The Average-Case Complexity of Counting Cliques in Erdős-Rényi Hypergraphs

Enric Boix-Adserà, Matthew Brennan and Guy Bresler

MIT

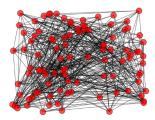
June 29, 2020

Boix-Adserà, Brennan and Bresler (MIT) Avg-Case Complexity of Counting Cliques

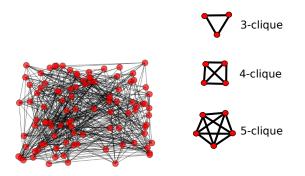
June 29, 2020 1 / 22

イロト イヨト イヨト イヨト

- $\mathcal{G}_s(n,p)$ is the Erdős-Rényi hypergraph:
 - A distribution over random n-vertex s-uniform hypergraphs
 - 2 Each s-subset of vertices is a hyperedge independently with prob. p

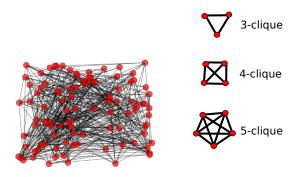


- $\mathcal{G}_s(n,p)$ is the Erdős-Rényi hypergraph:
 - A distribution over random n-vertex s-uniform hypergraphs
 - 2 Each s-subset of vertices is a hyperedge independently with prob. p



• Counting *k*-cliques in *G* is the problem of outputting the exact number of complete *k*-vertex subgraphs in *G* w.h.p.

- $\mathcal{G}_s(n,p)$ is the Erdős-Rényi hypergraph:
 - A distribution over random n-vertex s-uniform hypergraphs
 - **2** Each s-subset of vertices is a hyperedge independently with prob. p



- Counting *k*-cliques in *G* is the problem of outputting the exact number of complete *k*-vertex subgraphs in *G* w.h.p.
- Constant clique size $k = \Theta(1)$ throughout

Our Question: How does the optimal running time T for counting *k*-cliques in $\mathcal{G}_s(n, p)$ trade off with n, p and s?

Clique Problems on Erdős-Rényi Graphs

Planted Clique: Find a *k*-clique planted in $\mathcal{G}(n, 1/2)$

- Lower bounds for greedy, SOS hierarchy, SQ algorithms, resolution (Jerrum '92, Barak et al. '16, Feldman et al. '13, Atserias et al. '18, etc.)
- Hardness implies stat-comp gaps (Berthet-Rigollet '13, Koiran-Zouzias '14, Hajek-Wu-Xu '15, Ma-Wu '15, B.-Bresler-Huleihel '18, '19, etc.)

Planted Clique: Find a *k*-clique planted in $\mathcal{G}(n, 1/2)$

Find Large Cliques: Find largest clique possible in $\mathcal{G}(n, 1/2)$

 Lower bounds for Metropolis, greedy (Karp '76, Grimmet-Mcdiarmid '75, Mcdiarmid '84, Jerrum '92, etc...)

Planted Clique: Find a *k*-clique planted in $\mathcal{G}(n, 1/2)$

Find Large Cliques: Find largest clique possible in $\mathcal{G}(n, 1/2)$

Find Critical Cliques: Find a *k*-clique in $\mathcal{G}(n, n^{-\alpha})$

• Lower bounds for AC₀ and monotone circuits (Rossman '08, Rossman '10)

Planted Clique: Find a *k*-clique planted in $\mathcal{G}(n, 1/2)$

Find Large Cliques: Find largest clique possible in $\mathcal{G}(n, 1/2)$

Find Critical Cliques: Find a *k*-clique in $\mathcal{G}(n, n^{-\alpha})$

Many Others: e.g. Gamarnik-Sudan '14, Coja-Oghlan-Efthymiou '15, Rahman-Virag '17

Ideally would base average-case hardness on worst-case hardness e.g. prove planted clique is NP-hard

Ideally would base average-case hardness on worst-case hardness e.g. prove planted clique is NP-hard, **BUT**

 Barriers against worst-case to average-case reductions for NP-complete problems (Feigenbaum-Fortnow '93, Bogdanov-Trevisan '05) **Ideally** would base average-case hardness on worst-case hardness e.g. prove planted clique is NP-hard, **BUT**

 Barriers against worst-case to average-case reductions for NP-complete problems (Feigenbaum-Fortnow '93, Bogdanov-Trevisan '05)

Work-around: Counting *k*-cliques is in P – and we show (fine-grained) average-case hardness from worst-case hardness assumption

- Overview of algorithmic results: Previously-known worst-case algorithms and our algorithms on G_s(n, p)
- 2 Main hardness result: Partial answer to our question
- **9** *Proof sketch:* Worst-case to average-case reduction
- **Open** Problems: Error tolerance, approximation hardness and more

Algorithms for Counting k-Cliques

	Hypergraphs ($s\geq$ 3)	Graphs ($s = 2$)
Worst-case	$O(n^k)$	$O(n^{\omega \lfloor k/3 \rfloor})$
	(exhaustive search)	(Nesetril-Poljak '85)

	Hypergraphs ($s\geq 3$)	Graphs ($s = 2$)
Worst-case	$O(n^k)$ (exhaustive search)	$O(n^{\omega \lfloor k/3 \rfloor})$ (Nesetril-Poljak '85)
Dense $\mathcal{G}_{s}(n,p)$ $p=\Theta(1)$	Same as worst-case?	Same as worst-case?

	Hypergraphs ($s\geq 3$)	Graphs ($s = 2$)
Worst-case	$O(n^k)$ (exhaustive search)	$O(n^{\omega \lfloor k/3 \rfloor})$ (Nesetril-Poljak '85)
Dense $\mathcal{G}_{s}(n,p)$ $p = \Theta(1)$	Same as worst-case?	Same as worst-case?
Sparse $\mathcal{G}_s(n,p)$ $p = \Theta(n^{-lpha})$	$O(n^{ au+1-lphainom{ au+1}{s}}) \ au$ largest s.t. $lphainom{ au}{s-1} < 1 \ (ext{ours})$	Fast matrix mult. speedup (ours)

	Hypergraphs ($s \ge 3$)	Graphs ($s = 2$)
Worst-case	$O(n^k)$ (exhaustive search)	$O(n^{\omega \lfloor k/3 \rfloor})$ (Nesetril-Poljak '85)
Dense $\mathcal{G}_s(n,p)$ $p = \Theta(1)$	Same as worst-case?	Same as worst-case?
Sparse $\mathcal{G}_s(n,p)$ $p = \Theta(n^{-\alpha})$	$O(n^{ au+1-lphainom{ au+1}{s}})$	Fast matrix mult. speedup (ours)

Q Faster algorithms for sparse Erdos-Renyi than worst-case!

	Hypergraphs ($s \ge 3$)	Graphs ($s = 2$)
Worst-case	$O(n^k)$ (exhaustive search)	$O(n^{\omega \lfloor k/3 \rfloor})$ (Nesetril-Poljak '85)
Dense $\mathcal{G}_s(n,p)$ $p = \Theta(1)$	Same as worst-case?	Same as worst-case?
Sparse $\mathcal{G}_s(n,p)$ $p = \Theta(n^{-lpha})$	$O(n^{ au+1-lphainom{ au+1}{s}}) \ au$ largest s.t. $lphainom{ au}{s-1} < 1 \ ext{(ours)}$	Fast matrix mult. speedup (ours)

- **()** Faster algorithms for sparse Erdos-Renyi than worst-case!
- **2** What can be improved? Under ETH, worst-case runtime $n^{\Omega(k)}$

	Hypergraphs ($s \ge 3$)	Graphs ($s = 2$)
Worst-case	$O(n^k)$ (exhaustive search)	$O(n^{\omega \lfloor k/3 \rfloor})$ (Nesetril-Poljak '85)
Dense $\mathcal{G}_s(n,p)$ $p = \Theta(1)$	Same as worst-case?	Same as worst-case?
Sparse $\mathcal{G}_s(n,p)$ $p = \Theta(n^{-lpha})$	$O(n^{ au+1-lphainom{ au+1}{s}}) \ au$ largest s.t. $lphainom{ au}{s-1} < 1 \ (ext{ours})$	Fast matrix mult. speedup (ours)

- **1** Faster algorithms for sparse Erdos-Renyi than worst-case!
- **2** What can be improved? Under ETH, worst-case runtime $n^{\Omega(k)}$
- Our main result: lower-bounds on run-time based on worst-case hardness

	Hypergraphs ($s \ge 3$)	Graphs ($s = 2$)
Worst-case	$O(n^k)$ (exhaustive search)	$O(n^{\omega \lfloor k/3 \rfloor})$ (Nesetril-Poljak '85)
Dense $\mathcal{G}_s(n,p)$ $p = \Theta(1)$	Same as worst-case!	Same as worst-case!
Sparse $\mathcal{G}_s(n,p)$ $p = \Theta(n^{-lpha})$	$O(n^{ au+1-lphainom{ au+1}{s}})$	Fast matrix mult. speedup (ours)

- **1** Faster algorithms for sparse Erdos-Renyi than worst-case!
- **2** What can be improved? Under ETH, worst-case runtime $n^{\Omega(k)}$
- Our main result: lower-bounds on run-time based on worst-case hardness

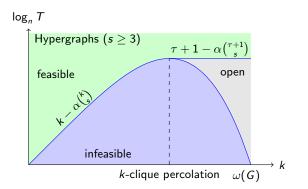
	Hypergraphs ($s\geq 3$)	Graphs ($s = 2$)
Worst-case	$O(n^k)$ (exhaustive search)	$O(n^{\omega \lfloor k/3 \rfloor})$ (Nesetril-Poljak '85)
Dense $\mathcal{G}_{s}(n,p)$ $p = \Theta(1)$	Same as worst-case!	Same as worst-case
Sparse $\mathcal{G}_s(n,p)$ $p = \Theta(n^{-lpha})$	$O(n^{ au+1-lphainom{ au+1}{s}})) \ au$ largest s.t. $lphainom{ au}{s-1} < 1 \ (ext{ours})$ Optimal in some regimes!	Fast matrix mult. speedup (ours)

- I Faster algorithms for sparse Erdos-Renyi than worst-case!
- What can be improved? Under ETH, worst-case runtime n^{Ω(k)}
- Our main result: lower-bounds on run-time based on worst-case hardness

Main Result: Average-case lower bounds from worst-case assumptions **Assumption:** $O(n^k)$ for $s \ge 3$ and $O(n^{\omega \lfloor k/3 \rfloor})$ for $s \ge 2$ are the optimal **worst-case** running times

Results for Hypergraphs ($s \ge 3$)

Feasible pairs of clique sizes k and runtimes T at density $p = \Theta(n^{-\alpha})$

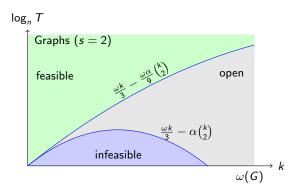


Infeasible assuming worst-case $O(n^k)$ -time algorithm is optimal Match up to k-clique percolation threshold!

June 29, 2020 15 / 22

Results for Graphs (s = 2)

Feasible pairs of clique sizes k and runtimes T at density $p = \Theta(n^{-\alpha})$



Infeasible assuming worst-case $O(n^{\omega k/3})$ -time algorithm is optimal Optimal exponent is of the form $\frac{\omega k}{3} - C\binom{k}{2}$ for $\frac{\omega \alpha}{9} \le C \le \alpha$ Given an alg A, let T(A, n) denote its runtime on size-n inputs

Theorem

There is a slowdown factor

$$\Upsilon symp ig(
ho^{-1}(1-
ho)^{-1}\log n\log\log nig)^{\binom{k}{s}}$$

s.t. for any alg A for k-clique counting with error probability less than $1/\Upsilon$ on hypergraphs drawn from $\mathcal{G}_s(n, p)$, there is an alg B that has error probability less than 1/3 on any worst-case hypergraph s.t.

$$T(B, n) \leq (\log n) \cdot \Upsilon \cdot (T(A, nk) + (nk)^{s})$$

Punchline: Intricate average-case complexity on $G_s(n, p)$ follows from simple worst-case complexity!

Two-slide! proof sketch

k-clique count in graphs is a low-degree polynomial in adjacency matrix:

$$P(A) = \sum_{\substack{S \subset [n] \\ |S| = k}} \prod_{i, j \in S} A_{ij}$$

k-clique count in graphs is a low-degree polynomial in adjacency matrix:

$$P(A) = \sum_{\substack{S \subset [n] \\ |S| = k}} \prod_{i, j \in S} A_{ij}$$

Lipton '89: Classic trick for worst- to avg-case reductions for polynomials

Given low-degree polynomial P : 𝔽ⁿ_q → 𝔽_q, evaluating P on worst-case inputs reduces to evaluating it on average-case inputs.
 Works only if finite field 𝔽_q is large enough.

k-clique count in graphs is a low-degree polynomial in adjacency matrix:

$$P(A) = \sum_{\substack{S \subset [n] \\ |S| = k}} \prod_{i, j \in S} A_{ij}$$

Lipton '89: Classic trick for worst- to avg-case reductions for polynomials

Given low-degree polynomial P : 𝔽ⁿ_q → 𝔽_q, evaluating P on worst-case inputs reduces to evaluating it on average-case inputs.
 Works only if finite field 𝔽_q is large enough.

Ball et al. '17: Application to fine-grained complexity

k-clique count in graphs is a low-degree polynomial in adjacency matrix:

$$P(A) = \sum_{\substack{S \subset [n] \\ |S| = k}} \prod_{i, j \in S} A_{ij}$$

Lipton '89: Classic trick for worst- to avg-case reductions for polynomials

Given low-degree polynomial P : 𝔽ⁿ_q → 𝔽_q, evaluating P on worst-case inputs reduces to evaluating it on average-case inputs.
 Works only if finite field 𝔽_q is large enough.

Ball et al. '17: Application to fine-grained complexity

Goldreich-Rothblum '18: Application to k-clique counting

k-clique count in graphs is a low-degree polynomial in adjacency matrix:

$$P(A) = \sum_{\substack{S \subset [n] \\ |S| = k}} \prod_{i, j \in S} A_{ij}$$

Lipton '89: Classic trick for worst- to avg-case reductions for polynomials

Given low-degree polynomial P : 𝔽ⁿ_q → 𝔽_q, evaluating P on worst-case inputs reduces to evaluating it on average-case inputs.
 Works only if finite field 𝔽_q is large enough.

Ball et al. '17: Application to fine-grained complexity

Goldreich-Rothblum '18: Application to *k*-clique counting *Issue: want average-case distribution over* $\{0,1\}^N$, not over \mathbb{F}_q^N

k-clique count in graphs is a low-degree polynomial in adjacency matrix:

$$P(A) = \sum_{\substack{S \subset [n] \\ |S| = k}} \prod_{i,j \in S} A_{ij}$$

Lipton '89: Classic trick for worst- to avg-case reductions for polynomials

Given low-degree polynomial P : 𝔽ⁿ_q → 𝔽_q, evaluating P on worst-case inputs reduces to evaluating it on average-case inputs.
 Works only if finite field 𝔽_q is large enough.

Ball et al. '17: Application to fine-grained complexity

Goldreich-Rothblum '18: Application to *k*-clique counting *Issue: want average-case distribution over* $\{0,1\}^N$, not over \mathbb{F}_q^N

 \bullet Replace each $\mathbb{F}_q\text{-weighted}$ edge with a gadget of unweighted edges

k-clique count in graphs is a low-degree polynomial in adjacency matrix:

$$P(A) = \sum_{\substack{S \subset [n] \\ |S| = k}} \prod_{i,j \in S} A_{ij}$$

Lipton '89: Classic trick for worst- to avg-case reductions for polynomials

Given low-degree polynomial P : 𝔽ⁿ_q → 𝔽_q, evaluating P on worst-case inputs reduces to evaluating it on average-case inputs.
 Works only if finite field 𝔽_q is large enough.

Ball et al. '17: Application to fine-grained complexity

Goldreich-Rothblum '18: Application to *k*-clique counting *Issue: want average-case distribution over* $\{0,1\}^N$, not over \mathbb{F}_q^N

- Replace each \mathbb{F}_q -weighted edge with a \mathbf{gadget} of unweighted edges
- They get very good error tolerance, but artificial graph distribution. Does not seem possible to arrive at $\mathcal{G}_s(n, p)$ with their method

Q Reduction to k-partite $\mathcal{G}_s(n, p)$ (using inclusion-exclusion principle)

- **1** Reduction to k-partite $\mathcal{G}_s(n, p)$ (using inclusion-exclusion principle)
- Using special structure of k-partite k-clique counting polynomial (color-coding trick)

- **1** Reduction to k-partite $\mathcal{G}_s(n, p)$ (using inclusion-exclusion principle)
- Using special structure of k-partite k-clique counting polynomial (color-coding trick)
- Tight analysis of convergence of biased binary expansions modulo a prime (using Fourier analysis)

- **()** Reduction to k-partite $\mathcal{G}_s(n, p)$ (using inclusion-exclusion principle)
- Using special structure of k-partite k-clique counting polynomial (color-coding trick)
- Tight analysis of convergence of biased binary expansions modulo a prime (using Fourier analysis)
- Seeping field size *q* small (using Chinese remaindering)

Summary of contributions & open problems

Contributions

- Studied k-clique counting on Erdős-Rényi hypergraphs
- Faster algorithms in sparse regime
- Average-case hardness based on worst-case hardness
 - Differs from other hardness results for clique problems on Erdos-Renyi graphs!
 - Tight in dense regime
 - Tight in some parts of sparse regime

Summary of contributions & open problems

Contributions

- Studied k-clique counting on Erdős-Rényi hypergraphs
- Faster algorithms in sparse regime
- Average-case hardness based on worst-case hardness
 - Differs from other hardness results for clique problems on Erdos-Renyi graphs!
 - Tight in dense regime
 - Tight in some parts of sparse regime

Some open problems

- Some regimes where upper bounds don't match lower bounds
- Hardness for approximating number of k-cliques?
- Improving error tolerance of reduction?