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Enric Boix-Adserà, Matthew Brennan and Guy Bresler

MIT

June 29, 2020
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Setup

Gs(n, p) is the Erdős-Rényi hypergraph:
1 A distribution over random n-vertex s-uniform hypergraphs
2 Each s-subset of vertices is a hyperedge independently with prob. p

3-clique

4-clique

5-clique

Counting k-cliques in G is the problem of outputting the exact
number of complete k-vertex subgraphs in G w.h.p.

Constant clique size k = Θ(1) throughout
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Our Question: How does the optimal running time T for
counting k-cliques in Gs(n, p) trade off with n, p and s?
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Clique Problems on Erdős-Rényi Graphs

Algorithmic barriers in clique problems on G(n, p) studied for decades

Planted Clique: Find a k-clique planted in G(n, 1/2)

Lower bounds for greedy, SOS hierarchy, SQ algorithms, resolution
(Jerrum ’92, Barak et al. ’16, Feldman et al. ’13, Atserias et al. ’18, etc.)

Hardness implies stat-comp gaps (Berthet-Rigollet ’13, Koiran-Zouzias ’14,

Hajek-Wu-Xu ’15, Ma-Wu ’15, B.-Bresler-Huleihel ’18, ’19, etc.)
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Clique Problems on Erdős-Rényi Graphs

Algorithmic barriers in clique problems on G(n, p) studied for decades

Planted Clique: Find a k-clique planted in G(n, 1/2)

Find Large Cliques: Find largest clique possible in G(n, 1/2)

Lower bounds for Metropolis, greedy
(Karp ’76, Grimmet-Mcdiarmid ’75, Mcdiarmid ’84, Jerrum ’92, etc...)
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Clique Problems on Erdős-Rényi Graphs

Algorithmic barriers in clique problems on G(n, p) studied for decades

Planted Clique: Find a k-clique planted in G(n, 1/2)

Find Large Cliques: Find largest clique possible in G(n, 1/2)

Find Critical Cliques: Find a k-clique in G(n, n−α)

Lower bounds for AC0 and monotone circuits
(Rossman ’08, Rossman ’10)

Boix-Adserà, Brennan and Bresler (MIT) Avg-Case Complexity of Counting Cliques June 29, 2020 6 / 22



Clique Problems on Erdős-Rényi Graphs

Algorithmic barriers in clique problems on G(n, p) studied for decades

Planted Clique: Find a k-clique planted in G(n, 1/2)

Find Large Cliques: Find largest clique possible in G(n, 1/2)

Find Critical Cliques: Find a k-clique in G(n, n−α)

Many Others: e.g. Gamarnik-Sudan ’14, Coja-Oghlan-Efthymiou ’15,
Rahman-Virag ’17
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Why k-Clique Counting?

Ideally would base average-case hardness on worst-case hardness e.g.
prove planted clique is NP-hard

, BUT

Barriers against worst-case to average-case reductions for
NP-complete problems (Feigenbaum-Fortnow ’93, Bogdanov-Trevisan
’05)

Work-around: Counting k-cliques is in P – and we show (fine-grained)
average-case hardness from worst-case hardness assumption
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Plan for Rest of the Talk

1 Overview of algorithmic results: Previously-known worst-case
algorithms and our algorithms on Gs(n, p)

2 Main hardness result: Partial answer to our question

3 Proof sketch: Worst-case to average-case reduction

4 Open Problems: Error tolerance, approximation hardness and more

Boix-Adserà, Brennan and Bresler (MIT) Avg-Case Complexity of Counting Cliques June 29, 2020 9 / 22



Algorithms for Counting k-Cliques
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Algorithm run-times

Hypergraphs (s ≥ 3) Graphs (s = 2)

Worst-case
O(nk)

(exhaustive search)
O(nωbk/3c)

(Nesetril-Poljak ’85)

Dense Gs(n, p)
p = Θ(1)

Same as worst-case? Same as worst-case?

Sparse Gs(n, p)
p = Θ(n−α)

O(nτ+1−α(τ+1
s ))

τ largest s.t. α
(
τ

s−1

)
< 1

(ours)

Fast matrix
mult. speedup

(ours)

1 Faster algorithms for sparse Erdos-Renyi than worst-case!

2 What can be improved? Under ETH, worst-case runtime nΩ(k)

3 How about average-case? Our main result: lower-bounds on
run-time based on worst-case hardness

Boix-Adserà, Brennan and Bresler (MIT) Avg-Case Complexity of Counting Cliques June 29, 2020 11 / 22



Algorithm run-times

Hypergraphs (s ≥ 3) Graphs (s = 2)

Worst-case
O(nk)

(exhaustive search)
O(nωbk/3c)

(Nesetril-Poljak ’85)

Dense Gs(n, p)
p = Θ(1)

Same as worst-case? Same as worst-case?

Sparse Gs(n, p)
p = Θ(n−α)

O(nτ+1−α(τ+1
s ))

τ largest s.t. α
(
τ

s−1

)
< 1

(ours)

Fast matrix
mult. speedup

(ours)

1 Faster algorithms for sparse Erdos-Renyi than worst-case!

2 What can be improved? Under ETH, worst-case runtime nΩ(k)

3 How about average-case? Our main result: lower-bounds on
run-time based on worst-case hardness
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Algorithm run-times

Hypergraphs (s ≥ 3) Graphs (s = 2)

Worst-case
O(nk)

(exhaustive search)
O(nωbk/3c)

(Nesetril-Poljak ’85)

Dense Gs(n, p)
p = Θ(1)

Same as worst-case! Same as worst-case!

Sparse Gs(n, p)
p = Θ(n−α)

O(nτ+1−α(τ+1
s ))

τ largest s.t. α
(
τ

s−1

)
< 1

(ours)
Optimal in some regimes!

Fast matrix
mult. speedup

(ours)

1 Faster algorithms for sparse Erdos-Renyi than worst-case!

2 What can be improved? Under ETH, worst-case runtime nΩ(k)

3 How about average-case? Our main result: lower-bounds on
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Main Result: Average-case lower bounds
from worst-case assumptions

Assumption: O(nk) for s ≥ 3 and
O(nωbk/3c) for s ≥ 2 are the optimal

worst-case running times
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Results for Hypergraphs (s ≥ 3)

Feasible pairs of clique sizes k and runtimes T at density p = Θ(n−α)

k

logn T

k-clique percolation ω(G)

Hypergraphs (s ≥ 3)

feasible

infeasible

open

k
−
α
( k

s

)
τ + 1− α

(
τ+1
s

)

Infeasible assuming worst-case O(nk)-time algorithm is optimal

Match up to k-clique percolation threshold!
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Results for Graphs (s = 2)

Feasible pairs of clique sizes k and runtimes T at density p = Θ(n−α)

Graphs (s = 2)

feasible

infeasible

open

ωk
3

− α
(
k
2

)
ωk

3
−
ωα

9

( k
2

)

k

logn T

ω(G)

Infeasible assuming worst-case O(nωk/3)-time algorithm is optimal

Optimal exponent is of the form ωk
3 − C

(k
2

)
for ωα

9 ≤ C ≤ α
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Main Theorem: Worst-Case to Average-Case Reduction

Given an alg A, let T (A, n) denote its runtime on size-n inputs

Theorem

There is a slowdown factor

Υ �
(
p−1(1− p)−1 log n log log n

)(ks)
s.t. for any alg A for k-clique counting with error probability less than 1/Υ
on hypergraphs drawn from Gs(n, p), there is an alg B that has error
probability less than 1/3 on any worst-case hypergraph s.t.

T (B, n) ≤ (log n) ·Υ · (T (A, nk) + (nk)s)

Boix-Adserà, Brennan and Bresler (MIT) Avg-Case Complexity of Counting Cliques June 29, 2020 17 / 22



Punchline: Intricate average-case complexity on Gs(n, p)
follows from simple worst-case complexity!
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Two-slide! proof sketch
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Background

k-clique count in graphs is a low-degree polynomial in adjacency matrix:

P(A) =
∑
S⊂[n]
|S |=k

∏
i ,j∈S

Aij

Lipton ’89: Classic trick for worst- to avg-case reductions for polynomials

Given low-degree polynomial P : Fn
q → Fq, evaluating P on

worst-case inputs reduces to evaluating it on average-case inputs.
Works only if finite field Fq is large enough.

Ball et al. ’17: Application to fine-grained complexity

Goldreich-Rothblum ’18: Application to k-clique counting
Issue: want average-case distribution over {0, 1}N , not over FN

q

Replace each Fq-weighted edge with a gadget of unweighted edges

They get very good error tolerance, but artificial graph distribution.
Does not seem possible to arrive at Gs(n, p) with their method
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Proof ingredients

Main technical obstacle is to map random element of FN
q to the Gs(n, p)

distribution. Ingredients of our proof include:

1 Reduction to k-partite Gs(n, p) (using inclusion-exclusion principle)

2 Using special structure of k-partite k-clique counting polynomial
(color-coding trick)

3 Tight analysis of convergence of biased binary expansions modulo a
prime (using Fourier analysis)

4 Keeping field size q small (using Chinese remaindering)
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Summary of contributions & open problems

Contributions

Studied k-clique counting on Erdős-Rényi hypergraphs

Faster algorithms in sparse regime
Average-case hardness based on worst-case hardness

Differs from other hardness results for clique problems on Erdos-Renyi
graphs!
Tight in dense regime
Tight in some parts of sparse regime

Some open problems

Some regimes where upper bounds don’t match lower bounds

Hardness for approximating number of k-cliques?

Improving error tolerance of reduction?
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