Reductions and the Complexity of Statistical Problems

Matthew Brennan and Guy Bresler

MIT EECS, LIDS & IDSS

A gap in the sample complexity, estimation rate or level of signal needed by efficient vs. inefficient algorithms

Sparse PCA Detection: Decide if *n* samples are from $H_0 : \mathcal{N}(0, I_d)$ or $H_1 : \mathcal{N}(0, I_d + \theta v v^{\top})$ where *v* is a *k*-sparse unit vector

$$n_{\mathsf{stat}} \asymp rac{k \log d}{ heta^2} \quad \mathsf{and} \quad n_{\mathsf{comp}} \asymp rac{k^2 \wedge d}{ heta^2}$$

Statistical-Computational Gaps: Approaches

- Failure of Classes of Algorithms: Showing that classes of efficient algorithms fail up to conjectured computational limits e.g. AMP, local search algs, the SOS hierarchy, statistical query algs, etc.
- Average-Case Reductions: Complexity-theoretic approach giving poly-time reductions directly relating different problems and their gaps

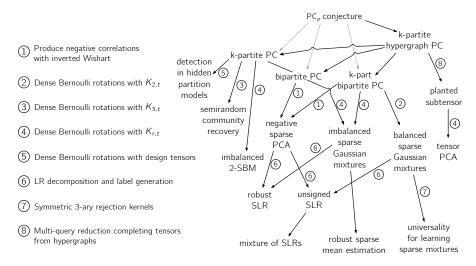
Because of complexity-theoretic barriers to basing average-case lower bounds on P \neq NP, the reductions approach typically is to map *between* statistical problems

Since the first reduction of [BR13] to sparse PCA, there have been many reductions from planted clique (PC) to

- Sparse PCA [BR13, WBS16, GMZ17, BB19]
- Planted dense subgraph [HWX15, BBH18]
- Gaussian biclustering and recovery [MW15, CLR15, CW18, BBH18]
- Incoherence in matrix completion [Che15]
- RIP certification [KZ14, WBP16]
- Testing *k*-wise independence [AAK⁺07]
- Universal submatrix detection [BBH19]
- Web of reductions among several problems with sparsity [BBH18]
- Larger web of reductions from variants of PC [BB20]

An Expanded Family of Reductions from Variants of PC

Our Focus: Recent web of reductions from variants of PC [BB20] which breaks out of sparse submatrix plus independent noise matrix structure

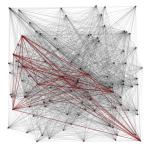


The Planted Clique Conjecture

Planted Clique (PC): Given a graph G with N nodes decide if

$$egin{aligned} &\mathcal{H}_0:\, G\sim \mathcal{G}(N,1/2)\ &\mathcal{H}_1:\, G\sim \mathcal{G}(N,1/2) \end{aligned}$$
 with u.a.r. added K-clique

PC Conjecture: If $K \ll \sqrt{N}$, then any poly-time algorithm for PC has Type I+II error 1 - o(1)



Bipartite PC (BPC): Given a bipartite graph G with sides of size M and N vertices, decide if

 $H_0: G \sim \mathcal{G}_B(M, N, 1/2)$ i.e. a u.a.r. $M \times N$ bipartite graph $H_1: G \sim \mathcal{G}_B(M, N, 1/2)$ with u.a.r. added $K_M \times K_N$ biclique

BPC Conjecture: If $K_N \ll \sqrt{N}$ and $K_M \ll \sqrt{M}$ and M = poly(N), then any poly-time algorithm for BPC has Type I+II error 1 - o(1)

k-Part Bipartite PC (k-BPC): Given a bipartite graph G, decide if

$$\begin{split} & H_0: \ensuremath{\mathcal{G}} \sim \ensuremath{\mathcal{G}}_{\mathcal{B}}(M,N,1/2) \\ & H_1: \ensuremath{\mathcal{G}} \sim \ensuremath{\mathcal{G}}_{\mathcal{B}}(M,N,1/2) \text{ with u.a.r. added } \ensuremath{\mathcal{K}}_M \times \ensuremath{\mathcal{K}}_N \text{ biclique} \end{split}$$

where the K_N right vertices are chosen u.a.r. to have one one vertex per part of a given partition of [N] into K_N parts of size N/K_N

*k***-BPC Conjecture:** If $K_N \ll \sqrt{N}$ and $K_M \ll \sqrt{M}$ and M = poly(N), then any poly-time algorithm for BPC has Type I+II error 1 - o(1)

Remark: The *k*-BPC conjecture also is implied by a "*k*-part" extension of the PC conjecture to hypergraphs (*k*-HPC conjecture)

Sparse Mean Estimation: Estimate a *k*-sparse $\mu \in \mathbb{R}^d$ within ℓ_2 error γ from $X_1, X_2, \ldots, X_n \sim_{i.i.d.} \mathcal{N}(\mu, I_d)$

$$n_{\text{stat}} \asymp n_{\text{comp}} \asymp rac{k \log d}{\gamma^2}$$

Robust Sparse Mean Estimation: Estimate a *k*-sparse $\mu \in \mathbb{R}^d$ within ℓ_2 error $O(\epsilon)$ from $X_1, X_2, \ldots, X_n \sim_{i.i.d.} \mathcal{N}(\mu, I_d)$, ϵn of which are corrupted

$$n_{\mathsf{stat}} \asymp rac{k \log d}{\epsilon^2} \quad \mathsf{and} \quad n_{\mathsf{comp}} \lesssim rac{k^2 \log d}{\epsilon^2}$$

through convex programming and SDPs [Li17, BDLS17]

Robust Sparse Mean Estimation (RSME)

Robust Sparse Mean Estimation: Estimate a *k*-sparse $\mu \in \mathbb{R}^d$ within ℓ_2 error $O(\epsilon)$ from $X_1, X_2, \ldots, X_n \sim_{i.i.d.} \mathcal{N}(\mu, I_d)$, ϵn of which are corrupted

$$n_{\mathsf{stat}} \asymp rac{k \log d}{\epsilon^2}$$
 and $n_{\mathsf{comp}} \lesssim rac{k^2 \log d}{\epsilon^2}$

through convex programming and SDPs [Li17, BDLS17]

Theorem (Lower Bounds for RSME)

The k-BPC conjecture implies that estimating within ℓ_2 error γ requires

$$n_{comp} \gtrsim rac{k^2 \epsilon^2}{\gamma^4}$$

i.e. any poly-time alg for RSME outputting $\hat{\mu}$ with $\|\mu - \hat{\mu}\|_2 \leq \gamma$ w.p. at least 2/3 requires this sample complexity.

Proof Plan

Reduction in TV: Construct a poly-time reduction mapping

- H_0 of k-BPC to within o(1) total variation (TV) of $\mathcal{N}(0, I_d)^{\otimes n}$
- **2** H_1 of k-BPC to within o(1) TV of n i.i.d. samples from the mixture

$$\left(1-\frac{\epsilon}{2}\right)\cdot\mathcal{N}(2\gamma\mu,I_d)+\frac{\epsilon}{2}\cdot\mathcal{N}\left(-2\gamma(2\epsilon^{-1}-1)\mu,I_d\right)$$

where μ is u.a.r. from $\{0,1/\sqrt{k}\}^d\cap\mathbb{S}^{d-1}$

Why does this imply the Theorem? Composing the reduction with an alg in the theorem has Type I+II error 2/3 + o(1) on k-BPC

Reduction Plan:

- Introduce general technique dense Bernoulli rotations (DBR)
- Apply DBR locally to subvectors of the k-BPC adjacency matrix
- Schoose the "output means" of DBR carefully to produce (1) and (2)

Simplifying Notation: Throughout this talk, we will abbreviate:

•
$$d_{\mathsf{TV}}\left(\mathcal{P},\mathcal{Q}
ight)\leq\epsilon$$
 as

$$\mathcal{P} \approx_{\epsilon} \mathcal{Q}$$

• $d_{\mathsf{TV}}(\mathcal{A}(X), \mathcal{Q}) \leq \epsilon$ where $X \sim \mathcal{P}$ and \mathcal{A} is a (random) function as

$$\mathcal{P} \xrightarrow{\mathcal{A}}_{\epsilon} \mathcal{Q}$$

Data-Processing Inequality: If $\mathcal{P} \xrightarrow{\mathcal{A}_1}_{\epsilon_1} \mathcal{Q}$ and $\mathcal{Q} \xrightarrow{\mathcal{A}_1}_{\epsilon_2} \mathcal{R}$, then

$$\mathcal{P} \xrightarrow{\mathcal{A}_2 \circ \mathcal{A}_1}_{\epsilon_1 + \epsilon_2} \mathcal{R}$$

Union Bounds: If $\mathcal{P}_i \approx_{\epsilon} \mathcal{Q}_i$, then

$$\mathcal{P}_1 \otimes \mathcal{P}_2 \otimes \cdots \otimes \mathcal{P}_n \approx_{n \epsilon} \mathcal{Q}_1 \otimes \mathcal{Q}_2 \otimes \cdots \otimes \mathcal{Q}_n$$

Rejection Kernels: Gaussian Example [MW15, BBH18]

Goal: A computational change of measure i.e. an efficient map RK with

$$\begin{split} 1 \xrightarrow{\text{RK}}_{o(N^{-3})} \mathcal{N}(\nu,1) & ext{where } \nu = ilde{\Theta}(1) \ \\ ext{Bern}(1/2) \xrightarrow{\text{RK}}_{o(N^{-3})} \mathcal{N}(0,1) \end{split}$$

Idea: If φ_{ν} is the PDF of $\mathcal{N}(\nu, 1)$, then

• if input = 1, sample
$$\varphi_{\nu}$$

• if input = 0, sample
$$2 \cdot \varphi_0 - \varphi_\nu$$

An Issue: $2 \cdot \varphi_0 - \varphi_\nu$ is not a valid PDF!

Can truncate to x s.t. $2 \cdot \varphi_0(x) \ge \varphi_\nu(x)$ which is the bulk if $\nu \asymp \frac{1}{\sqrt{\log N}}$

Implementation: Can sample $2 \cdot \varphi_0 - \varphi_\nu$ with rejection sampling

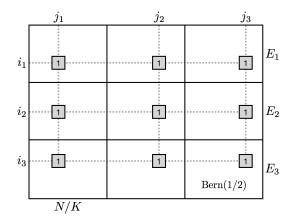
Parameters: $A \in \mathbb{R}^{n \times m}$ with $\sigma_{\max}(A) \leq 1$ and $\tau \lesssim 1/\sqrt{\log n}$

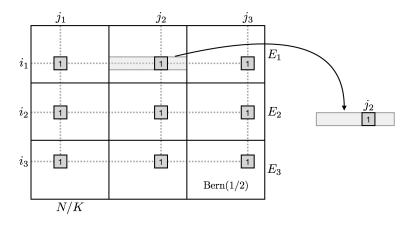
Guarantee: Transforms a vector of *n* i.i.d. Bern(1/2) with an unknown bit *i* fixed to 1 into an approx sample from $\mathcal{N}(\tau A_i, I_m)$ in TV, for each $i \leq n$

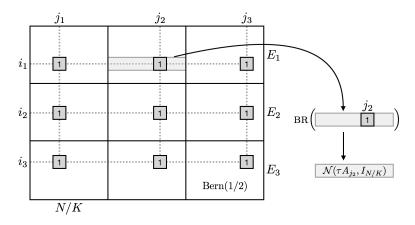
() Let $V \in \{0,1\}^n$ be the input vector with an unknown planted *i*th bit

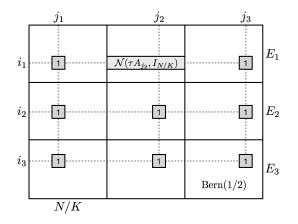
- Form V' by applying Gaussian rejection kernels entrywise to V, mapping approx to $\mathcal{N}(\tau \cdot \mathbf{1}_i, I_m)$
- **③** Sample a vector $U \sim \mathcal{N}(0,1)^{\otimes n}$ and output

$$X = \underbrace{AV'}_{\text{correct mean } A_i} + \underbrace{\left(I_n - AA^{\top}\right)^{1/2} U}_{\text{cancels induced correlations}}$$









i_1	$\mathcal{N}(\tau A_{j_1}, I_{N/K})$	$\mathcal{N}(\tau A_{j_2}, I_{N/K})$	$\mathcal{N}(\tau A_{j_3}, I_{N/K})$
i_2	$\mathcal{N}(\tau A_{j_1}, I_{N/K})$	$\mathcal{N}(\tau A_{j_2}, I_{N/K})$	$\mathcal{N}(\tau A_{j_3}, I_{N/K})$
•2		J2) N/K)	J37 14/11/
i_3	$\mathcal{N}(\tau A_{j_1}, I_{N/K})$	$\mathcal{N}(\tau A_{j_2}, I_{N/K})$	$\mathcal{N}(\tau A_{j_3}, I_{N/K})$
			$\mathcal{N}(0,1)$
	N/K		

i_1	$\mathcal{N}(\tau A_{j_1}, I_{N/K})$	$\mathcal{N}(\tau A_{j_2}, I_{N/K})$	$\mathcal{N}(\tau A_{j_3}, I_{N/K})$
.1	(J1, 1, , 1, , 1, , 1, , 1, , 1, , 1, ,	()2, 1,,12,	
i_2	$\mathcal{N}(\tau A_{j_1}, I_{N/K})$	$\mathcal{N}(\tau A_{j_2}, I_{N/K})$	$\mathcal{N}(\tau A_{j_3}, I_{N/K})$
i_3	$\mathcal{N}(\tau A_{j_1}, I_{N/K})$	$\mathcal{N}(\tau A_{j_2}, I_{N/K})$	$\mathcal{N}(\tau A_{j_3}, I_{N/K})$
			$\mathcal{N}(0,1)$
	N/K		

What Remains? Choosing the output mean vectors A_1, A_2, \ldots, A_n

Brennan and Bresler (MIT)

What do we want from A_1, A_2, \ldots, A_n ?

- The *i*th row of output is $\approx_{o(N^{-2})}$ distributed as

② $\mathcal{N}(0, I_N)$ if *i* ∉ left clique

- This is right instance of robust sparse mean estimation as long as X always contains an $(1 \epsilon/2)$ -fraction of its entries equal to $2\gamma/\sqrt{k!}$
- Suppose A_1, A_2, \ldots, A_m have the following properties:
 - **1** A_j is zero-sum N/K-dimensional unit vector

2
$$A_j \in \{x, y\}^{N/K}$$
 contains a $(1 - \epsilon/2)$ -fraction of a x

- Key Question: What lower bound would this show?

$$\frac{2\gamma}{\sqrt{k}} \asymp \tau \cdot x \approx x$$

What do we want from A_1, A_2, \ldots, A_n ?

- The *i*th row of output is $\approx_{o(N^{-2})}$ distributed as
 - $\ \, {\cal N}(X,I_N) \text{ where } X=\tau\cdot [A_{j_1},\ldots,A_{j_k}] \text{ if } i\in {\sf left clique}$

② $\mathcal{N}(0, I_N)$ if *i* ∉ left clique

- This is right instance of robust sparse mean estimation as long as X always contains an (1ϵ) -fraction of its entries equal to $2\gamma/\sqrt{k!}$
- Suppose A_1, A_2, \ldots, A_m have the following properties:
 - A_j is zero-sum N/K-dimensional unit vector

2
$$A_j \in \{x, y\}^{N/K}$$
 contains a $(1 - \epsilon)$ -fraction of a x

- $\ \, {\mathfrak S} \ \, \sigma_{\max}(A) = \Theta(1)$
- Key Question: What lower bound would this show?

$$\frac{2\gamma}{\sqrt{k}} \asymp \tau \cdot x \approx x = \sqrt{\frac{\epsilon}{(1-\epsilon)N/K}} \approx \frac{\sqrt{\epsilon}}{N^{1/4}}$$

What do we want from A_1, A_2, \ldots, A_n ?

- The *i*th row of output is $\approx_{o(N^{-2})}$ distributed as
 - $\ \, {\cal N}(X,I_N) \text{ where } X=\tau\cdot [A_{j_1},\ldots,A_{j_k}] \text{ if } i\in {\sf left clique}$

② $\mathcal{N}(0, I_N)$ if *i* ∉ left clique

- This is right instance of robust sparse mean estimation as long as X always contains an (1ϵ) -fraction of its entries equal to $2\gamma/\sqrt{k!}$
- Suppose A_1, A_2, \ldots, A_m have the following properties:
 - **1** A_j is zero-sum N/K-dimensional unit vector

2
$$A_j \in \{x, y\}^{N/K}$$
 contains a $(1 - \epsilon)$ -fraction of a x

- Key Question: What lower bound would this show?

$$\frac{2\gamma}{\sqrt{k}} \approx \frac{\sqrt{\epsilon}}{N^{1/4}} \quad \iff \quad N \approx \frac{k^2 \epsilon^2}{\gamma^4}$$

\mathbb{F}_r^t Design Matrices

Goal: Construct A_1, A_2, \ldots, A_m such that

• A_i is zero-sum N/K-dimensional unit vector

Construction: Let *r* be a prime, $\mathbb{F}_r^t = \{P_1, \dots, P_{r^t}\}$ and V_1, \dots, V_ℓ be all affine shifts of hyperplanes in \mathbb{F}_r^t where $\ell = \frac{r(r^t-1)}{r-1}$

$$A_{ji} = \frac{1}{\sqrt{r^t(r-1)}} \cdot \begin{cases} 1 & \text{if } P_i \notin V_j \\ 1-r & \text{if } P_i \in V_j \end{cases}$$

satisfies 1-3 with $\epsilon/2 = 1/r$ and $\sigma_{\max}(A) = \sqrt{1 + (r-1)^{-1}}$

- We gave an example reduction to robust sparse mean estimation
- This is one of many reductions beginning with a variant of the PC conjecture and mapping to problems with different hidden structures
- Many open problems about reduction techniques, reductions to negative SPCA and reductions to sparse generalized linear models