A Corrective View of Neural Networks: Representation, Memorization and Learning

Dheeraj Nagaraj

MIT

June 2020

Joint work with Guy Bresler

Introduction

2 Overview of Results and Techniques

3 Memorization

- 4 Representation Theorems
- 5 Learning Low-degree Polynomials

Neural Networks are universal approximators¹. We introduce a mathematical tool to obtain

• Sharp bounds on the number of neurons required for representation

Neural Networks are universal approximators¹. We introduce a mathematical tool to obtain

- Sharp bounds on the number of neurons required for representation
- State of the art memorization results

Neural Networks are universal approximators¹. We introduce a mathematical tool to obtain

- Sharp bounds on the number of neurons required for representation
- State of the art memorization results
- Subpolynomial bounds on number of neurons required to learn low-degree polynomials via. SGD/GD

• Neural networks can memorize (or interpolate) arbitrary labels quite easily

- Neural networks can memorize (or interpolate) arbitrary labels quite easily
- Long line of papers aims to understand memorization in over-parametrized networks via the study of SGD/GD

• Given *n* arbitrary points in S^{d-1} with arbitrary labels, how many neurons are necessary to memorize (or interpolate) ?

- Given *n* arbitrary points in S^{d-1} with arbitrary labels, how many neurons are necessary to memorize (or interpolate) ?
- minimum distance: θ , max error: ϵ (achieved via GD) Two-layer ReLU networks require $\tilde{O}(\frac{n}{\ell^4} \log \frac{1}{\epsilon})$ non-linear units

- Given *n* arbitrary points in S^{d-1} with arbitrary labels, how many neurons are necessary to memorize (or interpolate) ?
- minimum distance: θ , max error: ϵ (achieved via GD) Two-layer ReLU networks require $\tilde{O}(\frac{n}{\theta^4} \log \frac{1}{\epsilon})$ non-linear units
- Near optimal in *n* for two layer ReLU networks and first work to achieve this via. GD

Work	Assumption	Guarantee	Remarks
Allen-Zhu, Li, and	Minimum distance θ	$O(\frac{n^{24}d}{\theta^8})$	
Song 2018			
Du et al. 2019	Distinct points	$O(n^6)$	extra factors
Ji and Telgarsky 2019	NTK separability	$\log(n)$	
	Minimum distance $ heta$	$O(\frac{n^{24}}{\theta^8})$	
Oymak and	$d \leq n \leq cd^2$, data	$O(\frac{n^2}{d})$	w.h.p over
Soltanolkotabi 2019	i.i.d unif (\mathcal{S}^{d-1})		data
Song and Yang 2019	Distinct points	$O(n^4)$	extra factors
Daniely 2019	$n = d^c$, i.i.d	$ ilde{O}(n/d)$	w.h.p over
	$unif(\mathcal{S}^{d-1})$		data
Kawaguchi and	Minimum distance θ	$\tilde{O}(n)$	
Huang 2019			
Our Work	Minimum distance θ	$ ilde{O}(rac{n}{ heta^4})$	

Table: Comparison of Guarantees for number of non-linear units

• Approximate $f : \mathbb{R}^d \to \mathbb{R}$ over a ball of radius r, with respect to squared error

- Approximate $f : \mathbb{R}^d \to \mathbb{R}$ over a ball of radius r, with respect to squared error
- Let F be fourier transform of f. Suppose:

$$rac{1}{(2\pi)^d}\int (1+\|\xi\|^{\Theta(ad)})|F(\xi)|d\xi=:C_f$$

(roughly speaking, f has $\Theta(ad)$ bounded derivatives)

- Approximate $f : \mathbb{R}^d \to \mathbb{R}$ over a ball of radius r, with respect to squared error
- Let F be fourier transform of f. Suppose:

$$rac{1}{(2\pi)^d}\int (1+\|\xi\|^{\Theta(ad)})|F(\xi)|d\xi=:C_f$$

(roughly speaking, f has $\Theta(ad)$ bounded derivatives)

• There exists a two layer network with *N* non-linear units of ReLU and smoothed ReLU kind such that:

$$\operatorname{Error}(f;\hat{f}) \leq O\left(C(a,d)\frac{C_f^2}{N^a}\right)$$

- Approximate $f : \mathbb{R}^d \to \mathbb{R}$ over a ball of radius r, with respect to squared error
- Let F be fourier transform of f. Suppose:

$$rac{1}{(2\pi)^d}\int (1+\|\xi\|^{\Theta(ad)})|F(\xi)|d\xi=:C_f$$

(roughly speaking, f has $\Theta(ad)$ bounded derivatives)

• There exists a two layer network with *N* non-linear units of ReLU and smoothed ReLU kind such that:

$$\operatorname{Error}(f;\hat{f}) \leq O\left(C(a,d)\frac{C_f^2}{N^a}\right)$$

• We can replace *d* with effective dimension *q* << *d* when there is 'low-dimensional structure'. Ex: low-degree polynomials.

 For functions with Θ(ad) bounded derivatives,² previous results implement taylor series approximation

²Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.

- For functions with $\Theta(ad)$ bounded derivatives,² previous results implement taylor series approximation
- $O(\frac{1}{N^a})$ squared error but complex deep networks with no known training results

²Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.

- For functions with $\Theta(ad)$ bounded derivatives,² previous results implement taylor series approximation
- $O(\frac{1}{N^a})$ squared error but complex deep networks with no known training results
- Our results show that we can do the same with a two-layer network

²Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.

• Consider degree q polynomials over d-dimensional input.

- Consider degree q polynomials over d-dimensional input.
- With suitable random feature sampling, we can learn this class of functions via GD upto error ϵ with:

 $O\left(C(q)d^{2q}\mathsf{subpoly}(1/\epsilon)
ight)$

neurons of ReLU and smoothed ReLU kind.

- Consider degree q polynomials over d-dimensional input.
- With suitable random feature sampling, we can learn this class of functions via GD upto error ϵ with:

$$O\left(C(q)d^{2q}\mathsf{subpoly}(1/\epsilon)
ight)$$

neurons of ReLU and smoothed ReLU kind.

• First sub-polynomial learning bounds

• Divide Neurons into multiple groups.

- Divide Neurons into multiple groups.
- First group approximates the function under consideration.

- Divide Neurons into multiple groups.
- First group approximates the function under consideration.
- Second group approximates the error produced by the first and corrects it.

- Divide Neurons into multiple groups.
- First group approximates the function under consideration.
- Second group approximates the error produced by the first and corrects it.
- Third group approximates and corrects the error by the first two groups and so on.

- Divide Neurons into multiple groups.
- First group approximates the function under consideration.
- Second group approximates the error produced by the first and corrects it.
- Third group approximates and corrects the error by the first two groups and so on.
- Under certain conditions, 'a' corrective steps give a rate of $1/N^a$.

$$\hat{f}(x) = \sum_{i=1}^{N} \kappa_i \text{ReLU}(\langle w_i, x \rangle - T_i)$$

$$\hat{f}(x) = \sum_{i=1}^{N} \kappa_i \text{ReLU}(\langle w_i, x \rangle - T_i)$$

• Draw w_i , T_i at random and optimize over κ_i .

$$\hat{f}(x) = \sum_{i=1}^{N} \kappa_i \text{ReLU}(\langle w_i, x \rangle - T_i)$$

- Draw w_i , T_i at random and optimize over κ_i .
- Reduces non-convex optimization problem to a smooth convex optimization problem.

$$\hat{f}(x) = \sum_{i=1}^{N} \kappa_i \text{ReLU}(\langle w_i, x \rangle - T_i)$$

- Draw w_i , T_i at random and optimize over κ_i .
- Reduces non-convex optimization problem to a smooth convex optimization problem.
- SGD for neural networks with a large number of neurons reduces to this approximately.

Representation to Learning: Random Features Model

• Pick w_i , T_i from some tractable distribution.

- Pick w_i , T_i from some tractable distribution.
- Show via. probabilistic method that there exists κ⁰_i which achieves an error of at most ε.

- Pick w_i , T_i from some tractable distribution.
- Show via. probabilistic method that there exists κ⁰_i which achieves an error of at most ε.
- The 'random features' optimization must give κ^{*}_i which can do better than κ⁰_i (error of at most 'ε')

Memorization - Proof

• Data : $\{(x_1, y_1), \dots, (x_n, y_n)\}$. Construct discrete Fourier transform:

$$F(\xi) = \sum_{j=1}^n y_j e^{i\langle \xi, x_j \rangle} \,.$$

Memorization - Proof

• Data : $\{(x_1, y_1), \dots, (x_n, y_n)\}$. Construct discrete Fourier transform:

$$F(\xi) = \sum_{j=1}^n y_j e^{i\langle \xi, x_j \rangle} \, .$$

•
$$\xi \sim \mathcal{N}(0, \sigma^2 I_d)$$
, $\sigma \sim rac{\sqrt{\log n}}{\theta}$, $heta = \min$. distance.

• Data : $\{(x_1, y_1), \dots, (x_n, y_n)\}$. Construct discrete Fourier transform:

$$F(\xi) = \sum_{j=1}^n y_j e^{i\langle \xi, x_j \rangle} \, .$$

•
$$\xi \sim \mathcal{N}(0, \sigma^2 I_d)$$
, $\sigma \sim rac{\sqrt{\log n}}{\theta}$, $heta = \min$. distance.

• 'Inverse Fourier tranform':

$$y_{j} \approx \mathbb{E}F(\xi)e^{-i\langle\xi,x_{j}\rangle} = \mathbb{E}|F(\xi)|\cos(\langle\xi,x_{j}\rangle + \psi(\xi))$$
(1)

• 'Cosine Representation' : cos function as integrals of ReLU. Let $T \sim \text{unif}[-2, 2]$, independent of ξ .

$$y_j \approx \mathbb{E}C(1+\tilde{O}(1/\theta^2))|F(\xi)|\eta(T,\xi)\mathsf{ReLU}\left(rac{\langle\xi,x_j
angle}{\omega_0}-T
ight)$$
 (2)

• 'Cosine Representation' : cos function as integrals of ReLU. Let $T \sim unif[-2, 2]$, independent of ξ .

$$y_j \approx \mathbb{E}C(1+\tilde{O}(1/\theta^2))|F(\xi)|\eta(T,\xi)$$
ReLU $\left(\frac{\langle\xi,x_j\rangle}{\omega_0}-T\right)$ (2)

Contruct empirical estimator: (ξ_k, T_k) ~ N(0, σ²I_d) × Unif[-2, 2]
 i.i.d:

$$\hat{y}_j^{(1)} = \frac{1}{N_0} \sum_{k=1}^{N_0} C(1 + \tilde{O}(1/\theta^2)) |F(\xi_k)| \eta(T_k, \xi_k) \mathsf{ReLU}\left(\frac{\langle \xi_k, x_j \rangle}{\omega_0} - T_k\right) \,.$$

 \bullet Contraction in ℓ^2 via Gaussian concentration:

$$\mathbb{E} \| \mathbf{y} - \hat{\mathbf{y}}^{(1)} \|_2^2 \leq ilde{O}(rac{n}{ heta^4 N_0}) \| \mathbf{y} \|_2^2$$

 \bullet Contraction in ℓ^2 via Gaussian concentration:

$$\mathbb{E} \| \mathbf{y} - \hat{\mathbf{y}}^{(1)} \|_2^2 \leq ilde{O}(rac{n}{ heta^4 N_0}) \| \mathbf{y} \|_2^2$$

• Correction step: replace **y** with $\mathbf{y} - \hat{\mathbf{y}}^{(1)}$ and estimate it with $\hat{\mathbf{y}}^{(2)}$. We conclude:

$$\mathbb{E} \|\mathbf{y} - \hat{\mathbf{y}}^{(1)} - \hat{\mathbf{y}}^{(2)}\|_2^2 \leq \left[ilde{O}(rac{n}{ heta^4 N_0})
ight]^2 \|\mathbf{y}\|_2^2.$$

 \bullet Contraction in ℓ^2 via Gaussian concentration:

$$\mathbb{E} \| \mathbf{y} - \hat{\mathbf{y}}^{(1)} \|_2^2 \leq ilde{O}(rac{n}{ heta^4 N_0}) \| \mathbf{y} \|_2^2$$

• Correction step: replace **y** with $\mathbf{y} - \hat{\mathbf{y}}^{(1)}$ and estimate it with $\hat{\mathbf{y}}^{(2)}$. We conclude:

$$\mathbb{E} \|\mathbf{y} - \hat{\mathbf{y}}^{(1)} - \hat{\mathbf{y}}^{(2)}\|_2^2 \leq \left[\tilde{O}(\frac{n}{\theta^4 N_0}) \right]^2 \|\mathbf{y}\|_2^2.$$

• Continue $I = O(\log \frac{n}{\epsilon})$ times:

$$\mathbb{E} \|\mathbf{y} - \sum_{s=1}^{l} \hat{\mathbf{y}}^{(s)}\| \leq \left[\tilde{O}(\frac{n}{\theta^4 N_0})\right]^{l} \|\mathbf{y}\|_2^2 \leq \epsilon$$

• Contraction in ℓ^2 via Gaussian concentration:

$$\mathbb{E} \| \mathbf{y} - \hat{\mathbf{y}}^{(1)} \|_2^2 \leq ilde{O}(rac{n}{ heta^4 N_0}) \| \mathbf{y} \|_2^2$$

• Correction step: replace **y** with $\mathbf{y} - \hat{\mathbf{y}}^{(1)}$ and estimate it with $\hat{\mathbf{y}}^{(2)}$. We conclude:

$$\mathbb{E} \|\mathbf{y} - \hat{\mathbf{y}}^{(1)} - \hat{\mathbf{y}}^{(2)}\|_2^2 \leq \left[\tilde{O}(\frac{n}{\theta^4 N_0}) \right]^2 \|\mathbf{y}\|_2^2.$$

• Continue $I = O(\log \frac{n}{\epsilon})$ times:

$$\mathbb{E} \|\mathbf{y} - \sum_{s=1}^{l} \hat{\mathbf{y}}^{(s)}\| \leq \left[\tilde{O}(\frac{n}{\theta^4 N_0}) \right]^{l} \|\mathbf{y}\|_2^2 \leq \epsilon \,.$$

• We conclude that memorization requires $\tilde{O}(\frac{n}{\theta^4} \log \frac{1}{\epsilon})$ activation functions.

Representation Theorems

• Similar procedure as Memorization.

- Similar procedure as Memorization.
- Uses a mixture of ReLU and smoothed ReLU (SReLU_k) activation functions. SReLU_k are same as ReLU outside a neighborhood of 0 and are 2k times continuously differentiable.

Figure: Illustrating ReLU and SReLU activation functions.

• Approximate target function f by $\hat{f}^{(1)}$ (two layer SReLU_k network) with N activation functions.

Representation Theorems

• Approximate target function f by $\hat{f}^{(1)}$ (two layer SReLU_k network) with N activation functions.

$$(f-\hat{f}^{(1)})^2\leq rac{C_f^2}{N}$$

Where C_f is a norm on the Fourier transform of f^{3} .

³Barron 1993.

۲

Representation Theorems

• Approximate target function f by $\hat{f}^{(1)}$ (two layer SReLU_k network) with N activation functions.

$$(f-\hat{f}^{(1)})^2 \leq \frac{C_f^2}{N}$$

Where C_f is a norm on the Fourier transform of $f^{.3}$

• Fourier transform of $\hat{f}^{(1)}$ is an unbiased estimator for the Fourier tranform of f. Therefore, (roughly)

$$C_{f-\hat{f}^{(1)}} \leq C \frac{C_f}{\sqrt{N}}$$

• Let $f^{\text{rem}} := f - \hat{f}^{(1)}$. We can approximate f^{rem} by $\hat{f}^{(2)}$ with N non-linear units such that:

$$(f^{\text{rem}} - \hat{f}^{(2)})^2 \le \frac{C_{f^{\text{rem}}}^2}{N} \le \frac{C_{f}^2}{N^2}.$$

• Let $f^{\text{rem}} := f - \hat{f}^{(1)}$. We can approximate f^{rem} by $\hat{f}^{(2)}$ with N non-linear units such that:

$$(f^{\mathsf{rem}} - \hat{f}^{(2)})^2 \le rac{C_{f^{\mathsf{rem}}}^2}{N} \le rac{C_{f}^2}{N^2}$$

• Therefore, $\hat{f}^{(1)} + \hat{f}^{(2)}$ approximates f up to an error of $\frac{1}{N^2}$. We can continue this 'a' times to get rates of $\frac{1}{N^a}$.

• Let $f^{\text{rem}} := f - \hat{f}^{(1)}$. We can approximate f^{rem} by $\hat{f}^{(2)}$ with N non-linear units such that:

$$(f^{\mathsf{rem}} - \hat{f}^{(2)})^2 \le rac{C_{f^{\mathsf{rem}}}^2}{N} \le rac{C_{f}^2}{N^2}$$

- Therefore, $\hat{f}^{(1)} + \hat{f}^{(2)}$ approximates f up to an error of $\frac{1}{N^2}$. We can continue this 'a' times to get rates of $\frac{1}{N^a}$.
- After each corrective step, the remainder function becomes less and less smooth till further approximation is impossible (depending on how smooth the original function is).

• Consider $f(x) = \sum_V J_V p_V(x)$ - degree q multinomial over \mathbb{R}^d .

⁴Andoni et al. 2014; Yehudai and Shamir 2019.

⁵Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.

- Consider $f(x) = \sum_V J_V p_V(x)$ degree q multinomial over \mathbb{R}^d .
- State of the art learning result via GD:⁴ $\Omega(d^{2q} poly(1/\epsilon))$

⁴Andoni et al. 2014; Yehudai and Shamir 2019.

⁵Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.

- Consider $f(x) = \sum_V J_V p_V(x)$ degree q multinomial over \mathbb{R}^d .
- State of the art learning result via GD:⁴ $\Omega(d^{2q} poly(1/\epsilon))$
- Purely representation results with complex deep networks:⁵ $O(d^q \operatorname{polylog}(\frac{1}{\epsilon}))$. (No learning guarantees)

⁴Andoni et al. 2014; Yehudai and Shamir 2019.

⁵Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.

- Consider $f(x) = \sum_V J_V p_V(x)$ degree q multinomial over \mathbb{R}^d .
- State of the art learning result via GD:⁴ $\Omega(d^{2q} poly(1/\epsilon))$
- Purely representation results with complex deep networks:⁵ $O(d^q \operatorname{polylog}(\frac{1}{\epsilon}))$. (No learning guarantees)
- Our results for learning: $O(d^{q(1+\delta)} \text{subpoly}_q(1/\epsilon))$ ($\delta \to 0$ as $\epsilon \to 0$). Gives us the first sub-polynomial learning guarantees.

⁴Andoni et al. 2014; Yehudai and Shamir 2019.

⁵Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.

Application: Learning Low-degree Polynomials

• Learning results are an application of the representation results under random features regime.

Application: Learning Low-degree Polynomials

- Learning results are an application of the representation results under random features regime.
- f(x) effective dimension q << d. It is infinitely differentiable so we can achieve rates of C(a,q)/N^a for arbitrary a ∈ N.

- Learning results are an application of the representation results under random features regime.
- f(x) effective dimension $q \ll d$. It is infinitely differentiable so we can achieve rates of $\frac{C(a,q)}{N^a}$ for arbitrary $a \in \mathbb{N}$.
- Sample ω_i and T_i from a tractable distribution, there exist coefficients b_i such that the random neural network

$$\hat{f}(x; \mathbf{b}) = \sum_{i=1}^{N} b_i \mathsf{SReLU}_{j_i} \left(rac{\langle \omega_i, x \rangle}{\sqrt{q}} - T_i
ight)$$

approximates f up to a squared error of $C(a,q)\frac{d^{q(a+1)}}{N^a}$ in expectation

• Whenever $N \ge C(a,q)d^{q\frac{a+1}{a}}(\epsilon\delta)^{-\frac{1}{a}}$, with probability atleast $1-\delta$ (over the randomness in the weights), we can pick coefficients $b_{i,j,V}$ so that squared error is at most ϵ .

- Whenever $N \ge C(a,q)d^{q\frac{a+1}{a}}(\epsilon\delta)^{-\frac{1}{a}}$, with probability atleast $1-\delta$ (over the randomness in the weights), we can pick coefficients $b_{i,j,V}$ so that squared error is at most ϵ .
- Let a → ∞ slowly enough as e → 0. This gives us subpolynomial bounds.

Thank You