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[A lot of] Machine learning these days

Supervised learning: couples of inputs/responses (Xi, yi), a model gw

‘bird’

‘deer’

‘ship’

‘horse’

‘truck’

XiXi

gwgw

✓ = gw(Xi)✓ = gw(Xi)

L"L"

yiyi

Goal: Optimize parameters w ∈ Rd of a function gw such that gw(Xi) ≈ yi

min
w

∑
i

L(gw(Xi), yi) .

Workhorse: first-order methods, based on ∇wL(gw(Xi), yi), backpropagation

Problem: What if these models contain nondifferentiable∗ operations?
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Discrete decisions in Machine learning

XX

gwgw

✓✓ y⇤(✓)y⇤(✓)

y⇤y⇤

yy

LL

Examples: discrete operations (e.g. max, rankings), break autodifferentiation

• θ = scores for k products, y∗ = vector of ranks e.g. [5, 2, 4, 3, 1]

• θ = edge costs, y∗ = shortest path between two points

• θ = classification scores for each class, y∗ = one-hot vector
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Perturbed maximizer

Discrete decisions: optimizers of linear program over C, convex hull of Y ⊆ Rd

F (θ) = max
y∈C
〈y, θ〉 , and y∗(θ) = argmax

y∈C
〈y, θ〉 = ∇θF (θ) .

CC

y⇤(✓)y⇤(✓)
✓✓

Perturbed maximizer: average of solutions for inputs with noise εZ

Fε(θ) = E[max
y∈C
〈y, θ+εZ〉] , y∗ε(θ) = E[y∗(θ+εZ)] = E[argmax

y∈C
〈y, θ+εZ〉] = ∇θFε(θ) .
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Perturbed maximizer
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CC

y⇤(✓)y⇤(✓)

y⇤(✓ + "Z)y⇤(✓ + "Z)

✓ + "Z✓ + "Z

✓✓

y⇤
" (✓)y⇤
" (✓)
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Perturbed model

Model of optimal decision under uncertainty Luce (1959), McFadden et al. (1973)

Y = argmax
y∈C

〈y, θ + εZ〉

Follows a perturbed model with Y ∼ pθ(y), expectation y∗ε(θ) = Epθ[Y ].

Perturb and map Papandreou & Yuille (2011), FT Perturbed L Kalai & Vempala (2003)

Features Costs Shortest Path Perturbed Path = 0.5 Perturbed Path = 2.0

Example. Over the unit simplex C = ∆d with Gumbel noise Z, Gibbs distribution.

Fε(θ) = ε log
∑
i∈[d]

e
θi
ε , pθ(ei) ∝ exp(〈θ, ei〉/ε) , [y∗ε(θ)]i =

e
θi
ε∑
e
θj
ε
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Properties

Link with regularization: εΩ =
(
Fε
)∗

is a convex function with domain C

y∗ε(θ) = argmax
y∈C

{
〈y, θ〉 − εΩ(y)

}
.

Consequence of duality and y∗ε(θ) = ∇εFε(θ). Generalized entropy Ω

ε = 0 tiny ε small ε large ε

Extreme temperatures. When ε→ 0, y∗ε(θ)→ y∗(θ) for unique max.

When ε→∞, y∗ε(θ)→ argminy Ω(y). Nonasymptotic results.

Differentiability. Smoothness in the inputs, Jacobian as simple expectations.
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Learning and Fenchel-Young losses

Learning from Y1, . . . , Yn for a model pθ.

Gibbs distribution ∝ exp(〈θ, Y 〉): minimize negative log-likelihood

LGibbs(θ;Y ) = −1

n

n∑
i=1

〈θ, Yi〉+ logZ(θ)

Stochastic gradient and full (batch) gradient: moment matching

∇θLGibbs(θ;Yi) = EGibbs,θ[Y ]− Yi , ∇θLGibbs(θ;Y ) = EGibbs,θ[Y ]− Ȳn .

Algorithmic challenge: replace by perturbed model Papandreou, Yuille (2011)

∇θLi(θ) = Epθ[Y ]− Yi = y∗ε(θ)− Yi .

Stochastic gradient of modified functional in θ, not a log-likelihood

Lε(θ; y) = −1

n

n∑
i=1

〈θ, Yi〉+ Fε(θ) .

Fenchel-Young loss Blondel et al. (2019), good properties (convexity, randomness).
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Learning with perturbations and F-Y losses

Within the same framework, possible to virtually bypass the optimization block

y⇤
"y
⇤
"

XX

gwgw

✓✓ y⇤
" (✓)y⇤
" (✓) yy

LL

Easier to implement, no Jacobian of y∗ε

Population loss minimized at ground truth for perturbed generative model.
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Computations

Monte Carlo estimates. Perturbed maximizer and derivatives as expectations.

For θ ∈ Rd, Z(1), . . . , Z(M) i.i.d. copies

y(`) = y∗(θ + εZ(`))

Unbiased estimate of y∗ε(θ) given by

ȳε,M(θ) =
1

M

M∑
`=1

y(`) .

CC

y⇤(✓)y⇤(✓)

y⇤(✓ + "Z)y⇤(✓ + "Z)

✓ + "Z✓ + "Z

✓✓

y⇤
" (✓)y⇤
" (✓)

Supervised learning:

Features Xi, model output θw = gw(Xi), prediction ypred = y∗ε(θw).

Stochastic gradient in w:

∇wFi(w) = Jwgw(Xi) · (y∗ε(θ)− Yi)
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Computations

Monte Carlo estimates. Perturbed maximizer and derivatives as expectations.

For θ ∈ Rd, Z(1), . . . , Z(M) i.i.d. copies

y(`) = y∗(θ + εZ(`))
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CC

y⇤(✓)y⇤(✓)
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✓✓

y⇤
" (✓)y⇤
" (✓)

Supervised learning:

Features Xi, model output θw = gw(Xi), prediction ypred = y∗ε(θw).

Stochastic gradient in w (doubly stochastic scheme)

∇wFi(w) = Jwgw(Xi) ·
( 1

M

M∑
`=1

y∗(θ + εZ(`))− Yi
)
.
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Experiments

Classification: CIFAR-10 dataset of images with 10 classes - Toy comparison

‘bird’

‘deer’

‘ship’

‘horse’

‘truck’

XiXi

gwgw

✓ = gw(Xi)✓ = gw(Xi)

L"L"

yiyi

Architecture: vanilla-CNN made of 4 convolutional and 2 fully connected layers.

Training: 600 epochs with minibatches of size 32 - influence of M and ε
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epochs
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0.96

0.97
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1.00 Train Accuracy

perturbed Fenchel-Young, M = 1
perturbed Fenchel-Young, M = 1000
Cross entropy baseline
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Experiments

Learning from shortest paths: From 10k examples of Warcraft 96× 96 RGB
images, representing 12×12 costs, and matrix of shortest paths. (Vlastelica et al. 19)

Features Costs Shortest Path Perturbed Path = 0.5 Perturbed Path = 2.0

Train a CNN for 50 epochs, to learn costs recovery of optimal paths.

0 10 20 30 40 50
epochs

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100% Shortest Path Perfect Accuracy

Perturbed FY
Blackbox loss
Squared loss
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