Deep Boltzmann Machine: on the annealed and the replica symmetric region

Emanuele Mingione joint work with D.Alberici, A. Barra, P. Contucci

emanuele.mingione2@unibo.it

Università di Bologna

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

arXiv: 2004.04495 arXiv: 2001.07714

- Definition of DBM and basic results
- Annealed region
- Replica symmetric bound

Related works on bipartite models:

A. Barra, G. Genovese, F. Guerra,(2011)
Auffinger, W.-K. Chen, (2014)
J. Baik, J.O. Lee, (2017)
J. Barbier, N. Macris, L. Miolane, (2017)

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Deep (restricted) Boltzmann Machines (DBM) are generative models, first introduced in by Salakhutdinov-Hinton (2009)

Main feature: deep architecture (linear chain of Boltzmann Machines)

We look at this model from point of view of spin glass theory (quenched setting)

Main results: complete characterization of the annelead region, replica symmetric bound

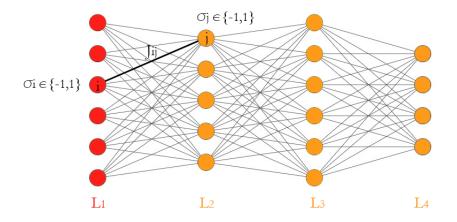
N binary variables (spins, neurons...) are distributed along K layers L_1, \ldots, L_K with $|L_p| = N_p$ for $p = 1, \ldots, K$ and $\sum_{p=1}^{K} N_p = N$:

$$\sigma_i \in \{-1,1\}$$
 for $i \in L_1 \cup \cdots \cup L_K \equiv \Lambda_N$.

• we assume
$$\frac{N_p}{N} \xrightarrow[N \to \infty]{} \lambda_p \in [0, 1]$$
 for every $p = 1, \dots, K$. We denote $\lambda = (\lambda_p)_{p=1,\dots,K}$. Clearly $\sum_{p=1}^{K} \lambda_p = 1$.

- J_{ij} for $(i, j) \in L_p \times L_{p+1}$ and $p = 1, \dots, K 1$ is a family of i.i.d. standard Gaussian random variables coupling spins in two consecutive layers
- *h_i* for *i* ∈ *L_p* and *p* = 1,..., *K* be i.i.d. copies of a random variable *h^(p)* such that E|*h^(p)*| < ∞. We denote *h* = (*h^(p)*)_{*p*=1,...,*K*}.
- β = (β_p)_{p=1,...,K-1} ∈ ℝ^{K-1}₊ is a vector of positive "inverse temperatures" tuning the interactions among consecutive layers

Deep Boltzmann Machine



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Hamiltonian

Definition

The Hamiltonian of the random Deep Boltzmann Machine [DBM] is

$$H_{\Lambda_N}(\sigma) \equiv -\frac{\sqrt{2}}{\sqrt{N}} \sum_{\rho=1}^{K-1} \beta_{\rho} \sum_{(i,j)\in L_{\rho}\times L_{\rho+1}} J_{ij} \sigma_i \sigma_j \tag{1}$$

for every spin configuration $\sigma \in \{-1,1\}^{\sf N}$.

Definition

Given two spin configurations $\sigma, \tau \in \{-1, 1\}^N$, for every $p = 1, \ldots, K$ we define their overlap over the layer L_p as

$$q_{L_{\rho}}(\sigma,\tau) \equiv \frac{1}{N_{\rho}} \sum_{i \in L_{\rho}} \sigma_i \tau_i \in [-1,1].$$
(2)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Covariance matrix

The covariance matrix of the centred Gaussian process H_{Λ_N} is

$$\mathbb{E} H_{\Lambda_N}(\sigma) H_{\Lambda_N}(\tau) = N q_{\Lambda_N}(\sigma, \tau)^T M_1 q_{\Lambda_N}(\sigma, \tau)$$
(3)

for every $\sigma, \tau \in \{-1, 1\}^N$. Here we set $q_{\Lambda_N}(\sigma, \tau) \equiv \left(q_{L_p}(\sigma, \tau)\right)_{p=1,...,K}$,

$$M_{1}(\beta,\lambda) \equiv \operatorname{diag}(\lambda) M_{0}(\beta) \operatorname{diag}(\lambda), \qquad (4)$$

$$M_{0}(\beta) \equiv \begin{pmatrix} 0 & \beta_{1}^{2} & & & \\ \beta_{1}^{2} & 0 & \beta_{2}^{2} & & \\ & \beta_{2}^{2} & 0 & & \\ & & \ddots & & \\ & & & & \beta_{K-1}^{2} & & \\ & & & & \beta_{K-1}^{2} & & 0 \end{pmatrix} \qquad (5)$$

Notice that $M_0(\beta)$ can be interpreted as a weighted adjacency matrix for the layers structure of the DBM.

Definition

The random partition function of the model introduced by Hamiltonian (1) is

$$Z_{\Lambda_N} \equiv \sum_{\sigma \in \{-1,1\}^N} \exp\left(-H_{\Lambda_N}(\sigma) + \sum_{p=1}^K \sum_{i \in L_p} h_i \sigma_i\right)$$
(6)

and its quenched pressure density is

$$\mathsf{p}_{\Lambda_{\mathsf{N}}}^{\mathsf{DBM}} \equiv \frac{1}{N} \mathbb{E} \log Z_{\Lambda_{\mathsf{N}}} \tag{7}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

where \mathbb{E} denotes the expectation over all the couplings J_{ij} 's and the external fields h_i 's.

A lower bound for p^{DBM}

For every
$$a = (a_p)_{p=1,...,K-1} \in \mathbb{R}_+^{K-1}$$
 we define

$$\mathcal{P}^{\mathsf{DBM}}(a) \equiv \sum_{p=1}^{K} \lambda_p \, \mathsf{p}_{\mathsf{N}}^{\mathsf{SK}}\left(\theta_p(a), h^{(p)}\right) \, - \, \frac{1}{2} \, \sum_{p=1}^{K} \lambda_p \, \theta_p(a)^2 \, + \, \sum_{p=1}^{K-1} \lambda_p \, \beta_p^2 \, \lambda_{p+1} \quad (8)$$

where $p_N^{SK}(\beta, h)$ is a quenched pressure of an Sherringhton-Kirkpatrick model of N particle at inverse temperature β and external field h and $\theta_p(a) = \theta_p(a; \beta, \lambda) \ge 0$ is defined by:

$$\theta_{p}(a)^{2} \equiv \begin{cases} \lambda_{1} a_{1} \beta_{1}^{2} & \text{for } p = 1\\ \lambda_{p} \left(\frac{1}{a_{p-1}} \beta_{p-1}^{2} + a_{p} \beta_{p}^{2} \right) & \text{for } p = 2, \dots, K-1 \\ \lambda_{K} \frac{1}{a_{K-1}} \beta_{K-1}^{2} & \text{for } p = K \end{cases}$$
(9)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Theorem

The quenched pressure of the DBM satisfies the following lower bound:

$$\mathsf{p}_{\Lambda_{\mathsf{N}}}^{\mathsf{DBM}} \geq \mathcal{P}_{\mathsf{N}}^{\mathsf{DBM}}(\mathsf{a}) \,, \tag{10}$$

for every
$$\mathsf{a} = (\mathsf{a}_{\mathsf{p}})_{\mathsf{p}=1,...,\mathsf{K}-1} \in \mathbb{R}_+^{\mathsf{K}-1}$$

Proof idea: interpolate between the DBM with K layers and K Sherringhton-Kirkpatric models: the bound follows from the inequality

$$\left(a\,q_{L_p}-\frac{1}{a}\,q_{L_{p+1}}\right)^2\geq 0, \ \ \forall\,a>0$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへぐ

The annealed region

For zero external field (h = 0) using the above theorem one can identify a region where the quenched and the annealed pressure of the DBM coincide.

Definition

The annealed pressure of the DBM is

$$\mathrm{p}^{\mathrm{DBM-A}} \equiv \lim_{N \to \infty} \frac{1}{N} \log \mathbb{E} Z_{\Lambda_N} .$$
 (11)

It can be easily computed due to the Gaussian nature of the model:

$$p^{\text{DBM-A}}(\beta,\lambda) = \log 2 + \sum_{\rho=1}^{K-1} \lambda_{\rho} \beta_{\rho}^2 \lambda_{\rho+1}.$$
(12)

By concavity of the log, the annealed pressure is an upper bound for the quenched one:

$$\limsup_{N \to \infty} p_{\Lambda_N}^{\text{DBM}} \le p^{\text{DBM-A}} .$$
 (13)

The system is said to be in the annealed regime when the parameters (β, λ) are such that $\lim_{N\to\infty} p_{\Lambda_N}^{\text{DBM}} = p^{\text{DBM-A}}$.

The annealed regime of the DBM can be idetinfied exploiting the knowledge of the annealed regime of the SK model.

Let p^{SK} be the limiting quenched pressure of an SK model and let $p^{SK-A} \equiv \lim_{N \to \infty} N^{-1} \log \mathbb{E} Z_N^{SK}$ be its annealed version. By Jensen inequasity

$$p^{SK} \le p^{SK-A} = \log 2 + \frac{\beta^2}{2}$$
 (14)

Equality is achieved in the annealed region of the SK model

$$p^{SK}(\beta) = p^{SK-A}(\beta) \quad \text{if } \beta^2 \leq \frac{1}{2}.$$
 (15)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Consider the following system of inequalities:

$$\begin{cases} \lambda_{1} a_{1} \beta_{1}^{2} < \frac{1}{2} \\ \lambda_{p} \left(\frac{1}{a_{p-1}} \beta_{p-1}^{2} + a_{p} \beta_{p}^{2} \right) < \frac{1}{2} & \text{for } p = 2, \dots, K-1 \\ \lambda_{K} \frac{1}{a_{K-1}} \beta_{K-1}^{2} < \frac{1}{2} \end{cases}$$
(16)

and define

$$A_{\mathcal{K}} \equiv \left\{ (\beta, \lambda) \in \mathbb{R}_{+}^{\mathcal{K}-1} \times \mathcal{T}_{\mathcal{K}} \mid \exists a \in \mathbb{R}_{+}^{\mathcal{K}-1} : (16) \text{ is verified} \right\},$$
(17)

where $T_K \equiv \{(\lambda_1, \ldots, \lambda_K) \in [0, 1]^K \mid \sum_{p=1}^K \lambda_p = 1\}$ denotes the *K*-dimensional simplex. We denote by $\overline{A_K}$ the topological closure of A_K .

Theorem

If $(\beta, \lambda) \in \overline{A_K}$ there exists

$$\lim_{V \to \infty} p_{\Lambda_N}^{\text{DBM}} = p^{\text{DBM-A}} .$$
 (18)

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● ● ● ●

The region $A_{\mathcal{K}}$ is given in terms of implicit conditions on β , λ however there exists a mapping between $A_{\mathcal{K}}$ and matching polynomials that is useful to investigate in more detail the annealed region

Definition

Let
$$x \in \mathbb{R}$$
 and $t = (t_p)_{p=1,...,K-1} \in [0,\infty)^{K-1}$. We define recursively
 $\int \Delta_{p+1}(x,t) \equiv x \Delta_p(x,t) - t_p \Delta_{p-1}(x,t)$ for $p = 1,...,K-1$

$$\int \Delta_1(x,t) \equiv x, \ \Delta_0(x,t) \equiv 1$$

(10)

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● ● ● ●

These polynomials have several characterizations and were studied by Heilmann and Lieb in the context of monomer dimer models.

The annealed region and matching polynomials

Let $(\beta, \lambda) \in \mathbb{R}^{K-1}_+ \times T_K$, consider the vector $t = (t_p)_{p=1,...,K-1}$ with

$$t_{\rho}(\beta,\lambda) \equiv 4\,\lambda_{\rho}\,\beta_{\rho}^{4}\,\lambda_{\rho+1} \tag{20}$$

for every $p = 1, \ldots, K - 1$. Define

$$\rho(\beta,\lambda) \equiv \max\left\{x > 0 : \Delta_{\mathcal{K}}(x, t(\beta,\lambda)) = 0\right\}.$$
(21)

The followings are equivalent:

- i) $(\beta, \lambda) \in A_{K}$; ii) $\Delta_{p}(1, t(\beta, \lambda)) > 0$ for every $p = 2, \dots, K$;
- iii) $\rho(\beta,\lambda) < 1$.

The main theorem can be used to obtain a lower bound for the quenched pressure of the DBM in terms of the replica symmetric functional in a **suitable region** of the parameters β , λ , h.

For centred Gaussian external fields this region is defined though a system of K inequalities which mimic the Almeida-Thouless condition for the SK model.

Replica symmetric solution for the SK model

We denote by $\mathcal{P}^{\text{RS-SK}}$ the replica symmetric functional of the SK model, namely for every $q \in [0, 1]$, $\beta > 0$, h real random variable with $\mathbb{E} |h| < \infty$,

$$\mathcal{P}^{\mathsf{RS-SK}}(q;\,eta,h) \equiv \mathbb{E}\log\cosh\left(z\,\sqrt{2\,q\,eta^2}+h
ight) + rac{eta^2}{2}\,(1-q)^2\,+\,\log 2 ~~(22)$$

where z is a standard Gaussian random variable independent of h. Stationary points of $\mathcal{P}^{\text{RS-SK}}$ are identified by the consistency equation

$$q = \mathbb{E} \tanh^2 \left(z \sqrt{2 q \beta^2} + h \right)$$
(23)

where z is a standard Gaussian r.v. independent of h. The celebrated Guerra's bound states in particular that

$$p^{\mathsf{SK}}(\beta,h) \leq \inf_{q} \mathcal{P}^{\mathsf{RS-SK}}(q;\beta,h) .$$
(24)

for every β , *h*. Identifying the exact replica symmetric region of the SK model, where equality in (24) is achieved, is an open problem.

The replica symmetric solution for the DBM

Definition

For $q = (q_p)_{p=1,...,K} \in [0,1]^K$ the replica symmetric functional of the DBM is

$$\mathcal{P}^{\text{RS-DBM}}(q; \beta, \lambda, h) \equiv \sum_{p=1}^{K} \lambda_p \mathbb{E} \log \cosh \left(z \sqrt{(Mq)_p} + h^{(p)} \right) + \frac{1}{2} (1-q)^T M_1 (1-q) + \log 2$$
(25)

where $M = 2M_0 \operatorname{diag}(\lambda)$ and M_1 are tridiagonal matrices.

The stationary condition is

$$q_p = \mathbb{E} \tanh^2 \left(z \sqrt{(Mq)_p} + h^{(p)} \right) \quad \forall \ p = 1, \dots, K .$$
 (26)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A first result about the replica symmetric region of the DBM under general (but implicit) conditions is provided by the following

Theorem

For
$$\beta$$
, λ , h such that there exist $q \in [0,1]^K$ and $a \in \mathbb{R}_+^{K-1}$ with

$$\lambda_{p} q_{p} a_{p} = \lambda_{p+1} q_{p+1} \quad \forall p = 1, \dots, K-1$$
(27)

and verifying

$$\mathsf{p}^{\mathsf{SK}}\left(\theta_{p}(\boldsymbol{a}), h^{(p)}\right) = \mathcal{P}^{\mathsf{RS-SK}}\left(q_{p}; \theta_{p}(\boldsymbol{a}), h^{(p)}\right) \quad \forall \, p = 1, \dots, K \;, \tag{28}$$

then

$$\liminf_{N \to \infty} \mathsf{p}_{\Lambda_{N}}^{\mathsf{DBM}} \geq \mathcal{P}^{\mathsf{RS-DBM}}(q; \beta, \lambda, h) .$$
(29)

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● ● ● ●

More explicit conditions on β , λ , h for the replica symmetric bound (29) can be obtained trough the control of the replica symmetric region in the SK model: For β small enough Talagrand proved that for every h

$$p^{\mathsf{SK}}(\beta,h) = \mathcal{P}^{\mathsf{RS-SK}}(q;\beta,h) \quad \text{if } \beta^2 < \frac{1}{8}$$
 (30)

where q is the unique solution of (23)

Corollary

Let β , λ , h such that a solution q of the replica symmetric consistency equation (26) satisfies the inequalities

$$(Mq)_p < \frac{1}{4} q_p \quad \forall p = 1, \dots, K$$
 (31)

Then the replica symmetric bound (29) holds true.

A replica symmetric bound

A necessary condition for replica symmetry on the SK model is the Almeida-Thouless condition:

$$\beta^2 \mathbb{E} \cosh^{-4} \left(z \sqrt{2 q \beta^2} + h \right) \le \frac{1}{2}$$
(32)

where q is a solution of the consistency equation (23). If we take h Gaussian centered r.v. with variance v > 0, it was recently proved by W.K. Chen that the AT condition is also sufficient

Corollary

Assume $h^{(p)}$, p = 1, ..., K centered Gaussian variables of variance $v_p > 0$ respectively. Let β , λ , v such that the (unique) solution q of the replica symmetric consistency equation (26) satisfies the inequalities

$$(Mq)_p \mathbb{E} \cosh^{-4}\left(z\sqrt{(Mq)_p+v_p}\right) \leq q_p \qquad \forall p=1,\ldots,K.$$
 (33)

Then the replica symmetric bound (29) holds true.

THANK YOU!