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Deep Boltzmann Machine

Deep (restricted) Boltzmann Machines (DBM) are generative models, first
introduced in by Salakhutdinov-Hinton (2009)

Main feature: deep architecture (linear chain of Boltzmann Machines)

We look at this model from point of view of spin glass theory (quenched setting)

Main results: complete characterization of the annelead region, replica symmetric
bound



Deep Boltzmann Machine

N binary variables (spins, neurons. . . ) are distributed along K layers L1, . . . , LK
with |Lp| = Np for p = 1, . . . ,K and

∑K
p=1 Np = N :

σi ∈ {−1, 1} for i ∈ L1 ∪ · · · ∪ LK ≡ ΛN .

we assume
Np

N −−−−→N→∞
λp ∈ [0, 1] for every p = 1, . . . ,K . We denote

λ = (λp)p=1,...,K . Clearly
∑K

p=1 λp = 1 .

Jij for (i , j) ∈ Lp × Lp+1 and p = 1, . . . ,K − 1 is a family of i.i.d. standard
Gaussian random variables coupling spins in two consecutive layers

hi for i ∈ Lp and p = 1, . . . ,K be i.i.d. copies of a random variable h(p) such
that E|h(p)| <∞ . We denote h = (h(p))p=1,...,K .

β = (βp)p=1,...,K−1 ∈ RK−1
+ is a vector of positive ”inverse temperatures”

tuning the interactions among consecutive layers



Deep Boltzmann Machine



Hamiltonian

Definition

The Hamiltonian of the random Deep Boltzmann Machine [DBM] is

HΛN
(σ) ≡ −

√
2√
N

K−1∑
p=1

βp
∑

(i,j)∈Lp×Lp+1

Jij σiσj (1)

for every spin configuration σ ∈ {−1, 1}N .

Definition

Given two spin configurations σ, τ ∈ {−1, 1}N , for every p = 1, . . . ,K we define
their overlap over the layer Lp as

qLp (σ, τ) ≡ 1

Np

∑
i∈Lp

σi τi ∈ [−1, 1] . (2)



Covariance matrix

The covariance matrix of the centred Gaussian process HΛN
is

EHΛN
(σ)HΛN

(τ) = N qΛN
(σ, τ)T M1 qΛN

(σ, τ) (3)

for every σ, τ ∈ {−1, 1}N . Here we set qΛN
(σ, τ) ≡

(
qLp (σ, τ)

)
p=1,...,K

,

M1(β, λ) ≡ diag(λ)M0(β) diag(λ) , (4)

M0(β) ≡



0 β2
1

β2
1 0 β2

2

β2
2 0

. . .

β2
K−1

β2
K−1 0


(5)

Notice that M0(β) can be interpreted as a weighted adjacency matrix for the
layers structure of the DBM.



Quenched Pressure

Definition

The random partition function of the model introduced by Hamiltonian (1) is

ZΛN
≡

∑
σ∈{−1,1}N

exp

(
− HΛN

(σ) +
K∑

p=1

∑
i∈Lp

hi σi

)
(6)

and its quenched pressure density is

pDBM
ΛN

≡ 1

N
E logZΛN

(7)

where E denotes the expectation over all the couplings Jij ’s and the external fields
hi ’s.



A lower bound for pDBM

For every a = (ap)p=1,...,K−1 ∈ RK−1
+ we define

PDBM(a) ≡
K∑

p=1

λp pSK
N

(
θp(a), h(p)

)
− 1

2

K∑
p=1

λp θp(a)2 +
K−1∑
p=1

λp β
2
p λp+1 (8)

where pSK
N (β, h) is a quenched pressure of an Sherringhton-Kirkpatrick model of N

particle at inverse temperature β and external field h and θp(a) = θp(a;β, λ) ≥ 0
is defined by:

θp(a) 2 ≡



λ1 a1 β
2
1 for p = 1

λp

(
1

ap−1
β2
p−1 + ap β

2
p

)
for p = 2, . . . ,K − 1

λK
1

aK−1
β2
K−1 for p = K

. (9)



A lower bound for pDBM

Theorem

The quenched pressure of the DBM satisfies the following lower bound:

pDBM
ΛN

≥ PDBM
N (a) , (10)

for every a = (ap)p=1,...,K−1 ∈ RK−1
+ .

Proof idea: interpolate between the DBM with K layers and K
Sherringhton-Kirkpatric models: the bound folllows from the inequality(

a qLp −
1

a
qLp+1

)2

≥ 0, ∀ a > 0



The annealed region

For zero external field (h = 0) using the above theorem one can identify a region
where the quenched and the annealed pressure of the DBM coincide.

Definition

The annealed pressure of the DBM is

pDBM-A ≡ lim
N→∞

1

N
logEZΛN

. (11)

It can be easily computed due to the Gaussian nature of the model:

pDBM-A(β, λ) = log 2 +
K−1∑
p=1

λp β
2
p λp+1 . (12)

By concavity of the log, the annealed pressure is an upper bound for the quenched
one:

lim sup
N→∞

pDBM
ΛN

≤ pDBM-A . (13)

The system is said to be in the annealed regime when the parameters (β, λ) are
such that limN→∞ pDBM

ΛN
= pDBM-A .



The annealed region

The annealed regime of the DBM can be idetinfied exploiting the knowledge of
the annealed regime of the SK model.

Let pSK be the limiting quenched pressure of an SK model and let
pSK-A ≡ limN→∞ N−1 logEZSK

N be its annealed version. By Jensen inequaslity

pSK ≤ pSK-A = log 2 +
β2

2
. (14)

Equality is achieved in the annealed region of the SK model

pSK(β) = pSK-A(β) if β2 ≤ 1

2
. (15)



The annealed region

Consider the following system of inequalities:
λ1 a1 β

2
1 <

1

2

λp

( 1

ap−1
β2
p−1 + ap β

2
p

)
<

1

2
for p = 2, . . . ,K − 1

λK
1

aK−1
β2
K−1 <

1

2

(16)

and define

AK ≡
{

(β, λ) ∈ RK−1
+ × TK

∣∣∣ ∃ a ∈ RK−1
+ : (16) is verified

}
, (17)

where TK ≡ {(λ1, . . . , λK ) ∈ [0, 1]K |
∑K

p=1 λp = 1} denotes the K−dimensional

simplex. We denote by AK the topological closure of AK .



The annealed region

Theorem

If (β, λ) ∈ AK there exists

lim
N→∞

pDBM
ΛN

= pDBM-A . (18)

The region AK is given in terms of implicit conditions on β, λ however there exists
a mapping between AK and matching polynomials that is useful to investigste in
more detail the annealed region



The annealed region and matching polynomials

Definition

Let x ∈ R and t = (tp)p=1,...,K−1 ∈ [0,∞)K−1. We define recursively∆p+1(x , t) ≡ x ∆p(x , t)− tp ∆p−1(x , t) for p = 1, . . . ,K − 1

∆1(x , t) ≡ x , ∆0(x , t) ≡ 1
. (19)

These polynomials have several characterizations and were studied by Heilmann
and Lieb in the context of monomer dimer models.



The annealed region and matching polynomials

Let (β, λ) ∈ RK−1
+ × TK , consider the vector t = (tp)p=1,...,K−1 with

tp(β, λ) ≡ 4λp β
4
p λp+1 (20)

for every p = 1, . . . ,K − 1. Define

ρ(β, λ) ≡ max
{
x > 0 : ∆K

(
x , t(β, λ)

)
= 0
}
. (21)

The followings are equivalent:

i) (β, λ) ∈ AK ;

ii) ∆p

(
1, t(β, λ)

)
> 0 for every p = 2, . . . ,K ;

iii) ρ(β, λ) < 1 .



A replica symmetric bound

The main theorem can be used to obtain a lower bound for the quenched pressure
of the DBM in terms of the replica symmetric functional in a suitable region of
the parameters β, λ, h.

For centred Gaussian external fields this region is defined though a system of K
inequalities which mimic the Almeida-Thouless condition for the SK model.



Replica symmetric solution for the SK model

We denote by PRS-SK the replica symmetric functional of the SK model, namely
for every q ∈ [0, 1], β > 0, h real random variable with E |h| <∞,

PRS-SK(q; β, h) ≡ E log cosh
(
z
√

2 q β2 + h
)

+
β2

2
(1− q)2 + log 2 (22)

where z is a standard Gaussian random variable independent of h. Stationary
points of PRS-SK are identified by the consistency equation

q = E tanh2
(
z
√

2 q β2 + h
)

(23)

where z is a standard Gaussian r.v. independent of h. The celebrated Guerra’s
bound states in particular that

pSK(β, h) ≤ inf
q
PRS-SK(q; β, h) . (24)

for every β, h. Identifying the exact replica symmetric region of the SK model,
where equality in (24) is achieved, is an open problem.



The replica symmetric solution for the DBM

Definition

For q = (qp)p=1,...,K ∈ [0, 1]K the replica symmetric functional of the DBM is

PRS-DBM(q; β, λ, h) ≡
K∑

p=1

λp E log cosh
(
z
√(

Mq
)
p

+ h(p)
)

+

+
1

2
(1− q)T M1 (1− q) + log 2

(25)

where M = 2M0 diag(λ) and M1 are tridiagonal matrices.

The stationary condition is

qp = E tanh2

(
z
√

(Mq)p + h(p)

)
∀ p = 1, . . . ,K . (26)



A replica symmetric bound

A first result about the replica symmetric region of the DBM under general (but
implicit) conditions is provided by the following

Theorem

For β, λ, h such that there exist q ∈ [0, 1]K and a ∈ RK−1
+ with

λp qp ap = λp+1 qp+1 ∀ p = 1, . . . ,K − 1 (27)

and verifying

pSK
(
θp(a), h(p)

)
= PRS-SK

(
qp ; θp(a), h(p)

)
∀ p = 1, . . . ,K , (28)

then
lim inf
N→∞

pDBM
ΛN

≥ PRS-DBM(q; β, λ, h) . (29)



A replica symmetric bound

More explicit conditions on β, λ, h for the replica symmetric bound (29) can be
obtained trough the control of the replica symmetric region in the SK model:
For β small enough Talagrand proved that for every h

pSK(β, h) = PRS-SK(q; β, h) if β2 <
1

8
(30)

where q is the unique solution of (23)

Corollary

Let β, λ, h such that a solution q of the replica symmetric consistency equation
(26) satisfies the inequalities

(Mq)p <
1

4
qp ∀ p = 1, . . . ,K (31)

Then the replica symmetric bound (29) holds true.



A replica symmetric bound

A necessary condition for replica symmetry on the SK model is the
Almeida-Thouless condition:

β2 E cosh−4
(
z
√

2 q β2 + h
)
≤ 1

2
(32)

where q is a solution of the consistency equation (23). If we take h Gaussian
centered r.v. with variance v > 0, it was recently proved by W.K. Chen that the
AT condition is also sufficient

Corollary

Assume h(p), p = 1, . . . ,K centered Gaussian variables of variance vp > 0
respectively. Let β, λ, v such that the (unique) solution q of the replica
symmetric consistency equation (26) satisfies the inequalities

(Mq)p E cosh−4

(
z
√

(Mq)p + vp

)
≤ qp ∀ p = 1, . . . ,K . (33)

Then the replica symmetric bound (29) holds true.
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