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4 Ingredients

4 Entanglement evolution of inhomogeneous states within GHD



Ingredients  Bipartite entanglement

complete orthogonal bases
of the corresponding spaces

M N\ \
Schmidt decomposition “P> = Z \/Pn ‘P;‘> ® “P{j>
n=1
no classical (thermal) quantum correlations between A and B

correlations

entanglement entropy S v = — Z p,logp,
n
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In stationary states
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Ingredients

Quench dynamics

many-body system time evolves unitarily
a -

A H/\

spin lattice systems

typical examples

quantum field theories

D ~ #L

| fimte-dimensional

local Hilbert space

coined by J. Cardy

thermodynamic limit

Local Relaxation
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Ingredients

Integrable systems

root densities additional fields

density matrix
A _ _—iHt~ _iHt
Pr=¢€  Pof

o= e, 7]

rapidities

(used to parametrise stationary states in integrable systems)

plp(4),0,...,0] is stationary

dtpx,t(/l) =F x[py,t(,u), nothing else?] (/1)

clever parametrisation depending
- on the class of initial states
- on the Hamiltonian

~ = 0, (VP (W] p (D)) + O(?)

classical equation: no trace of 7!




Ingredients

Integrable systems

Exactly solvable example: NONINTERACTING SPIN CHAINS

auxiliary field describing the "off-diagonal”
elements of the density matrix

Pl P), i P)]
= Hle (p)]

excitation energy

Wick’s theorem at any tlme|—> pt
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ihatpx t(p) = & () px t(p) — px t(p) * € (p phase-space formulation bf

quantum mechanics In

lhatl//x t(p) = & (p) * l//x t(p) + /8 t(p) * € (— p) noninteracting spin chalhs .

Moyal star prod%A ‘7

a (p) * b (p) = a,(p)e” b (p)

m SciPost Phys, 8, 048 (2020)
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Semiclassical picture

0,01 /(A) + 0,9, (WP (D) = O(07) el

density of quasi-localised
(semiclassical) particles

N\

trqjectopf
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the semiclassical particles time evolve classically:

time=0 suﬁ:cystem

entanglement is simply transported



‘Semiclassical picture

atp x,t(/i) s axvx,;(/l),Ox,t(/l) — 0(03%) interpreted as '

density of quasi-localised
(semiclassical) particles

time=0
A
how is the entanglement of a spatial bipartition
connected with the semiclassical particles? [
time=t ‘
&

the semiclassical particles time evolve classically:

entanglement is simply transported
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atlox,t(/l) + V(/l)axpx,t(/l) =h Taxpx,t

time=0 suﬁ:cystem
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straight brajectory
(independent of the state)
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Semiclassical picture noninteracting systems

spatial bipartition » particle bipartition

pPO) =Qgs s & = {k} represents the sets of entangled particles
L
3 (X))
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/ but they are not expected to contribute at the leading order
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Semiclassical picture noninteracting systems
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Semiclassical picture noninteracting systems

time=t

at late times, only one of the particles in an
entangled set remains in the subsystem




Semiclassical picture integrable systems

local relaxation:

at late times the state becomes locally equivalent to a stationary state

at late times, only one of the particles in an
entangled set remains in the subsystem
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Thermodynamics of a One-Dimensional System of Bosons with
Repulsive Delta-Function Interaction

C. N. YanG
Institute for Theoretical Physics, State University of New York, Stony Brook, New York

AND
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The equilibrium thermodynamics of a one-dimensional system of bosons with repulsive delta-function
interaction is shown to be derivable from the solution of a simple integral equation. The excitation
spectrurn at any temperature T is also found.




The entropy of the *“state’ is not zero since the
existence of the omitted quantum numbers J; allows
many wavefunctions of approximately the same
energy to be described by the same p and p, . In fact,
for given p and p,, the total number of &’s and holes
in dk is L(p + p,) dk, of which Lp dk are k’s and
Lp,, dk are holes. Thus the number of possible choices
of states in dk consistent with given p and p, is

[L(p + pp) dk]!
[Lo dk]! [Lp, dk]!’

The logarithm of this gives the contribution to the
entropy from dk. Thus, the total entropy is, putting
the Boltzman constant equal to 1,

S =Y {(Lpdk + Lp, dk)In(p + p;)

— Lpdkin p — Lp, dk1n p,}
or

SN = 07 "l + p)In (o + 5
— plnp — p,In p,]dk. (14)
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Semiclassical picture integrable systems

state with a palr structure
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4 1st order GHD supports the semiclassical picture for the time
evolution of the entanglement entropy after guantum quenches

<4 Predictions can be obtained even in the presence of
interactions



summary Open problem

In the presence of interactions, the
semiclassical picture in terms of the density
matrix of entangled particles has a fault:

no analytic expression for the time
evolution of the Rényi entropies yet!

thank. You for - your attention!




