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Boosting: Rich history Main Results: Precise Asymptotics

BOOSTING

● Roots trace back to Valiant (’84)
● Improve generalization weak learning algos. combining them “smartly”:

Schapire (’90), Freund (’95)
● Adaboost (Freund and Schapire (’95,’96))

Initialize θ0 = 0 ∈ Rp , training examples {(xi, yi)}
n
i=1 , set data weights η0 = (1/n,⋯, 1/n) ∈ ∆n . Z = y ○ X.

At time t ≥ 0:

1. Learner/Feature Selection: j⋆t ∶= arg maxj∈[p] ∣η
⊺
t Zej ∣, set γt = η⊺t Zej⋆t

;

2. Adaptive Stepsize: αt = 1
2 log ( 1+γt

1−γt
) ;

3. Coordinate Update: θt+1 = θt +αt ⋅ ej⋆t
;

4. Weight Update: ηt+1[i]∝ ηt[i] exp(−αtyix
⊺
i ej⋆t

), normalized ηt+1 ∈ ∆n .

Terminate after T steps, and output the vector θT .
Freund and Schapire (’95,’96)
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Boosting: Rich history Main Results: Precise Asymptotics

INTERPOLATION PHENOMENON

Observed long ago for boosting (and bagging, etc)!!

Drucker and Cortes (’96), Quinlan (’96), Breiman (’98),

Schapire, Freund, Bartlett and Lee (’98)

● Search for an explanation—several proposals.
● Key quantity : empirical margin distribution
● Fraction of examples for which yif(xi) is below some threshold

Interpolation: a common phenomenon now (overparametrized linear regression, kernel regression, neural nets, etc.); Pic. court.:Schapire et al. (’98)
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KEY: EMPIRICAL MARGIN

Empirical margin is key to Generalization.

Generalization: for all f(x) = x⊺θ/∥θ∥1 and κ > 0,

P(yf(x) < 0) ≤
1
n

n
∑
i=1

I(yif(xi) < κ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
empirical margin

+
√

log n log p
nκ2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
generalization error

+
√

log(1/δ)
n

, w.p. 1 − δ

Schapire, Freund, Bartlett and Lee (’98)
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´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
generalization error

+
√

log(1/δ)
n

, w.p. 1 − δ

Schapire, Freund, Bartlett and Lee (’98)

Optimize upper bound: Choose κ to be the max-min `1 margin:

κ`1 = max
θ∈Rp

min
1≤i≤n

yix
⊺
i θ/∥θ∥1

generalization error <
1

√
nκ`1

⋅ (log factors, constants)

● Later improved by Koltchinskii and Panchenko (’02). But, still upper bound!
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Boosting: Rich history Main Results: Precise Asymptotics

KEY: THE MAX-MIN-`1-MARGIN

Margin is key to Generalization and Optimization.

Stopping time (zero-training error)

optimization steps <
1
κ2
`1

⋅ (log factors, constants)

Zhang and Yu (’05)

● Is this upper bound tight?
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AN ALGORITHMIC INSIGHT: MIN L1 NORM INTERPOLANTS

Define the min-L1-norm interpolated classifier on linearly separable data

θ̂`1 = arg min
θ

∥θ∥1, s.t. yix
⊺
i θ ≥ 1,∀i ∈ [n] .

On linearly separable data, Boosting iterates θT,s
boost with infinitesimal stepsize s

agrees with the min-L1-norm interpolant in infinite time limit

lim
s→0

lim
T→∞

θT,s
boost/∥θ

T,s
boost∥1 = θ̂`1 .

Rosset et al. (’04), Zhang and Yu (’05)

min-L1-norm interpolation equiv. max-L1-margin

max
∥θ∥1≤1

min
1≤i≤n

yix
⊺
i θ =∶ κ`1(X, y) .

● Suggests θ̂`1 ,κ`1 key players in boosting.
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Boosting: Rich history Main Results: Precise Asymptotics

Prior understanding:

generalization error <
1

√

nκ`1

⋅ (log factors, constants)

optimization steps <
1
κ2
`1

⋅ (log factors, constants)

THIS TALK

● Exactly how large is the `1-margin κ`1 ?

● What does the limiting object (min norm interpolant) look like?

● How long does Boosting take to reach min norm interpolant?

● Precise generalization error?

● Other properties: proportion of active weak-learners?

● Understand in a high-dimensional setting?
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Boosting: Rich history Main Results: Precise Asymptotics

TOOLS AND INSPIRATION

● Convex Gaussian Minimax Theorem (Gordon(’88), Thrampoulidis et al. (’14)),
● max-`2-margin (Gardner (’88), Shcherbina and Tirozzi (’03), Montanari et al. (’19),

Deng et al. (’19)).

● But, `1, `2 geometries significantly different.

● `1 lacks important “strong convexity type features” that `2 has.

● Calls for novel techniques and new uniform convergence arguments.

● different fixed point equation systems
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Boosting: Rich history Main Results: Precise Asymptotics

FORMAL SETTING

● High-dim asymptotic regime with overparametrized ratio (No. of samples: n,
no. of features: p)

p/n→ψ ∈ (0,∞), n, p→∞.

● Sequence {(xi(n), yi(n),θ⋆(n))}n
i=1, xi

i.i.d.∼ N (0,Λ(n)),Λ(n) ∈ Rp×p diag,

P(yi = +1∣xi) = 1 − P(yi = −1∣xi) = f(x⊺i θ⋆), θ⋆ ∈ Rp ,

● signal strength ∶ ∥Λ1/2θ⋆∥→ ρ ∈ (0,∞), coordinate ∶ w̄j =
√p

λ
1/2
j θ⋆,j

ρ
, 1 ≤ i ≤ p.

1
p

p

∑
j=1
δ(λj,w̄j)

Wasserstein-2⇒ µ, a dist. on R>0 ×R

● Three problem parameters: ψ,ρ,µ!
● Problem instances linearly separable asymptotically↔ψ >ψ⋆(ρ)

P (∃θ ∈ Rp, yix
⊺
i θ > 0 for 1 ≤ i ≤ n)→ 1 .

Logistic regression: Candès and S. (’18); General f : Montanari et al.(’19)
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Boosting: Rich history Main Results: Precise Asymptotics

THE MARGIN

Recall problem parameters: p/n→ψ; ∥Λ1/2θ⋆∥→ ρ; 1
p ∑

p
j=1
δ(λj ,w̄j)

W-2⇒ µ

Forψ ≥ψ⋆ (separability threshold), the max-min-`1-margin coverges to

lim
n,p→∞
p/n→ψ

p1/2 ⋅ κ`1(X, y) = κ⋆(ψ,ρ,µ) , a.s.

where

κ⋆(ψ,ρ,µ) ∶= inf{κ ≥ 0 ∶ Tψ,ρ,µ(κ) ≥ 0}

Theorem (Liang & S. ’20).

● Tψ,ρ,µ(⋅) can be explicitly pinned down!
● Related to MLE existence phase transition curve.
● Continuous and non-decreasing.
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THE MARGIN LIMIT

define Fκ(⋅, ⋅) ∶ R × R≥0 → R≥0

Fκ(c1, c2) ∶= (E [(κ − c1YZ1 − c2Z2)
2
+])

1
2 where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z2 ⊥ (Y, Z1)
Zi ∼N(0, 1), i = 1, 2
P(Y = +1∣Z1) = 1 − P(Y = −1∣Z1) = f(ρ ⋅ Z1)

.

Montanari et al.(’19), related to phase transition curve from Candès and S.(’18)

Tψ,ρ,µ(κ) ∶= ψ−1/2 [Fκ(c1, c2) − c1∂1Fκ(c1, c2) − c2∂2Fκ(c1, c2)] − s

with c1 ≡ c1(ψ,κ), c2 ≡ c2(ψ,κ), s ≡ s(ψ,κ) solves a non-linear system of equations.

κ⋆(ψ,ρ,µ) ∶= inf{κ ≥ 0 ∶ Tψ,ρ,µ(κ) ≥ 0}

● Proofs for `1 case require new uniform convergence arguments.
● Discover a key self-normalization property of partial derivatives of Fκ(⋅, ⋅) that

fixes the issue.
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MIN-`1-NORM INTERPOLANT

Min-L1-norm interpolant admits the gen. error

lim
n,p→∞
p/n→ψ

Px,y (y ⋅ x⊺θ̂`1 < 0) = P (c⋆1 YZ1 + c⋆2 Z2 < 0) , a.s.

● (Y, Z1) ⊥ Z2; Zi ∼ N (0, 1);P(Y = +1∣Z1) = 1 − P(Y = −1∣Z1) = f(ρ ⋅ Z1)
● (c⋆1 , c⋆2 , s⋆) is unique soln. to non-lin. sys. of eqns

parametrized byψ and the limit of max-min-L1-margin, κ⋆(ψ,ρ,µ)

● c⋆1 ∶ Angle, c⋆2 ∶ Norm of residual, s⋆ ∶ Lagrange multipliers for `1 norm
constraints.

Theorem (Liang and S.(’20)).

● The constants (c⋆1 , c⋆2 , s⋆) pin down θ̂`1 , e.g. for any convex f0,

1
p

p

∑
i=1

f0(θ̂`1,1)
a.s.Ð→??
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BACK TO BOOSTING ALGORITHMS

Known computation results:

optimization steps <
1

κ2
`1
(X, y)

⋅ (log factors, constants)

lim
s→0

lim
T→∞

min
i∈[n]

yix⊺i θ
T,s
boost

∥θT,s
boost∥1

= κ`1(X, y)

With proper (non-vanishing) stepsize s, the sequence {θt,s
boost}

∞
t=0 satisfy:

for any 0 < ε < 1, with stopping time

t ≥ Tε(p) with
Tε(p)

n log2 n
→

12ε−2

(κ⋆(ψ,µ)/
√
ψ)2 ,

the solution approximates the Min-L1-Interpolated Classifier for s.l.n. n, p,

p1/2 ⋅ min
i∈[n]

yix⊺i θ
t,s
boost

∥θt,s
boost∥1

∈ [(1 − ε) ⋅ κ⋆(ψ,µ),κ⋆(ψ,µ)] .

Theorem (Liang & S. ’20).
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THE GENERALIZATION ERROR

Known generalization bounds:

generalization error <
1

√
nκ`1(X, y)

⋅ (log factors, constants)

=
√
ψ

κ⋆(ψ,ρ,µ)
⋅ (log factors, constants)

Let’s plot generalization error and
√
ψ/κ⋆(ψ,ρ,µ)

generalization error vs. known bounds
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OPTIMIZATION SPEED

Known computation results:
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κ2
`1
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ALGORITHMIC: ACTIVATED FEATURES BY BOOSTING

Boosting chooses weak-learner (WL) adaptively. How sparse is Selected WL
Total WL ?

Let S0(p) be the number of weak-learner selected when Boosting hits zero
training error 1

n ∑
n
i=1 I(yix⊺i θ

t < 0) = 0 with initialization θ0 = 0,

S0(p) ∶= #{j ∈ [p] ∶ θt
j ≠ 0} .

We show that

lim sup
n,p→∞

S0(p)
p⋅ log2 n

≤
12

κ2
⋆(ψ,µ)

∧ 1 .

Theorem (Liang & S. ’20).

● Larger the margin, sparser the solution!

● In the numerical example: overparametrizationψ > 5, 12
κ2
⋆(ψ,µ) ≪ 1.
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● Precise characterizations ⋯

● Of the max-min-`1-margin

● Min-`1-norm interpolant

● Several insights into boosting — precise gen. error expressions,
optimization speed, etc.

● Extensions possible to `p geometries, certain misspecified models,
Gaussian mixture models, ⋯

● Many other perspectives in boosting (e.g. effectively minimizes
empirical loss functional, fits logistic regression models additively, L2

boosting, model-based boosting, etc)
● Opens door to further questions!
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Thank you!
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