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Plan

✦ Ingredients


✦ Entanglement evolution of inhomogeneous states within GHD



Ingredients Bipartite entanglement

A BB

Schmidt decomposition

no classical (thermal) 
correlations

pure state

Ψ⟩ =
M

∑
n=1

pn ΨA
n⟩ ⊗ ΨB

n⟩

complete orthogonal bases 
of the corresponding spaces

quantum correlations between A and B

entanglement entropy  SvN = − ∑
n

pn log pn



non-criticalE

volume law SvN(A) ∼ |A |

area law SvN(A) ∼ |∂A |

log-breaking of area law SvN(A) ∼ log |A |

(integrable systems)

critical

in stationary states
Ingredients Bipartite entanglement



spin lattice systems 

quantum field theories

a many-body system time evolves unitarily

|Ψt > = e−iĤt |Ψ0 > ( ̂ρ = |Ψ > < Ψ | )

̂ρt = e−iĤt ̂ρ0eiĤt

QUANTUM QUENCH  

 

g0 → g

Ĥ(g0) |Ψ0 > = EGS |Ψ0 >

Ĥ = Ĥ(g)

coined by J. Cardy

typical examples

L

finite-dimensional  
local Hilbert space 

𝔇 ∼ #Ld

Ingredients Quench dynamics

thermodynamic limit

Local Relaxation 



̂ρt = e−iĤt ̂ρ0eiĤt

Ingredients GHD

̂ρt = ̂ρ[ρx,t(λ), …]

clever parametrisation depending 
- on the class of initial states  
- on the Hamiltonian

 is stationarŷρ[ρ(λ),0,…,0]

additional fieldsroot densities

∂tρx,t(λ) = Fx[ρy,t(μ), ](λ)

density matrix

Integrable systems

rapidities  
(used to parametrise stationary states in integrable systems)

≈ − ∂x(v[ρx,t(μ)](λ) ρx,t(λ)) + O(∂2
x)

1st order GHD
classical equation: no trace of !ℏ

nothing else?



Ingredients GHD

̂ρt = ̂ρ[ρx,t(p), ψx,t(p)]

Integrable systems
Exactly solvable example: NONINTERACTING SPIN CHAINS

Wick’s theorem at any time
Ĥ = Ĥ[εx(p)]

excitation energy

auxiliary field describing the "off-diagonal"  
elements of the density matrix

EXAC
T PAR

AM
ETR

ISATIO
N

iℏ∂tρx,t(p) = εx(p) ⋆ ρx,t(p) − ρx,t(p) ⋆ εx(p)
iℏ∂tψx,t(p) = εx(p) ⋆ ψx,t(p) + ψx,t(p) ⋆ εx(−p)

ax(p) ⋆ bx(p) = ax(p)eiℏ
∂x∂p − ∂x∂p

2 bx(p)Moyal star product

phase-space formulation of  
quantum mechanics in 
noninteracting spin chains



the semiclassical particles time evolve classically:  
entanglement is simply transported

subsystem

∂tρx,t(λ) + ∂xvx,t(λ)ρx,t(λ) = O(∂2
x) density of quasi-localised  

(semiclassical) particles

entanglement

trajectory  

   (possibly affected by the state)

time=0

time=t

Semiclassical picture
interpreted as 



∂tρx,t(λ) + ∂xvx,t(λ)ρx,t(λ) = O(∂2
x) density of quasi-localised  

(semiclassical) particles

entanglement

trajectory  

   (possibly affected by the state)

time=0

time=t

Semiclassical picture
interpreted as 

the semiclassical particles time evolve classically:  
entanglement is simply transported

subsystem

how is the entanglement of a spatial bipartition  
connected with the semiclassical particles?



∂tρx,t(λ) + v(λ)∂xρx,t(λ) = ℏ2 v′�′ �(λ)
24

∂3
xρx,t(λ) + …

subsystem

entanglement

straight trajectory  

   (independent of the state)

time=0

time=t

Semiclassical picture noninteracting systems



subsystemtime=0

time=t

Semiclassical picture noninteracting systems

∂tρx,t(λ) + v(λ)∂xρx,t(λ) = ℏ2 v′�′ �(λ)
24

∂3
xρx,t(λ) + …

• low-entanglement assumption:  
only finite sets of particles are entangled with each others



Semiclassical picture noninteracting systems

spatial bipartition particle bipartition?
̂ρ(0) = ⊗𝒮 ̂ρ𝒮  represents the sets of entangled particles𝒮 = {k}

∼ ⊗
L
Δ
𝚥=1 ⊗𝒮 ̂ρ(x𝚥)

𝒮

L
Δ

some quantum correlations are lost
but they are not expected to contribute at the leading order

1st order GHD is the dynamical equation  
for the semi-classical particles

∂tρx,t(λ) + ∂xvx,t(λ)ρx,t(λ) = 0

A BB

trB[ ̂ρ] ∼ trparticles∈B[e−iĤt ⊗
L
Δ
𝚥=1 ⊗𝒮 ̂ρ(x𝚥)

𝒮 eiĤt]



time=t

Semiclassical picture noninteracting systems

A
BC

D

E

̂ρA ∼ trC[ ̂ρABC]trF[ ̂ρFG]
F

G



time=t

Semiclassical picture noninteracting systems

at late times, only one of the particles in an 
entangled set remains in the subsystem



Semiclassical picture noninteracting systems

at late times, only one of the particles in an 
entangled set remains in the subsystem

integrable

time=t

local relaxation:
at late times the state becomes locally equivalent to a stationary state
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Thermodynamics of a One-Dimensional System of Bosons with 
Repulsive Delta-Function Interaction 

C. N. YANG 
Institute for Theoretical Physics, State University of New York, Stony Brook, New York 
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The equilibrium thermodynamics of a system of bosons with repulsive delta-function 
interaction is shown to be derivable from the solution of a simple integral equation. The excitation 
spectrum at any temperature T is also found. 

I. INTRODUCTION 

The ground-state energy of a system of N bosons 
with repulsive delta-function interaction in one di-
mension with periodic boundary condition was calcu-
lated by Lieb and Liniger.I The Hamiltonian for the 
system is 

N a2 
H = - L -2 + 2c I b(Xi - Xi)' C > 0, (1) 

1 aX i i>i 

and the periodic box has length L. Using Bethe's 
hypothesis2 they showed that the k's in the hypothesis 
satisfy 

(_l)N-I exp (-ikL) = exp - k)} (2) 

where 
O(k) = -2 tan-I (k/c), -7T < 0 < 7T. (3) 

Taking the logarithm of (2) is a somewhat subtle 
process. In this paper we shall first discuss this point 
and show that all states of (I) are given by Bethe's 
hypothesis with real k's. The main purpose of the 
paper is to then evaluate the thermodynamical 
properties of the system at a finite temperature T. 

While we try to maintain mathematical rigor in the 
rest of the paper, it is to be emphasized that Sees. III 
and IV are far from rigorous. 

U. PROOF OF BETHE'S HYPOTHESIS 
FOR ALL STATES 

We first take the logarithm of (2): 

where 
kL = 27Tlk + IO(k - k'), 

k' 

Ik = integer, if N = odd, 
Ik + t = integer, if N = even. 

* Partially supported by NSF Grant GP873 I. 
1 E. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963). 
2 H. A. Bethe, Z. Physik 71, 205 (1931). 

(4) 

(5) 

Now, for any set ofreal 1's, 11> 12 , ••• ,IN' Eq. (4) 
has a unique real solution for the k's, kI' k2' ... , kN • 
The proof of this statement (similar to but simpler 
than the proof of a corresponding statement3 for the 
Heisenberg-Ising problem) follows. Let 

OI(k) = J: O(k) dk. 

Define 
N N 

B(kl>' .. , kN) = tL I k; - 27T I Tiki 
1 1 

- t I 0I(k i - ks )· (6) 
i,S 

Equation (4) is the condition for the extrema of B. 
Now the second-derivative matrix B2 of B is positive-
definite. [The first sum in (6) contributes a positive-
definite part to B2 • The second sum contributes 
nothing. Each term in the third sum is negative-
semidefinite, since = O'(k) < 0.] Furthermore 
for large values of I k 2 , B --+ tL(I k 2). Thus, B has 
one and only one extremum, namely, a minimum. 

It is further clear from this argument that the 
solution above represents a point S in k space which 
moves continuously as c i is changed. [In fact, 
dki/d(c-1) can be computed.] Now when c-l = 0, 
01 = ° and the minimum of B occurs at 

(7) 

Now the problem with c- l = 0 is the problem of 
free particles with the condition that 'IjJ = ° whenever 
Xi = Xi (any i :F j). All eigenfunctions of H for this 
problem are easily seen to be the same as that of free 
fermions in the segment 0 ::::;; Xl ::::;; X 2 ::::;; X3 ::::;; ••• ::::;; 

XN ::::;; L. Thus, when c-I = 0, all eigenfunctions are 
of Bethe's form, with the k's given by (7) and with all 
the 1's different. 

• C. N. Yang and C. P. Yang, Phys. Rev. 150, 321 (1966). 
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1116 C. N. YANG AND C. P. YANG 

Bya continuity argument with respect to c-1 we ob-
tain the following: 

Theorem: For any set of I's satisfying (5), no two 
of which are identical, there is a unique set of real 
k's satisfying (4), with no two k's being identical. 
With this set of k's, one eigenfunction of H, of Bethe's 
form, can be constructed. The totality of such eigen-
functions form a complete set for the boson system. 

The numbers I are quantum numbers for the problem. 

III. ENERGY AND ENTROPY FOR A SYSTEM 
WITH N = ro 

We now consider the problem for N = 00 and L = 
00 at a fixed density D = N/L. For the ground state, 
the quantum numbers I/L form1 a uniform lattice 
between - D/2 and D/2. The k's then form1 a non-
uniform distribution between a maximum k and a 
minimum k. For an excited state, (5) shows that the 
quantum numbers I/L are still on the same lattice, 
but not all lattice sites are taken, and the limits 
- D/2 and D/2 are no longer respected. We shall call 
the omitted lattice sites J;/ L. We would want to define 
corresponding "omitted k values" to be called holes. 
This can be easily done: Given the /'s, Eq. (4) defines 
the set of k's as proved in the last section. Now, 

Lh(p) == pL - 2: ()(p - k') (8) 
k' 

is a continuous monotonic function of p. At P = ± 00, 

it is equal to ± 00. Those values of p where Lh(p) = 
27TI are k's. Those values of p where Lh(p) = 27TJ 
will be defined as holes. 

For a large system, there is thus a density distribu-
tion of holes as well as one of k's: 

Lp(k) dk = No. of k's in dk, 
LPh(k) dk = No. of holes in dk. (9) 

By definition, the number of k's and holes in the 
interval dk is the number of times Lh(k) ranges over 
values 27TI and 27TJ in this interval. 

Thus, 

dh(k) = 27T(p + Ph) == 27Tj'(k). (lOa) 
dk 

Equation (8) gives 

h(k) = k - L:8(k - k')p(k') dk'. (lOb) 

Differentiation with respect to k gives 

27Tf= 27T(p + Ph) = 1 + 2e P . foo (k') dk 
-00 e2 + (k - k')2 

(11) 

The energy per particle for the state is 

E/N = D-1L:p(k)k2 dk, (12) 
where 

D = N/L = L: p(k) dk. (13) 

The entropy of the "state" is not zero since the 
existence of the omitted quantum numbers J; allows 
many wavefunctions of approximately the same 
energy to be described by the same P and Ph' In fact, 
for given P and Ph' the total number of k's and holes 
in dk is L(p + Ph) dk, of which Lp dk are k's and 
Lph dk are holes. Thus the number of possible choices 
of states in dk consistent with given P and Ph is 

[L(p + Ph) dk]! 
[Lp dk]! [Lph dk]! 

The logarithm of this gives the contribution to the 
entropy from dk. Thus, the total entropy is, putting 
the Boltzman constant equal to 1, 

S = '2 {(Lpdk + Lp"dk)ln(p + Ph) 
- Lp dk In P - Lph dk In Ph} 

or 

SIN = D-1L:[(p + ph)ln(p + Ph) 

- pIn P - Ph In Ph] dk. (14) 

IV. THERMAL EQUILIBRIUM 

At temperature T, we should maximize the contri-
bution to the partition function from the states 
described by P and Ph' In other words, given p, Ph 
is defined by (11). One then computes the contribution 
to the partition function 

exp (S - ET-l), (14') 

where Sand E are given by (14) and (12). The equi-
librium P is then obtained by maximizing this contri-
bution when P is varied subject to the condition (13). 

The above described procedure leads in a straight-
forward manner to the following condition on the 
equilibrium p: 

-A + e + Tin.£. 
Ph 

- Teloo dq In (1 + ..e.) = 0 
7T -00 e2 + (k - q)2 Ph' 

where A is a Lagrange multiplier for the condition (13). 
Writing 

(15) 
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time=t

Semiclassical picture noninteracting systemsintegrable

lim
t→∞

SvN[A] = |A |∫ dλSλin particular

Sλ ∼ − [ρ(λ) + ρh(λ)][log
ρ(λ)

ρ(λ) + ρh(λ)
+ log

ρh(λ)
ρ(λ) + ρh(λ)

]



time=0

Semiclassical picture integrable systems
state with a pair structure

λ1

−λ1

λ2
−λ2

∂tρx,t(λ) + ∂xvx,t(λ)ρx,t(λ) = O(∂2
x)

Sλ ∼ − [ρx,0(λ) + ρh
x,0(λ)][log

ρx,0(λ)
ρx,0(λ) + ρh

x,0(λ)
+ log

ρh
x,0(λ)

ρx,0(λ) + ρh
x,0(λ)

]



time=t

Semiclassical picture integrable systems
state with a pair structure

λ1

−λ2

λ2

−λ1

∂tρx,t(λ) + ∂xvx,t(λ)ρx,t(λ) = O(∂2
x)

time=0
λ1

−λ1

λ2
−λ2
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Figure 7: Entanglement dynamics after a bipartite quench in the XXZ chain. In the
initial state two semi-infinite chains are prepared in the Néel state |N, 0i (24) (left)
and the tilted ferromagnetic state (25) (right), respectively. The figure shows the
half-chain entropy plotted versus the time after the quench. The different curves are
tDMRG data for the chain with� = 5, 10 and several values of ✓ (tilting angle). The
dashed lines are linear fits. The slope of the lines is fixed by the prediction of the
quasiparticle picture (82).

shows the largest difference |Sent�Sth|, namely, the quench from the state |Ni⌦|N,✓ i (cf. (24)).
In this case, however, the entanglement growth is much faster, posing a severe limitation to
the timescales accessible by tDMRG. The time evolution of the entanglement entropy after
the quench for different values of the tilting angle ✓ and of the anisotropy � is reported in
Figure 8. For short times the tDMRG data exhibit large finite-time effects and are not described
by (82). On the other hand, for t ¶ 6 the numerical data become compatible with the slope
S0ent. Still, much larger timescales are needed to provide a robust verification of (82).

8 Conclusions

We investigated the dynamics of the entanglement entropy after quenches from a piecewise
homogeneous initial states in interacting integrable systems. By combining the quasiparticle
picture for the entanglement spreading with the GHD approach, we derived an analytic pre-
diction for the entropy evolution after the quench. Remarkably, the entanglement production
rate, i.e., the growth rate of the entanglement between two half-infinite chains is described
by a simple formula that we provided. This depends only on the thermodynamic macrostate
(GGE) that describes local properties near the interface between the two chains at infinite
time, as it was pointed out in Ref. [61]. We showed, however, that the entanglement produc-
tion rate is different from the rate of exchange of thermodynamic entropy between the two
half-infinite chains. This is in contrast with quenches in free-fermion models [65] and in ho-
mogeneous systems [33, 34] and it is a genuine effect of the combination of inhomogeneity
and interactions.

Our work calls attention to several interesting directions for future research. An immediate
one is to provide a more robust independent numerical check, going beyond the tDMRG time
scales that we accessed in this work. Moreover, our analytic formula for the entanglement

22

|ΨL⟩ = |… ↑ ↓ …⟩ |ΨR⟩ = |… ↗ ↗ …⟩

H = ∑
ℓ

sx
ℓsx

ℓ+1 + sy
ℓsy

ℓ+1 + Δsz
ℓsz

ℓ+1Half-chain entropy

|Ψ0⟩ = |ΨL⟩ ⊗ |ΨR⟩



Summary

✦ 1st order GHD supports the semiclassical picture for the time 
evolution of the entanglement entropy after quantum quenches


✦ Predictions can be obtained even in the presence of 
interactions



In the presence of interactions, the 
semiclassical picture in terms of the density 

matrix of entangled particles has a fault: 
  

no analytic expression for the time 
evolution of the Rényi entropies yet! 

Summary Open problem

thank You for your attention!


