal to $\pm \infty$. Those values of p where $\operatorname{Lh}(p)=$ $2 \pi I$ are k 's. Those values of p where $\operatorname{Lh}(p)=2 \pi J$ will be defined as holes.

For a large system, there is thus a density distribution of holes as well as one of k 's:

$$
L \rho(k) d k=\text { No. of } k \text { 's in } d k
$$

The energy per particle for the state is

$$
\begin{equation*}
E / N=D^{-1} \int_{-\infty}^{\infty} \rho(k) k^{2} d k \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
D=N / L=\int_{-\infty}^{\infty} \rho(k) d k \tag{13}
\end{equation*}
$$

The entropy of the "state" is not zero since the existence of the omitted quantum numbers J_{j} allows many wavefunctions of approximately the same energy to be described by the same ρ and ρ_{h}. In fact, for given ρ and ρ_{h}, the total number of k 's and holes in $d k$ is $L\left(\rho+\rho_{h}\right) d k$, of which $L \rho d k$ are k 's and $L \rho_{h} d k$ are holes. Thus the number of possible choices of states in $d k$ consistent with given ρ and ρ_{h} is

$$
\frac{\left[L\left(\rho+\rho_{h}\right) d k\right]!}{[L \rho d k]!\left[L \rho_{h} d k\right]!} .
$$

The logarithm of this gives the contribution to the entropy from $d k$. Thus, the total entropy is, putting the Boltzman constant equal to 1 ,

$$
\begin{aligned}
& S=\sum\left\{\left(L \rho d k+L \rho_{h} d k\right) \ln \left(\rho+\rho_{h}\right)\right. \\
& \text { or } \left.\quad-L \rho d k \ln \rho-L \rho_{h} d k \ln \rho_{h}\right\}
\end{aligned}
$$

$$
S / N=D^{-1} \int_{-\infty}^{\infty}\left[\left(\rho+\rho_{h}\right) \ln \left(\rho+\rho_{h}\right)\right.
$$

$$
\left.-\rho \ln \rho-\rho_{h} \ln \rho_{h}\right] d k
$$

IV. THERMAL EQUILIBRIUM

At temperature T, we should maximize the contribution to the partition function from the states deseribed by ρ and ρ_{h}. In other words, given ρ, ρ_{h} is defined by (11). One then computes the contribution to the partition function

Semiclassical picture integrable systems

Entanglement and thermodynamics after a quantum Vincenzo Albaet and Pass

$$
S_{\lambda} \sim-\left[\rho(\lambda)+\rho^{h}(\lambda)\right]\left[\log \frac{\rho(\lambda)}{\rho(\lambda)+\rho^{h}(\lambda)}+\log \frac{\rho^{h}(\lambda)}{\rho(\lambda)+\rho^{h}(\lambda)}\right]
$$

$$
\text { in particular } \lim _{t \rightarrow \infty} S_{v N}[A]=|A| \int \mathrm{d} \lambda S_{\lambda}
$$

Semiclassical picture integrable systems

state with a pair structure
$\partial_{t} \rho_{x, t}(\lambda)+\partial_{x} v_{x, t}(\lambda) \rho_{x, t}(\lambda)=O\left(\partial_{x}^{2}\right)$

Semiclassical picture integrable systems

state with a pair structure
$\partial_{t} \rho_{x, t}(\lambda)+\partial_{x} v_{x, t}(\lambda) \rho_{x, t}(\lambda)=O\left(\partial_{x}^{2}\right)$

$$
H=\sum_{\ell} s_{\ell}^{x} s_{\ell+1}^{x}+s_{\ell}^{y} s_{\ell+1}^{y}+\Delta s_{\ell}^{z} s_{\ell+1}^{z}
$$

$$
\begin{aligned}
\left|\Psi_{0}\right\rangle & =\left|\Psi_{L}\right\rangle \otimes\left|\Psi_{R}\right\rangle \\
\left|\Psi_{L}\right\rangle & =|\ldots \uparrow \downarrow \ldots\rangle \quad\left|\Psi_{R}\right\rangle=|\ldots \nearrow \nearrow \ldots\rangle
\end{aligned}
$$

Summary

$\checkmark 1^{\text {st }}$ order GHD supports the semiclassical picture for the time evolution of the entanglement entropy after quantum quenches
\downarrow Predictions can be obtained even in the presence of interactions

In the presence of interactions, the semiclassical picture in terms of the density matrix of entangled particles has a fault:

> no analytic expression for the time evolution of the Rényi entropies yet!

