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FROM CLASSICAL THEORY
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“The price to pay for achieving low bias is high variance”    
(Geman et al., 1992)

BIAS-VARIANCE TRADEOFF

TOO FEW PARAMETERS: 
HIGH BIAS, LOW VARIANCE

UNDERFIT

TOO MANY PARAMETERS: 
LOW BIAS, HIGH VARIANCE

OVERFIT

BALANCED

BIAS

VARIANCE
ERRORNOT THE TRUE STORY

Number of parameters



TO DOUBLE DESCENT
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“U” shaped curve in the 
underparametrized regime

Peak in Test Error  
At interpolation threshold

Monotonous decrease in the  
overparametrized regime

Peak suppressed by  
regularisation

Peak suppressed by  
ensembling

See also 
Belkin et al. 2019 
Nakkiran et al. 2019 
Hastie et al. 2019 
Mei & Montanari 2019 
Kini et al. 2020 
Gerace et al. 2020 
Ba et al. 2020 
…. 

WHAT IS HAPPENING TO THE 
BIAS AND VARIANCES ?

Number of parameters



RANDOM FEATURES: WHY?
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First introduced as approximation for kernel methods [1]

[1] Rahimi, Ali, and Benjamin Recht. "Random features for large-scale kernel machines." Advances in neural information processing systems. 2008. 
[2] Mei, Song, and Andrea Montanari. "The generalization error of random features regression: Precise asymptotics and double descent curve." arXiv preprint 
arXiv:1908.05355 (2019). 
[3] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization in neural networks. In Advances in neural 
information processing systems, pages 8571–8580, 2018. 
[4] Chizat, Lenaic, and Francis Bach. "A note on lazy training in supervised differentiable programming." arXiv preprint arXiv:1812.07956 8 (2018). 

ANALYTICALLY TRACTABLE MODEL

Effect of Initialisation: 
Study Ensembling

Double descent 
curve [2] 

Input Dimension disentangled 
from Number of Parameters

Relevant to the lazy 
regime of neural 
networks [3,4]



THE RANDOM FEATURES MODEL
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X, Θ, β ∼ 𝒩(0,1)σ = ReLU
ZℛRF = 𝔼

x [(f(x) − ̂f(x))
2]

TEST ERROR

Z

yμ = f(Xμ) = ⟨β, Xμ⟩ + ϵμ

∥β∥ = F, ϵμ ∼ 𝒩(0,τ)

GROUND TRUTH: LINEAR WITH NOISE 

SNR = F/τ

LEARNER: ONE HIDDEN LAYER

Ẑf(Xμ) =
P

∑
i=1

aiσ
⟨Θi, Xμ⟩

D

Z
ℒRF(a) ≡

1
N

N

∑
μ=1

(yμ − ̂f(Xμ))
2

+
Pλ
D

∥a∥2
2

TRAIN ERROR

̂a ≡ arg min
a∈ℝP

ℒRF(a)



= F2 + 2𝔼 [f ̂f] + 𝔼 [Varε ( ̂f) + ⟨ ̂f⟩
2

ε]
Varε ( ̂f)

⟨ ̂f⟩ε

BIAS AND VARIANCE(S)
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ℛRF = 𝔼 [(f − ̂f)
2]

= F2 + 2𝔼 [f ̂f] + 𝔼 [ ̂f 2]

Noise      Initialization     Sampling

⟨ ̂f⟩ε,Θ

f
⟨ ̂f⟩ε,Θ,X

= F2 + 2𝔼 [f ̂f] + 𝔼 [Varε ( ̂f) + VarΘ (⟨ ̂f⟩ε) + ⟨ ̂f⟩
2

ε,Θ]

VarΘ (⟨ ̂f ⟩ε)

= F2 + 2𝔼 [f ̂f] + 𝔼 [Varε ( ̂f) + VarΘ (⟨ ̂f⟩ε) + VarX (⟨ ̂f⟩ε,Θ) + ⟨ ̂f⟩
2

ε,Θ,X]

VarX (⟨ ̂f ⟩ε,Θ)



BIAS AND VARIANCE(S)
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Bias    Sampling 
Variance 

Initialisation 
Variance  

Noise 
Variance 

TEST ERROR

Analytical results for Random Feature Networks
DOUBLE TROUBLE HARMLESS

HIGH DIMENSIONAL LIMIT

N, D, P → ∞,
D
P

= 𝒪(1),
D
N

= 𝒪(1)



Noise 
Variance 

Initialisation 
Variance  

ENSEMBLING
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TEST ERROR

Bias    Sampling 
Variance 

Attenuated         

 K → ∞

Suppressed



TAKEAWAY
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VARIANCE

BIAS

ERROR

Number of parameters

CLASSICAL 
REGIME

MODERN 
REGIME

INTERPOLATION 
THRESHOLD



PART 2 
RECONCILING MODERN AND  

OLD SCHOOL DOUBLE DESCENT

ARXIV 2006.03509 
WITH LEVENT SAGUN AND GIULIO BIROLI



LINEAR VS NONLINEAR MODELS
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N P

NRQOiQeaU
Seak

TeVW 
ORVV

NONLINEAR  
NETWORKS

P

Test 
loss

LINEAR  
NETWORKS

PARAMETER-WISE

P N

NRQOiQeaU
Seak

TeVW 
ORVV

D N

Linear
peak

Test 
loss

SAMPLE-WISE

N

P

NRnlineaU
Seak

N

P

LiQeaU 
SeaN

D

PHASE-SPACE

NO !

ARE THEY  
THE SAME ?

BOTH OCCUR AT 
INTERP THRESHOLD 

“MODERN” 
DOUBLE DESCENT 

[GEIGER ’19]

“OLD SCHOOL” 
DOUBLE DESCENT 

[OPPER ’97]



FROM LINEAR TO LINEAR
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N

P

NRQOiQeaU
SeaN

LiQeaU 
SeaN

D

Linear

Weakl\ nonlinear

SWrongl\ nonlinear

AcWiYaWion fXncWion

WHAT MECHANISMS UNDERLIE THESE PEAKS ? 
HOW ARE THEY DIFFERENT ?

N P

NRQOiQeaU
Seak

TeVW 
ORVV

BOTH PEAKS COEXIST AT HIGH NOISEPARAMETER-WISE SAMPLE-WISE

D

Linear 
peak

TesW 
loss

Nonlinear
peak

P



THE TWO MODELS
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DNN  
MODEL

RANDOM TEACHER

RF  
MODEL

Zμ
i = σ

⟨Θi, Xμ⟩
D

∈ ℝN×P, Σ =
1
N

Z⊤Z ∈ ℝP×P

BAD CONDITIONING 
CAUSES PEAKS 

GD TRAINED STUDENT

LINEAR TEACHERRF STUDENT



EVIDENCE OF TRIPLE DESCENT

15

RF  
MODEL

DNN 
MODEL

NONLINEAR  
PEAK

NONLINEAR  
PEAK

LINEAR  
PEAK

LINEAR  
PEAK



ANALYTICAL DESCRIPTION
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N, D, P → ∞,
D
P

= 𝒪(1),
D
N

= 𝒪(1)

η = ∫ dz
e−z2/2

2π
σ2 (z), ζ = [∫ dz

e−z2/2

2π
σ′ (z)]

2

r =
ζ
η

HIGH-DIMENSIONAL LIMIT DEGREE OF LINEARITY

NONLINEAR 
PEAK

LINEAR 
PEAK



ANALYTICAL SPECTRUM
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Z = σ ( XΘ⊤

D ) → ζ
XΘ⊤

D
+ η − ζW, W ∼ 𝒩(0,1)

NONLINEAR 
PART

LINEAR  
PART

NONLINEAR = LINEAR + NOISE ρ(λ) =
1
π

lim
ϵ→0+

ImG(λ − iϵ), G(z) =
ψ
z

A ( 1
zψ ) +

1 − ψ
z

A(t) = 1 + (η − ζ)tAϕ(t)Aψ(t) +
Aϕ(t)Aψ(t)tζ

1 − Aϕ(t)Aψ(t)tζ

[Pennington & Worah 2017]



ANALYTICAL SPECTRUM
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N=P GAP SURVIVES N=D GAP IS REGULARISED



LINEAR PEAK  
CAUSED BY NOISE

NONLINEAR PEAK 
CAUSED BY NOISE & INIT

BIAS AND VARIANCES
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NOISY NOISELESS

NONLINEAR PEAK 
SURVIVES IN ABSENCE OF NOISE



EFFECT OF REGULARISATION
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VANILLA ENSEMBLING REGULARIZING

NONLINEAR PEAK REDUCED LINEAR PEAK UNAFFECTED

RF 
MODEL

DNN 
MODEL



TIME DEPENDENCE
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THE NONLINEAR PEAK FORMS AT LATE TIMES



THANK YOU
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Stéphane d’Ascoli Maria Refinetti Giulio Biroli Florent KrzakalaLevent Sagun



ANALYTICAL SPECTRUM
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Z = σ ( XΘ⊤

D ) → ζ
XΘ⊤

D
+ η − ζW, W ∼ 𝒩(0,1)

NONLINEAR 
PART

LINEAR  
PART

NONLINEAR = LINEAR + NOISE



ANALYTICAL SPECTRUM
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N=P GAP SURVIVES N=D GAP IS REGULARISED



STRUCTURED DATASETS
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LINEAR AND NONLINEAR PEAK 
ARE MERGED TOGETHER

SHIFT FROM LINEAR TO NONLINEAR 
DURING TRAINING



EFFECT OF NOISE AND NONLINEARITY

26

LINEAR PEAK IS WEAKER FOR RELU


