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Motivation: Statistical-Computational Gaps

A gap in the sample complexity, estimation rate or level of signal needed
by efficient vs. inefficient algorithms

Sparse PCA Detection: Decide if n samples are from H0 : N (0, Id) or
H1 : N

(
0, Id + θvv>

)
where v is a k-sparse unit vector

nstat �
k log d

θ2
and ncomp �

k2 ∧ d

θ2
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Statistical-Computational Gaps: Approaches

1 Failure of Classes of Algorithms: Showing that classes of efficient
algorithms fail up to conjectured computational limits e.g. AMP, local
search algs, the SOS hierarchy, statistical query algs, etc.

2 Average-Case Reductions: Complexity-theoretic approach giving
poly-time reductions directly relating different problems and their gaps

Because of complexity-theoretic barriers to basing average-case lower
bounds on P 6= NP, the reductions approach typically is to map between
statistical problems
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Average-Case Reductions to Statistical Problems

Since the first reduction of [BR13] to sparse PCA, there have been many
reductions from planted clique (PC) to

Sparse PCA [BR13, WBS16, GMZ17, BB19]

Planted dense subgraph [HWX15, BBH18]

Gaussian biclustering and recovery [MW15, CLR15, CW18, BBH18]

Incoherence in matrix completion [Che15]

RIP certification [KZ14, WBP16]

Testing k-wise independence [AAK+07]

Universal submatrix detection [BBH19]

Web of reductions among several problems with sparsity [BBH18]

Larger web of reductions from variants of PC [BB20]
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An Expanded Family of Reductions from Variants of PC

Our Focus: Recent web of reductions from variants of PC [BB20] which
breaks out of sparse submatrix plus independent noise matrix structure

bipartite PC

conjecturePC⇢
<latexit sha1_base64="F5xff6u/4Lp0J1CGrwuGru7Zjbg=">AAACD3icbVC9TsMwGHTKXyl/AUYWiwqJqUr4EYwVXRiLREulJooc12ms2nFkO5WqqA/BzgqvwIZYeQTegMfAaTPQlpMsne58nz9fmDKqtON8W5W19Y3Nrep2bWd3b//APjzqKpFJTDpYMCF7IVKE0YR0NNWM9FJJEA8ZeQpHrcJ/GhOpqEge9SQlPkfDhEYUI22kwLY9jnQsed5uTQNPxiKw607DmQGuErckdVCiHdg/3kDgjJNEY4aU6rtOqv0cSU0xI9OalymSIjxCQ9I3NEGcKD+fbT6FZ0YZwEhIcxINZ+rfRI55KOkw1gtzcsSVmvDQ5Ivt1bJXiP95/UxHt35OkzTTJMHz56OMQS1gUQ4cUEmwZhNDEJbU/ADiGEmEtamwZqpxl4tYJd2LhnvZuH64qjfvypKq4AScgnPgghvQBPegDToAgzF4Aa/gzXq23q0P63N+tWKVmWOwAOvrFwzznRE=</latexit>
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8 Multi-query reduction completing tensors
from hypergraphs

5

4 Dense Bernoulli rotations with Kr,t
<latexit sha1_base64="PmnTEP1e8T2FA9NH1i/fsawoj0M=">AAACBHicbVDLSgMxFL3js9ZX1aWbwSK4kDLjA11JwY3gpoJ9QFtKJs20oUlmSO4IZejWvVv9BXfi1v/wD/wM03YWtvVA4HBOTnLvCWLBDXret7O0vLK6tp7byG9ube/sFvb2ayZKNGVVGolINwJimOCKVZGjYI1YMyIDwerB4Hbs15+YNjxSjziMWVuSnuIhpwStVL/vpPoUR51C0St5E7iLxM9IETJUOoWfVjeiiWQKqSDGNH0vxnZKNHIq2CjfSgyLCR2QHmtaqohkpp1Oxh25x1bpumGk7VHoTtS/iZTKQPNeH2feSYk0ZigDm5cE+2beG4v/ec0Ew+t2ylWcIFN0+n2YCBcjd9yI2+WaURRDSwjV3G7g0j7RhKLtLW+r8eeLWCS1s5J/Xrp8uCiWb7KScnAIR3ACPlxBGe6gAlWgMIAXeIU359l5dz6cz+nVJSfLHMAMnK9fGReYwg==</latexit>

2 Dense Bernoulli rotations with K2,t
<latexit sha1_base64="2avDhTbngFCGceU0702EyZcwSy8=">AAACBHicbVDLSgMxFM3UV62vqks3wSK4kDJTFV1JwY3gpoJ9QDuUTJppQ5PMkNwRytCte7f6C+7Erf/hH/gZpu0sbOuBwOGcnOTeE8SCG3Ddbye3srq2vpHfLGxt7+zuFfcPGiZKNGV1GolItwJimOCK1YGDYK1YMyIDwZrB8HbiN5+YNjxSjzCKmS9JX/GQUwJWat5308oZjLvFklt2p8DLxMtICWWodYs/nV5EE8kUUEGMaXtuDH5KNHAq2LjQSQyLCR2SPmtbqohkxk+n447xiVV6OIy0PQrwVP2bSKkMNO8PYO6dlEhjRjKweUlgYBa9ifif104gvPZTruIEmKKz78NEYIjwpBHc45pRECNLCNXcboDpgGhCwfZWsNV4i0Usk0al7J2XLx8uStWbrKQ8OkLH6BR56ApV0R2qoTqiaIhe0Ct6c56dd+fD+ZxdzTlZ5hDNwfn6BbHImII=</latexit>

3 Dense Bernoulli rotations with K3,t
<latexit sha1_base64="txOoGQm2fkNaGnt8FjpuTkC03m8=">AAACBHicbVDLSgMxFM3UV62vqks3wSK4kDJjFV1JwY3gpoJ9QDuUTJppQ5PMkNwRytCte7f6C+7Erf/hH/gZpu0sbOuBwOGcnOTeE8SCG3Ddbye3srq2vpHfLGxt7+zuFfcPGiZKNGV1GolItwJimOCK1YGDYK1YMyIDwZrB8HbiN5+YNjxSjzCKmS9JX/GQUwJWat5308oZjLvFklt2p8DLxMtICWWodYs/nV5EE8kUUEGMaXtuDH5KNHAq2LjQSQyLCR2SPmtbqohkxk+n447xiVV6OIy0PQrwVP2bSKkMNO8PYO6dlEhjRjKweUlgYBa9ifif104gvPZTruIEmKKz78NEYIjwpBHc45pRECNLCNXcboDpgGhCwfZWsNV4i0Usk8Z52auULx8uStWbrKQ8OkLH6BR56ApV0R2qoTqiaIhe0Ct6c56dd+fD+ZxdzTlZ5hDNwfn6BbNlmIM=</latexit>
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The Planted Clique Conjecture

Planted Clique (PC): Given a graph G with N nodes decide if

H0 : G ∼ G(N, 1/2)

H1 : G ∼ G(N, 1/2) with u.a.r. added K -clique

PC Conjecture: If K �
√
N, then any poly-time algorithm for PC has

Type I+II error 1− o(1)
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k-Part Bipartite PC

Bipartite PC (BPC): Given a bipartite graph G with sides of size M and
N vertices, decide if

H0 : G ∼ GB(M,N, 1/2) i.e. a u.a.r. M × N bipartite graph

H1 : G ∼ GB(M,N, 1/2) with u.a.r. added KM × KN biclique

BPC Conjecture: If KN �
√
N and KM �

√
M and M = poly(N), then

any poly-time algorithm for BPC has Type I+II error 1− o(1)
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k-Part Bipartite PC

k-Part Bipartite PC (k-BPC): Given a bipartite graph G , decide if

H0 : G ∼ GB(M,N, 1/2)

H1 : G ∼ GB(M,N, 1/2) with u.a.r. added KM × KN biclique

where the KN right vertices are chosen u.a.r. to have one one vertex per
part of a given partition of [N] into KN parts of size N/KN

k-BPC Conjecture: If KN �
√
N and KM �

√
M and M = poly(N),

then any poly-time algorithm for BPC has Type I+II error 1− o(1)

Remark: The k-BPC conjecture also is implied by a “k-part” extension of
the PC conjecture to hypergraphs (k-HPC conjecture)
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Robust Sparse Mean Estimation (RSME)

Sparse Mean Estimation: Estimate a k-sparse µ ∈ Rd within `2 error γ
from X1,X2, . . . ,Xn ∼i.i.d. N (µ, Id)

nstat � ncomp �
k log d

γ2
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Robust Sparse Mean Estimation (RSME)

Robust Sparse Mean Estimation: Estimate a k-sparse µ ∈ Rd within `2
error O(ε) from X1,X2, . . . ,Xn ∼i.i.d. N (µ, Id), εn of which are corrupted

nstat �
k log d

ε2
and ncomp .

k2 log d

ε2

through convex programming and SDPs [Li17, BDLS17]
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Robust Sparse Mean Estimation (RSME)

Robust Sparse Mean Estimation: Estimate a k-sparse µ ∈ Rd within `2
error O(ε) from X1,X2, . . . ,Xn ∼i.i.d. N (µ, Id), εn of which are corrupted

nstat �
k log d

ε2
and ncomp .

k2 log d

ε2

through convex programming and SDPs [Li17, BDLS17]

Theorem (Lower Bounds for RSME)

The k-BPC conjecture implies that estimating within `2 error γ requires

ncomp &
k2ε2

γ4

i.e. any poly-time alg for RSME outputting µ̂ with ‖µ− µ̂‖2 ≤ γ w.p. at
least 2/3 requires this sample complexity.
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Proof Plan

Reduction in TV: Construct a poly-time reduction mapping

1 H0 of k-BPC to within o(1) total variation (TV) of N (0, Id)⊗n

2 H1 of k-BPC to within o(1) TV of n i.i.d. samples from the mixture(
1− ε

2

)
· N (2γµ, Id) +

ε

2
· N

(
−2γ(2ε−1 − 1)µ, Id

)
where µ is u.a.r. from {0, 1/

√
k}d ∩ Sd−1

Why does this imply the Theorem? Composing the reduction with an
alg in the theorem has Type I+II error 2/3 + o(1) on k-BPC

Reduction Plan:

1 Introduce general technique dense Bernoulli rotations (DBR)

2 Apply DBR locally to subvectors of the k-BPC adjacency matrix

3 Choose the “output means” of DBR carefully to produce (1) and (2)
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Total Variation

Simplifying Notation: Throughout this talk, we will abbreviate:

dTV (P,Q) ≤ ε as
P ≈ε Q

dTV (A(X ),Q) ≤ ε where X ∼ P and A is a (random) function as

P A−→ε Q

Data-Processing Inequality: If P A1−−→ε1 Q and Q A1−−→ε2 R, then

P A2◦A1−−−−→ε1+ε2 R

Union Bounds: If Pi ≈ε Qi , then

P1 ⊗ P2 ⊗ · · · ⊗ Pn ≈nε Q1 ⊗Q2 ⊗ · · · ⊗ Qn
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Rejection Kernels: Gaussian Example [MW15, BBH18]

Goal: A computational change of measure i.e. an efficient map rk with

1
rk−→o(N−3) N (ν, 1) where ν = Θ̃(1)

Bern(1/2)
rk−→o(N−3) N (0, 1)

Idea: If ϕν is the PDF of N (ν, 1), then

if input = 1, sample ϕν

if input = 0, sample 2 · ϕ0 − ϕν

An Issue: 2 · ϕ0 − ϕν is not a valid PDF!

Can truncate to x s.t. 2 · ϕ0(x) ≥ ϕν(x) which is the bulk if ν � 1√
logN

Implementation: Can sample 2 · ϕ0 − ϕν with rejection sampling
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Dense Bernoulli Rotations

Parameters: A ∈ Rn×m with σmax(A) ≤ 1 and τ . 1/
√

log n

Guarantee: Transforms a vector of n i.i.d. Bern(1/2) with an unknown bit
i fixed to 1 into an approx sample from N (τAi , Im) in TV, for each i ≤ n

1 Let V ∈ {0, 1}n be the input vector with an unknown planted ith bit

2 Form V ′ by applying Gaussian rejection kernels entrywise to V ,
mapping approx to N (τ · 1i , Im)

3 Sample a vector U ∼ N (0, 1)⊗n and output

X = AV ′︸︷︷︸
correct mean Ai

+
(
In − AA>

)1/2
U︸ ︷︷ ︸

cancels induced correlations
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Reduction Sketch

Apply Bernoulli rotations to each row locally in each block of k-BPC
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Reduction Sketch

Apply Bernoulli rotations to each row locally in each block of k-BPC
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Reduction Sketch

Apply Bernoulli rotations to each row locally in each block of k-BPC
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Reduction Sketch

Apply Bernoulli rotations to each row locally in each block of k-BPC
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Reduction Sketch

Apply Bernoulli rotations to each row locally in each block of k-BPC
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Reduction Sketch

Apply Bernoulli rotations to each row locally in each block of k-BPC

What Remains? Choosing the output mean vectors A1,A2, . . . ,An
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What do we want from A1,A2, . . . ,An?

The ith row of output is ≈o(N−2) distributed as

1 N (X , IN) where X = τ · [Aj1 , . . . ,Ajk ] if i ∈ left clique

2 N (0, IN) if i 6∈ left clique

This is right instance of robust sparse mean estimation as long as X
always contains an (1− ε/2)-fraction of its entries equal to 2γ/

√
k!

Suppose A1,A2, . . . ,Am have the following properties:

1 Aj is zero-sum N/K -dimensional unit vector

2 Aj ∈ {x , y}N/K contains a (1− ε/2)-fraction of a x

3 σmax(A) = Θ(1)

Key Question: What lower bound would this show?

2γ√
k
� τ · x ≈ x
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What do we want from A1,A2, . . . ,An?

The ith row of output is ≈o(N−2) distributed as

1 N (X , IN) where X = τ · [Aj1 , . . . ,Ajk ] if i ∈ left clique

2 N (0, IN) if i 6∈ left clique

This is right instance of robust sparse mean estimation as long as X
always contains an (1− ε)-fraction of its entries equal to 2γ/

√
k!

Suppose A1,A2, . . . ,Am have the following properties:

1 Aj is zero-sum N/K -dimensional unit vector

2 Aj ∈ {x , y}N/K contains a (1− ε)-fraction of a x

3 σmax(A) = Θ(1)

Key Question: What lower bound would this show?

2γ√
k
� τ · x ≈ x =

√
ε

(1− ε)N/K
≈
√
ε

N1/4
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What do we want from A1,A2, . . . ,An?

The ith row of output is ≈o(N−2) distributed as

1 N (X , IN) where X = τ · [Aj1 , . . . ,Ajk ] if i ∈ left clique

2 N (0, IN) if i 6∈ left clique

This is right instance of robust sparse mean estimation as long as X
always contains an (1− ε)-fraction of its entries equal to 2γ/

√
k!

Suppose A1,A2, . . . ,Am have the following properties:

1 Aj is zero-sum N/K -dimensional unit vector

2 Aj ∈ {x , y}N/K contains a (1− ε)-fraction of a x

3 σmax(A) = Θ(1)

Key Question: What lower bound would this show?

2γ√
k
≈
√
ε

N1/4
⇐⇒ N ≈ k2ε2

γ4
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Ft
r Design Matrices

Goal: Construct A1,A2, . . . ,Am such that

1 Aj is zero-sum N/K -dimensional unit vector

2 Aj ∈ {x , y}N/K contains a (1− ε/2)-fraction of a x

3 σmax(A) = Θ(1)

Construction: Let r be a prime, Ft
r = {P1, . . . ,Pr t} and V1, . . . ,V` be all

affine shifts of hyperplanes in Ft
r where ` = r(r t−1)

r−1

Aji =
1√

r t(r − 1)
·
{

1 if Pi 6∈ Vj

1− r if Pi ∈ Vj

satisfies 1-3 with ε/2 = 1/r and σmax(A) =
√

1 + (r − 1)−1
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Conclusions

1 We gave an example reduction to robust sparse mean estimation

2 This is one of many reductions beginning with a variant of the PC
conjecture and mapping to problems with different hidden structures

3 Many open problems about reduction techniques, reductions to
negative SPCA and reductions to sparse generalized linear models
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