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Motivation: Statistical-Computational Gaps

A gap in the sample complexity, estimation rate or level of signal needed
by efficient vs. inefficient algorithms
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Sparse PCA Detection: Decide if n samples are from Hy : N(0, I4) or
Hy - N (O, lg + GVVT) where v is a k-sparse unit vector
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Statistical-Computational Gaps: Approaches

@ Failure of Classes of Algorithms: Showing that classes of efficient
algorithms fail up to conjectured computational limits e.g. AMP, local
search algs, the SOS hierarchy, statistical query algs, etc.

@ Average-Case Reductions: Complexity-theoretic approach giving
poly-time reductions directly relating different problems and their gaps

Because of complexity-theoretic barriers to basing average-case lower
bounds on P # NP, the reductions approach typically is to map between
statistical problems
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Average-Case Reductions to Statistical Problems

Since the first reduction of [BR13] to sparse PCA, there have been many
reductions from planted clique (PC) to

e Sparse PCA [BR13, WBS16, GMZ17, BB19]

e Planted dense subgraph [HWX15, BBH18]

o Gaussian biclustering and recovery [MW15, CLR15, CW18, BBH18|
@ Incoherence in matrix completion [Chel5]

@ RIP certification [KZ14, WBP16]

@ Testing k-wise independence [AAK'07]

@ Universal submatrix detection [BBH19]

@ Web of reductions among several problems with sparsity [BBH18]

@ Larger web of reductions from variants of PC [BB20]
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An Expanded Family of Reductions from Variants of PC

Our Focus: Recent web of reductions from variants of PC [BB20] which
breaks out of sparse submatrix plus independent noise matrix structure

PC, conjecture

k-partite
@ Produce negative correlations ) /\/"hypergraph PC
ith i i k-partite PC

with inverted Wishart detection/ /‘7
in hidden#(8) b|part|te PC k-part

@ Dense Bernoulli rotations with K2 ¢ partition @ blpartlte PC
models planted
@ Dense Bernoulli rotations with K3t semirandom / \ subtensor
community negative
@ Dense Bernoulli rotations with K/ ¢ recovery sparse imbalanced balanced
sparse sparse tensor
@ Dense Bernoulli rotations with design tensors imbalanced Gaussian Gaussian  PCA
2-SBM mixtures mixtures
@ LR decomposition and label generation
robust unsigned @
@ Symmetric 3-ary rejection kernels SLR SLR
Multi-query reduction completing tensors universality

from hypergraphs mixture of SLRS robust sparse for Iear_ning
mean estimation ~ sparse mixtures
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The Planted Clique Conjecture

Planted Clique (PC): Given a graph G with N nodes decide if
Ho: G~ G(N,1/2)
Hy: G ~ G(N,1/2) with u.a.r. added K-clique

PC Conjecture: If K < v/N, then any poly-time algorithm for PC has
Type I+l error 1 — o(1)
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k-Part Bipartite PC

Bipartite PC (BPC): Given a bipartite graph G with sides of size M and
N vertices, decide if

Ho: G ~Gg(M,N,1/2)i.e. au.ar. Mx N bipartite graph
Hy: G ~ Gg(M,N,1/2) with u.a.r. added Ky x Ky biclique

BPC Conjecture: If Ky < VN and Ky < v/M and M = poly(N), then
any poly-time algorithm for BPC has Type I+l error 1 — o(1)
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k-Part Bipartite PC

k-Part Bipartite PC (k-BPC): Given a bipartite graph G, decide if

H() G~ gB(M, N, 1/2)
Hi: G~ Gg(M,N,1/2) with u.a.r. added Ky, x Ky biclique

where the Ky right vertices are chosen u.a.r. to have one one vertex per
part of a given partition of [N] into Ky parts of size N/Ky

k-BPC Conjecture: If Ky < /N and Ky < VM and M = poly(N),
then any poly-time algorithm for BPC has Type I+l error 1 — o(1)

Remark: The k-BPC conjecture also is implied by a “k-part” extension of
the PC conjecture to hypergraphs (k-HPC conjecture)
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Robust Sparse Mean Estimation (RSME)

Sparse Mean Estimation: Estimate a k-sparse ;€ RY within ¢, error ~
from X1, Xa, ..., Xp ~iid. N(p, la)

klogd
Nstat =< Ncomp = >

v
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Robust Sparse Mean Estimation (RSME)

Robust Sparse Mean Estimation: Estimate a k-sparse 1 € RY within /£,
error O(¢€) from Xy, Xo, ..., X ~iid. N(u, lg), en of which are corrupted

klogd
2

k?log d

Nstat < 2

and  Neomp S ;

through convex programming and SDPs [Li17, BDLS17]
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Robust Sparse Mean Estimation (RSME)

Robust Sparse Mean Estimation: Estimate a k-sparse 1 € RY within (>
error O(e) from X1, Xa, ..., Xy ~iid N(p, lq), en of which are corrupted

klogd k?log d
Nstat = T and Ncomp S ——

~ 2

€

through convex programming and SDPs [Li17, BDLS17]

Theorem (Lower Bounds for RSME)

The k-BPC conjecture implies that estimating within {» error v requires

k2

,),4

Ncomp <

i.e. any poly-time alg for RSME outputting i with || — filj2 <~y w.p. at
least 2/3 requires this sample complexity.
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Proof Plan

Reduction in TV: Construct a poly-time reduction mapping
@ Hp of k-BPC to within o(1) total variation (TV) of N(0, I;)®"
@ H of k-BPC to within o(1) TV of n i.i.d. samples from the mixture

(1 — %) N @y, ) + g N (=226 = D), Iy)

where 4 is u.a.r. from {0,1/vk}9 nS??

Why does this imply the Theorem? Composing the reduction with an
alg in the theorem has Type I+l error 2/3 + o(1) on k-BPC

Reduction Plan:
@ Introduce general technique dense Bernoulli rotations (DBR)

@ Apply DBR locally to subvectors of the k-BPC adjacency matrix
© Choose the “output means” of DBR carefully to produce (1) and (2)
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Total Variation

Simplifying Notation: Throughout this talk, we will abbreviate:

° dTV(Pa Q) <eas
P e Q

e drv (A(X), Q) < e where X ~ P and A is a (random) function as
P40
Data-Processing Inequality: If P ﬂm Q and Q i@ R, then

Aso Ay
—7eate R

P
Union Bounds: If P; =, Q;, then

PirOPo®@ - @Pprp Q1R ® 9,
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Rejection Kernels: Gaussian Example

Goal: A computational change of measure i.e. an efficient map RK with

1 E)O(N_3) N(v,1) where v = (1)
Bern(1/2) E>O(N73) N(0,1)

Idea: If ¢, is the PDF of N(v, 1), then
o if input =1, sample ¢,

e if input =0, sample 2- ¢y — ¢,

An lIssue: 2 - g — ¢, is not a valid PDF!

Can truncate to x s.t. 2 ¢o(x) > ¢, (x) which is the bulk if v < \/Iciw

Implementation: Can sample 2 - 9 — ¢, with rejection sampling
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Dense Bernoulli Rotations

Parameters: A € R™"™ with onax(A) < 1and 7 < 1//logn

Guarantee: Transforms a vector of ni.i.d. Bern(1/2) with an unknown bit
i fixed to 1 into an approx sample from N (7A;, ) in TV, for each i < n

Q Let V € {0,1}" be the input vector with an unknown planted ith bit

@ Form V' by applying Gaussian rejection kernels entrywise to V/,
mapping approx to N(7 - 1;, /)

@ Sample a vector U ~ N(0,1)®" and output

! T 1/2
X= A 4 (/n _AA ) U
correct mean A; ~~

cancels induced correlations
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Reduction Sketch

Apply Bernoulli rotations to each row locally in each block of k-BPC

J1 Jo J3
. E,
1
iz E,
13
E3
Bern(1/2)
N/K
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Reduction Sketch

Apply Bernoulli rotations to each row locally in each block of k-BPC

J J2 J3
| — | E
. -~ 1
1 El
io [ |22 |jT_2|
[ |,
Bern(1/2)
N/K
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Reduction Sketch

Apply Bernoulli rotations to each row locally in each block of k-BPC

J1 J2 Js
. //’——El
31
’ig E2 BR( .7‘|D2 )
i B,  [Nahpium)
Bern(1/2)
N/K

Brennan and Bresler (MIT) Reductions for Statistical Problems 18 / 26



Reduction Sketch

Apply Bernoulli rotations to each row locally in each block of k-BPC

J1 Jo J3
. E,
51 N(TA;,, In/k)
iz E,
Bern(1/2)
N/K
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Reduction Sketch

Apply Bernoulli rotations to each row locally in each block of k-BPC

11| N(T4j, Inyx) | N(TAjas Inyk) | N(TAjs, Inyxc)

io| N(TA;,Ink) | N(TA;,, Inyk) | N(TAjs, Inyk)

ig| N(TA;,Inyk) | N(TA;,, Inyk) | N(TAjs, Inyk)

N(0,1)

N/K
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Reduction Sketch

Apply Bernoulli rotations to each row locally in each block of k-BPC

11| N(T4j, Inyx) | N(TAja, Iny) | N(TAje, Inyxc)

io| N4, Inyk) | N(TAjys Inyk) | N(TAjss Inyk)

i3| N4, Inyk) | N(tAjys Inyk) | N(TAjs, Inyk)

N(0,1)

N/K

What Remains? Choosing the output mean vectors Ay, As, ..., A,
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What do we want from Ay, Ay, ..., A,?

@ The ith row of output is ~,(y-2) distributed as

O N(X,Iy) where X =7 -[Aj,..., A;] if i € left clique

Q@ N(0,Iy) if i & left clique
@ This is right instance of robust sparse mean estimation as long as X

always contains an (1 — ¢/2)-fraction of its entries equal to 2v/v/k!

@ Suppose A1, Az, ..., An have the following properties:

Q A is zero-sum N/K-dimensional unit vector

@ A; € {x,y}"V/K contains a (1 — ¢/2)-fraction of a x

Q max(A) =0(1)

o Key Question: What lower bound would this show?

2y

— X T XRX

vk
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What do we want from Ay, Ay, ..., A,?

@ The ith row of output is ~,(y-2) distributed as
Q@ N(X,Inv) where X =7 -[A;, ..., A;] if i € left clique
Q@ N(0,Iy) if i & left clique

@ This is right instance of robust sparse mean estimation as long as X
always contains an (1 — ¢)-fraction of its entries equal to 2v/v/k!

@ Suppose A1, Ay, ..., An have the following properties:
Q A is zero-sum N/K-dimensional unit vector
@ A; € {x,y}V/K contains a (1 — ¢€)-fraction of a x
Q gmax(A) = O(1)

o Key Question: What lower bound would this show?

27’7\/7' X X = ¢ =~ \ﬁ
Vk T T T T @ —eoN/K T N4
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What do we want from Ay, Ay, ..., A,?

@ The ith row of output is ~,(y-2) distributed as
QO N(X,Iy) where X =7 -[Aj,..., A;] if i € left clique
Q@ N(0,Iy) if i & left clique
@ This is right instance of robust sparse mean estimation as long as X
always contains an (1 — ¢)-fraction of its entries equal to 2v/v/k!
@ Suppose A1, Ay, ..., An have the following properties:
Q A is zero-sum N/K-dimensional unit vector
@ A; € {x,y}"/K contains a (1 — €)-fraction of a x
Q max(A) =0(1)

o Key Question: What lower bound would this show?
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[Ft Design Matrices

Goal: Construct Ay, Ay, ..., Ay such that

@ A; is zero-sum N/K-dimensional unit vector
Q A; € {x,y}"/K contains a (1 — €/2)-fraction of a x
Q omax(A) =0O(1)

Construction: Let r be a prime, Ft = {Py,..., Pt} and Vq,..., V} be all

. . . t—1
affine shifts of hyperplanes in Ft where ¢ = r(:_l )
A — 1 ' 1 if Pi gV,
JI_,/rt(r_]_) 1—r IfPG\/J
1+ (r—1)-1

satisfies 1-3 with €/2 = 1/r and omax(A) =

25 / 26
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Conclusions

@ We gave an example reduction to robust sparse mean estimation

@ This is one of many reductions beginning with a variant of the PC
conjecture and mapping to problems with different hidden structures

© Many open problems about reduction techniques, reductions to
negative SPCA and reductions to sparse generalized linear models
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