Learning with Differentiable Perturbed Optimizers

Quentin Berthet

Google Research

Youth in High-dimensions - ICTP - 2020

Q. Berthet

M.Blondel

O.Teboul

M. Cuturi

J-P. Vert

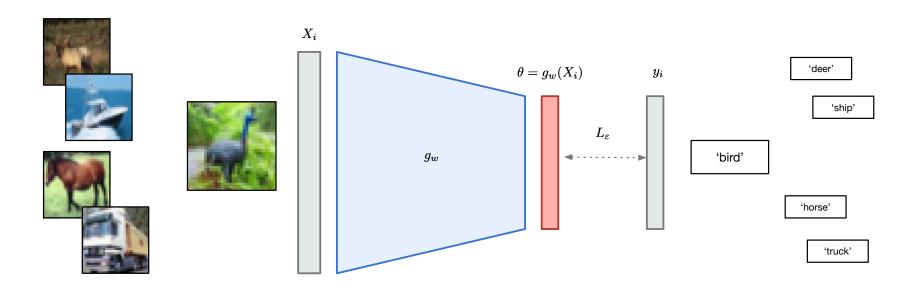
F.Bach

• Learning with Differentiable Perturbed Optimizers

Preprint: arXiv:2002.08676

[A lot of] Machine learning these days

Supervised learning: couples of inputs/responses (X_i, y_i) , a model g_w



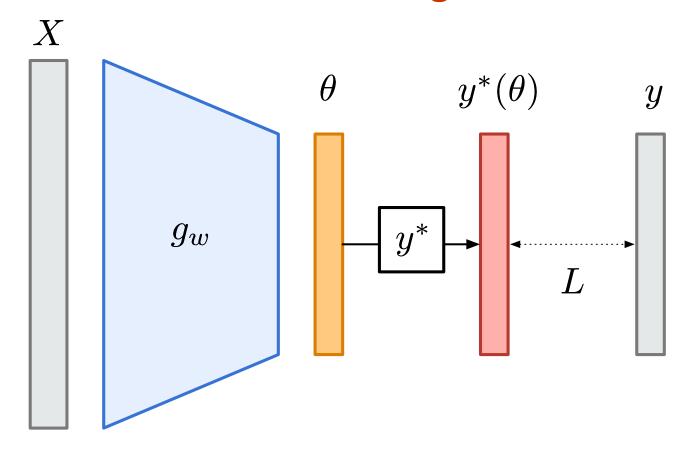
Goal: Optimize parameters $w \in \mathbf{R}^d$ of a function g_w such that $g_w(X_i) \approx y_i$

$$\min_{w} \sum_{i} L(g_w(X_i), y_i).$$

Workhorse: first-order methods, based on $\nabla_w L(g_w(X_i), y_i)$, backpropagation

Problem: What if these models contain **nondifferentiable*** operations?

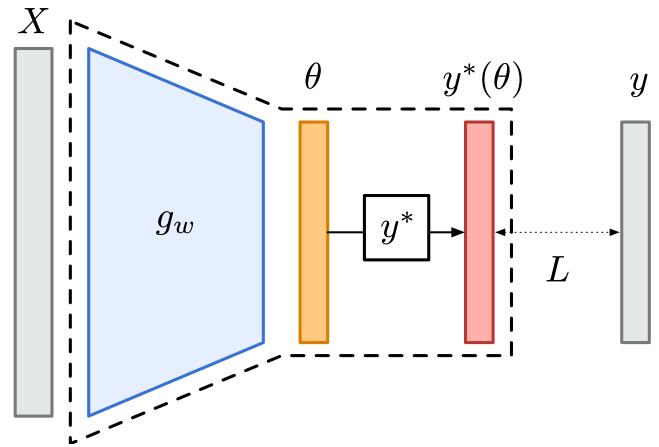
Discrete decisions in Machine learning



Examples: discrete operations (e.g. max, rankings), break autodifferentiation

- ullet $\theta=$ scores for k products, $y^*=$ vector of ranks e.g. [5,2,4,3,1]
- $\theta = \text{edge costs}$, $y^* = \text{shortest path between two points}$
- ullet $\theta = \text{classification scores for each class}, <math>y^* = \text{one-hot vector}$

Discrete decisions in Machine learning



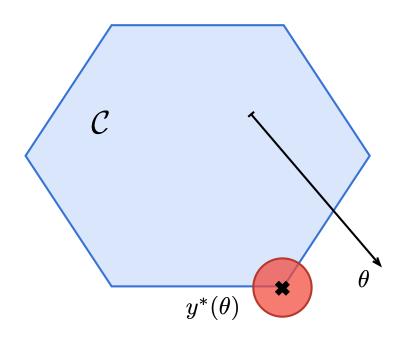
Examples: discrete operations (e.g. max, rankings), break autodifferentiation

- $\theta = \text{scores for } k \text{ products, } y^* = \text{vector of ranks e.g. } [5,2,4,3,1]$
- $\theta = \text{edge costs}$, $y^* = \text{shortest path between two points}$
- ullet $\theta = \text{classification scores for each class}, <math>y^* = \text{one-hot vector}$

Perturbed maximizer

Discrete decisions: optimizers of linear program over \mathcal{C} , convex hull of $\mathcal{Y} \subseteq \mathbf{R}^d$

$$F(\theta) = \max_{y \in \mathcal{C}} \langle y, \theta \rangle \,, \quad \text{and} \quad y^*(\theta) = \operatorname*{argmax}_{y \in \mathcal{C}} \langle y, \theta \rangle = \nabla_{\theta} F(\theta) \,.$$

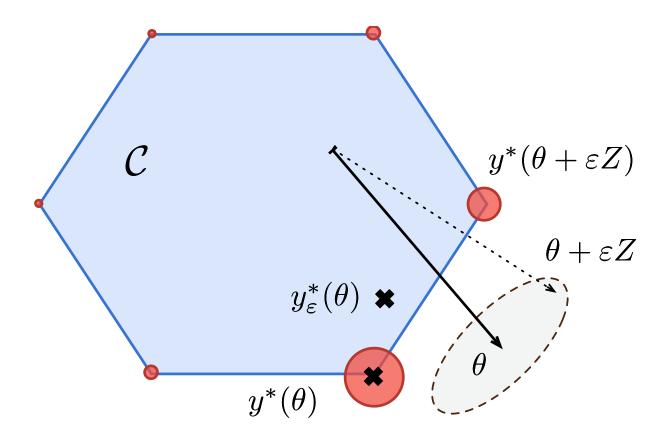


Perturbed maximizer: average of solutions for inputs with noise εZ

$$F_{\varepsilon}(\theta) = \mathbf{E}[\max_{y \in \mathcal{C}} \langle y, \theta + \varepsilon Z \rangle], \ y_{\varepsilon}^{*}(\theta) = \mathbf{E}[y^{*}(\theta + \varepsilon Z)] = \mathbf{E}[\arg\max_{y \in \mathcal{C}} \langle y, \theta + \varepsilon Z \rangle] = \nabla_{\theta} F_{\varepsilon}(\theta).$$

Perturbed maximizer

Discrete decisions: optimizers of linear program over C, convex hull of $\mathcal{Y} \subseteq \mathbf{R}^d$



Perturbed maximizer: average of solutions for inputs with noise εZ

$$F_{\varepsilon}(\theta) = \mathbf{E}[\max_{y \in \mathcal{C}} \langle y, \theta + \varepsilon Z \rangle], \ y_{\varepsilon}^{*}(\theta) = \mathbf{E}[y^{*}(\theta + \varepsilon Z)] = \mathbf{E}[\arg\max_{y \in \mathcal{C}} \langle y, \theta + \varepsilon Z \rangle] = \nabla_{\theta} F_{\varepsilon}(\theta).$$

Q.Berthet - ICTP - 2020 4/12

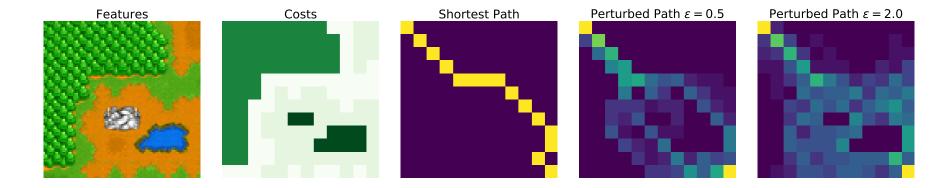
Perturbed model

Model of optimal decision under uncertainty Luce (1959), McFadden et al. (1973)

$$Y = \underset{y \in \mathcal{C}}{\operatorname{argmax}} \langle y, \theta + \varepsilon Z \rangle$$

Follows a perturbed model with $Y \sim p_{\theta}(y)$, expectation $y_{\varepsilon}^*(\theta) = \mathbf{E}_{p_{\theta}}[Y]$.

Perturb and map Papandreou & Yuille (2011), FT Perturbed L Kalai & Vempala (2003)



Example. Over the unit simplex $\mathcal{C} = \Delta^d$ with Gumbel noise Z, Gibbs distribution.

$$F_{\varepsilon}(\theta) = \varepsilon \log \sum_{i \in [d]} e^{\frac{\theta_i}{\varepsilon}}, \qquad p_{\theta}(e_i) \propto \exp(\langle \theta, e_i \rangle / \varepsilon), \qquad [y_{\varepsilon}^*(\theta)]_i = \frac{e^{\frac{\theta_i}{\varepsilon}}}{\sum e^{\frac{\theta_j}{\varepsilon}}}$$

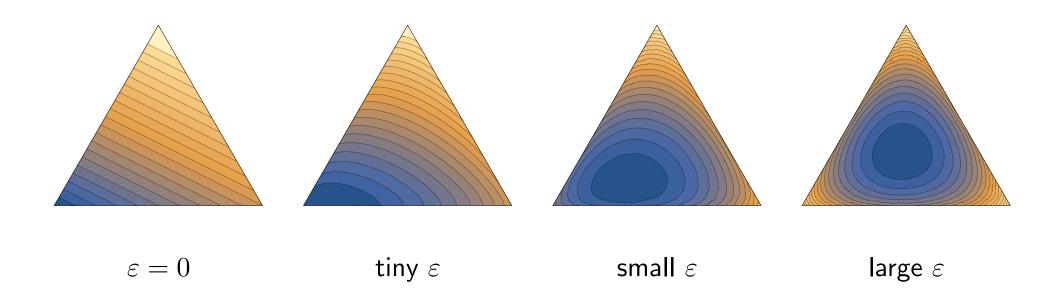
Q.Berthet - ICTP - 2020 5/12

Properties

Link with regularization: $\varepsilon \Omega = \left(F_{\varepsilon}\right)^*$ is a convex function with domain $\mathcal C$

$$y_{\varepsilon}^*(\theta) = \underset{y \in \mathcal{C}}{\operatorname{argmax}} \{ \langle y, \theta \rangle - \varepsilon \Omega(y) \}.$$

Consequence of duality and $y_{\varepsilon}^*(\theta) = \nabla_{\varepsilon} F_{\varepsilon}(\theta)$. Generalized entropy Ω



Extreme temperatures. When $\varepsilon \to 0$, $y_{\varepsilon}^*(\theta) \to y^*(\theta)$ for unique max.

When $\varepsilon \to \infty$, $y_{\varepsilon}^*(\theta) \to \operatorname{argmin}_y \Omega(y)$. Nonasymptotic results.

Differentiability. Smoothness in the inputs, Jacobian as simple expectations.

Learning and Fenchel-Young losses

Learning from Y_1, \ldots, Y_n for a model p_{θ} .

Gibbs distribution $\propto \exp(\langle \theta, Y \rangle)$: minimize negative log-likelihood

$$L_{\mathsf{Gibbs}}(\theta; Y) = -\frac{1}{n} \sum_{i=1}^{n} \langle \theta, Y_i \rangle + \log Z(\theta)$$

Stochastic gradient and full (batch) gradient: moment matching

$$\nabla_{\theta} L_{\mathsf{Gibbs}}(\theta; Y_i) = \mathbf{E}_{\mathsf{Gibbs}, \theta}[Y] - Y_i \,, \quad \nabla_{\theta} L_{\mathsf{Gibbs}}(\theta; Y) = \mathbf{E}_{\mathsf{Gibbs}, \theta}[Y] - \bar{Y}_n \,.$$

Algorithmic challenge: replace by perturbed model Papandreou, Yuille (2011)

$$\nabla_{\theta} L_i(\theta) = \mathbf{E}_{p_{\theta}}[Y] - Y_i = y_{\varepsilon}^*(\theta) - Y_i.$$

Stochastic gradient of modified functional in θ , not a log-likelihood

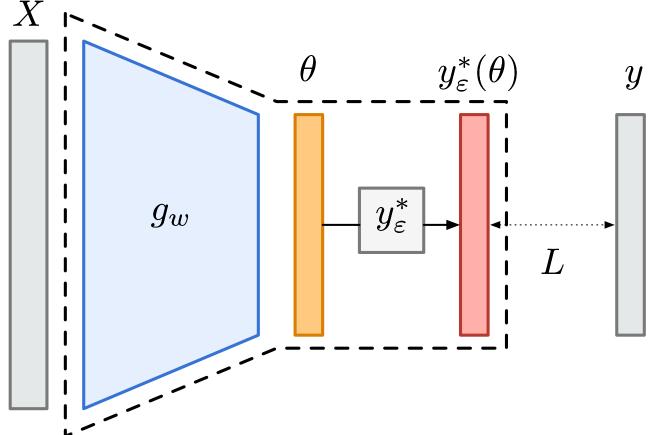
$$L_{\varepsilon}(\theta; y) = -\frac{1}{n} \sum_{i=1}^{n} \langle \theta, Y_i \rangle + F_{\varepsilon}(\theta).$$

Fenchel-Young loss Blondel et al. (2019), good properties (convexity, randomness).

Q.Berthet - ICTP - 2020 7/12

Learning with perturbations and F-Y losses

Within the same framework, possible to virtually bypass the optimization block

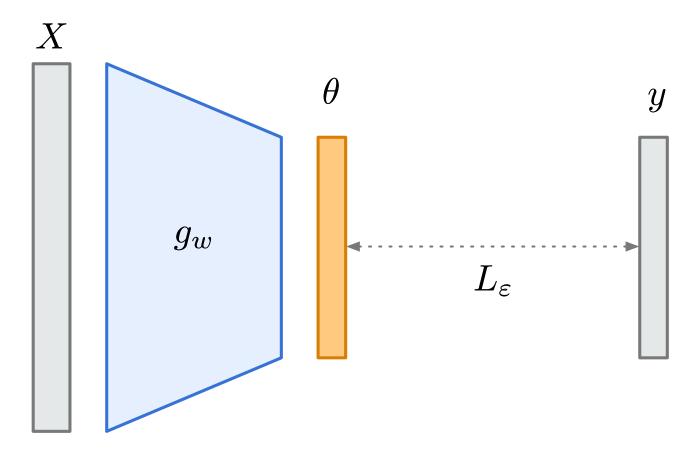


Easier to implement, no Jacobian of y_{ε}^*

Population loss minimized at ground truth for perturbed generative model.

Learning with perturbations and F-Y losses

Within the same framework, possible to virtually bypass the optimization block



Easier to implement, no Jacobian of y_{ε}^*

Population loss minimized at ground truth for perturbed generative model.

Computations

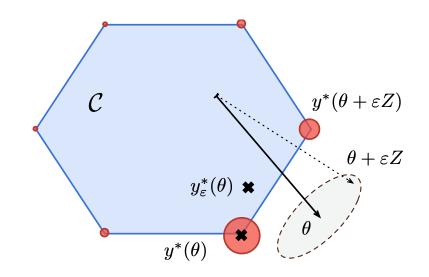
Monte Carlo estimates. Perturbed maximizer and derivatives as expectations.

For $\theta \in \mathbf{R}^d$, $Z^{(1)}, \dots, Z^{(M)}$ i.i.d. copies

$$y^{(\ell)} = y^*(\theta + \varepsilon Z^{(\ell)})$$

Unbiased estimate of $y_{\varepsilon}^*(\theta)$ given by

$$\bar{y}_{\varepsilon,M}(\theta) = \frac{1}{M} \sum_{\ell=1}^{M} y^{(\ell)}.$$



Supervised learning:

Features X_i , model output $\theta_w = g_w(X_i)$, prediction $y_{\text{pred}} = y_{\varepsilon}^*(\theta_w)$.

Stochastic gradient in w:

$$\nabla_w F_i(w) = J_w g_w(X_i) \cdot (y_{\varepsilon}^*(\theta) - Y_i)$$

Computations

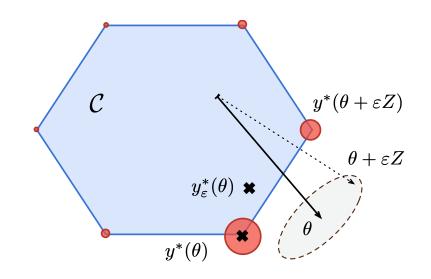
Monte Carlo estimates. Perturbed maximizer and derivatives as expectations.

For $\theta \in \mathbf{R}^d$, $Z^{(1)}, \ldots, Z^{(M)}$ i.i.d. copies

$$y^{(\ell)} = y^*(\theta + \varepsilon Z^{(\ell)})$$

Unbiased estimate of $y_{\varepsilon}^*(\theta)$ given by

$$\bar{y}_{\varepsilon,M}(\theta) = \frac{1}{M} \sum_{\ell=1}^{M} y^{(\ell)}.$$



Supervised learning:

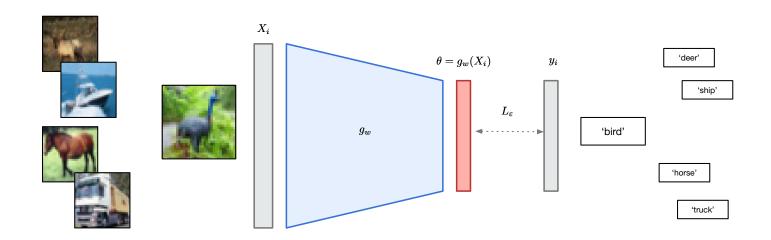
Features X_i , model output $\theta_w = g_w(X_i)$, prediction $y_{\text{pred}} = y_{\varepsilon}^*(\theta_w)$.

Stochastic gradient in w (doubly stochastic scheme)

$$\nabla_w F_i(w) = J_w g_w(X_i) \cdot \left(\frac{1}{M} \sum_{\ell=1}^M y^*(\theta + \varepsilon Z^{(\ell)}) - Y_i\right).$$

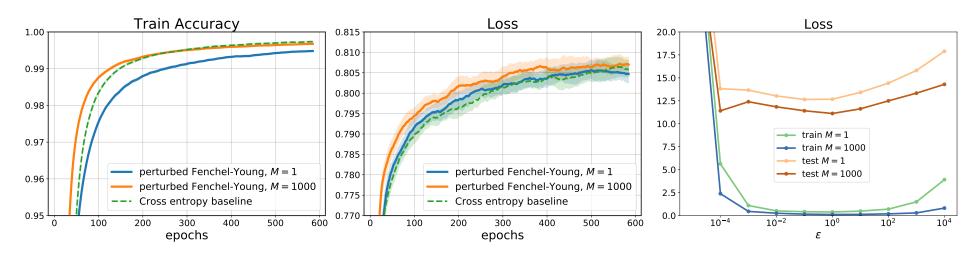
Experiments

Classification: CIFAR-10 dataset of images with 10 classes - Toy comparison



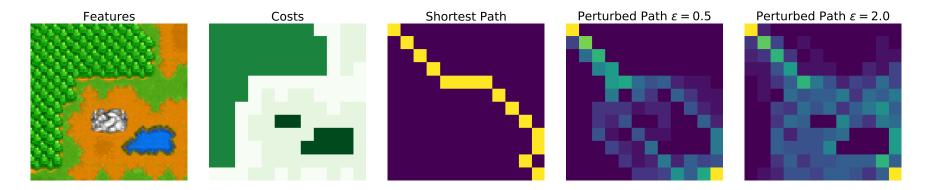
Architecture: vanilla-CNN made of 4 convolutional and 2 fully connected layers.

Training: 600 epochs with minibatches of size 32 - influence of M and ε



Experiments

Learning from shortest paths: From 10k examples of Warcraft 96×96 RGB images, representing 12×12 costs, and matrix of shortest paths. (Vlastelica et al. 19)



Train a CNN for 50 epochs, to learn costs recovery of optimal paths.

