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[A lot of] Machine learning these days

Supervised learning: couples of inputs/responses (X;,y;), a model g,

orse’
‘truck’

‘bird’

Goal: Optimize parameters w € R? of a function g,, such that g, (X;) ~ y;
mq;nz L(guw(X3), yi) -

Workhorse: first-order methods, based on V., L(g.,(X;),y;), backpropagation

Problem: What if these models contain nondifferentiable* operations?
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Discrete decisions in Machine learning

X
\ 0 y*(0) Y

g'w y*—> SR >

/

Examples: discrete operations (e.g. max, rankings), break autodifferentiation

e 0 = scores for k products, y* = vector of ranks e.g. [5,2,4,3,1]
e 0 = edge costs, y* = shortest path between two points

e 0 = classification scores for each class, y* = one-hot vector
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Perturbed maximizer

Discrete decisions: optimizers of linear program over C, convex hull of Y C R?

F(0) = max(y,0), and y*(0)= argmax(y,0) = VoF(0).
yeCl yeC

y*(0)
Perturbed maximizer: average of solutions for inputs with noise ¢4
I.(0) = E[max(y,0+eZ)], y2(0) = E[y"(0+c2)| = Elargmax(y, 0+cZ)| = VoI(0) .

yel yel
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Perturbed maximizer

Discrete decisions: optimizers of linear program over C, convex hull of Y C R?

Perturbed maximizer: average of solutions for inputs with noise ¢4

F.(0) = E[r&agc(y, O0+cZ)], y2(0) = Ely*(0+e2)] = E[argg&x(y, O+cZ)) = VoF(0).
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Perturbed model

Model of optimal decision under uncertainty Luce (1959), McFadden et al. (1973)

Y = argmax(y,0 + €2
yeC

Follows a perturbed model with Y ~ pg(y), expectation yZ(0) = E, [Y].

Perturb and map Papandreou & Yuille (2011), FT Perturbed L Kalai & Vempala (2003)

Features Costs Shortest Path Perturbed Path €e=0.5 Perturbed Path e =2.0

O .
& —
X £

Example. Over the unit simplex C = A% with Gumbel noise Z, Gibbs distribution.

>

F0)=clog Y e®.  pole) xexp((Befe), WO =
i€[d] > ew

>
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Properties

Link with regularization: ¢ Q = (F.)" is a convex function with domain C

yz(0) = argmax {(y,0) —Q(y)} .

yeC

Consequence of duality and y*(0) = V_.F.(0). Generalized entropy 2

e=20 tiny ¢ small ¢ large ¢

Extreme temperatures. When ¢ — 0, y*(0) — y*(0) for unique max.
When € — oo, yZ(#) — argmin, 2(y). Nonasymptotic results.

Differentiability. Smoothness in the inputs, Jacobian as simple expectations.
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Learning and Fenchel-Young losses

Learning from Y7,....,Y,, for a model py.

Gibbs distribution o< exp((f,Y)): minimize negative log-likelihood

Lipbs(6;Y') = L > (6,Yi) +log Z(0)

n -
1=1

Stochastic gradient and full (batch) gradient: moment matching

VoLaibbs(0;Yi) = Ecibbs,01Y | —Yi, VaLaibbs(0;Y) = Egibbs 0|Y | — Yo, -
Algorithmic challenge: replace by perturbed model Papandreou, Yuille (2011)
VoLi(0) = Eyy[Y] - Y; = y2(6) - Yi.
Stochastic gradient of modified functional in @, not a log-likelihood
1 n
Le(iy) = —— > (0.Y:) + Fu(0).
i=1

Fenchel-Young loss Blondel et al. (2019), good properties (convexity, randomness).
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Learning with perturbations and F-Y losses

Within the same framework, possible to virtually bypass the optimization block

X i~

~

~

Jw

Easier to implement, no Jacobian of y

Population loss minimized at ground truth for perturbed generative model.

Q.Berthet - ICTP - 2020

8/12



Learning with perturbations and F-Y losses
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Computations

Monte Carlo estimates. Perturbed maximizer and derivatives as expectations.

For 0 ¢ RY, ZW .. Z(M)iid. copies

y ) =y (0 + 2"

Unbiased estimate of y*(6) given by

e, ( Zy“) -

Supervised learning;:
Features X;, model output 0,, = g,,(X;), prediction Ypred = Y2 (Ow).

Stochastic gradient in w:

Vuli(w) = Juwgw(Xi) - (y2(0) — i)
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Computations

Monte Carlo estimates. Perturbed maximizer and derivatives as expectations.

For 0 ¢ RY, ZW .. Z(M)iid. copies

y =y (0 +e2)

Unbiased estimate of yX(6) given by

1 M
— _ E (£)
yg,M(e) - M y ¢

(=1

Supervised learning;:
Features X;, model output 0,, = g,(X;), prediction Ypred = Y2 (Ow).

Stochastic gradient in w (doubly stochastic scheme)

M
VuFi(w) = Juguw(X;) - (%Zy*(ﬁ + 5Z(£)) - Y‘) '
/=1
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Experiments

Classification: CIFAR-10 dataset of images with 10 classes - Toy comparison

‘ship’

‘bird’

‘horse’

a
I o
©
s

‘truck’

Architecture: vanilla-CNN made of 4 convolutional and 2 fully connected layers.

Training: 600 epochs with minibatches of size 32 - influence of M and ¢
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Experiments

Learning from shortest paths: From 10k examples of Warcraft 96 x 96 RGB
images, representing 12 x 12 costs, and matrix of shortest paths. (Vlastelica et al. 19)

Features Costs Shortest Path Perturbed Path £ = 0.5 Perturbed Path £ = 2.0

ErRRE

Train a CNN for 50 epochs, to learn costs recovery of optimal paths.

Shortest Path Perfect Accuracy Cost ratio to optimal
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