
A Corrective View of Neural Networks: Representation,
Memorization and Learning

Dheeraj Nagaraj

MIT

June 2020

Joint work with Guy Bresler

1 / 60

Overview

1 Introduction

2 Overview of Results and Techniques

3 Memorization

4 Representation Theorems

5 Learning Low-degree Polynomials

2 / 60

Introduction

Neural Networks are universal approximators1. We introduce a
mathematical tool to obtain

Sharp bounds on the number of neurons required for representation

State of the art memorization results

Subpolynomial bounds on number of neurons required to learn
low-degree polynomials via. SGD/GD

1Cybenko 1989.
3 / 60

Introduction

Neural Networks are universal approximators1. We introduce a
mathematical tool to obtain

Sharp bounds on the number of neurons required for representation

State of the art memorization results

Subpolynomial bounds on number of neurons required to learn
low-degree polynomials via. SGD/GD

1Cybenko 1989.
4 / 60

Introduction

Neural Networks are universal approximators1. We introduce a
mathematical tool to obtain

Sharp bounds on the number of neurons required for representation

State of the art memorization results

Subpolynomial bounds on number of neurons required to learn
low-degree polynomials via. SGD/GD

1Cybenko 1989.
5 / 60

Our Results - Memorization

Neural networks can memorize (or interpolate) arbitrary labels quite
easily

Long line of papers aims to understand memorization in
over-parametrized networks via the study of SGD/GD

6 / 60

Our Results - Memorization

Neural networks can memorize (or interpolate) arbitrary labels quite
easily

Long line of papers aims to understand memorization in
over-parametrized networks via the study of SGD/GD

7 / 60

Our Results - Memorization

Given n arbitrary points in Sd−1 with arbitrary labels, how many
neurons are necessary to memorize (or interpolate) ?

minimum distance: θ, max error: ε (achieved via GD)
Two-layer ReLU networks require Õ(n

θ4 log 1
ε) non-linear units

Near optimal in n for two layer ReLU networks and first work to
achieve this via. GD

8 / 60

Our Results - Memorization

Given n arbitrary points in Sd−1 with arbitrary labels, how many
neurons are necessary to memorize (or interpolate) ?

minimum distance: θ, max error: ε (achieved via GD)
Two-layer ReLU networks require Õ(n

θ4 log 1
ε) non-linear units

Near optimal in n for two layer ReLU networks and first work to
achieve this via. GD

9 / 60

Our Results - Memorization

Given n arbitrary points in Sd−1 with arbitrary labels, how many
neurons are necessary to memorize (or interpolate) ?

minimum distance: θ, max error: ε (achieved via GD)
Two-layer ReLU networks require Õ(n

θ4 log 1
ε) non-linear units

Near optimal in n for two layer ReLU networks and first work to
achieve this via. GD

10 / 60

Our Results - Memorization

Work Assumption Guarantee Remarks

Allen-Zhu, Li, and
Song 2018

Minimum distance θ O(n
24d
θ8)

Du et al. 2019 Distinct points O(n6) extra factors

Ji and Telgarsky 2019 NTK separability log(n)

Minimum distance θ O(n
24

θ8)

Oymak and
Soltanolkotabi 2019

d ≤ n ≤ cd2, data
i.i.d unif(Sd−1)

O(n
2

d) w.h.p over
data

Song and Yang 2019 Distinct points O(n4) extra factors

Daniely 2019 n = dc , i.i.d
unif(Sd−1)

Õ(n/d) w.h.p over
data

Kawaguchi and
Huang 2019

Minimum distance θ Õ(n)

Our Work Minimum distance θ Õ(n
θ4)

Table: Comparison of Guarantees for number of non-linear units 11 / 60

Our Results - Representation

Approximate f : Rd → R over a ball of radius r , with respect to
squared error

Let F be fourier transform of f . Suppose:

1

(2π)d

∫
(1 + ‖ξ‖Θ(ad))|F (ξ)|dξ =: Cf

(roughly speaking, f has Θ(ad) bounded derivatives)

There exists a two layer network with N non-linear units of ReLU and
smoothed ReLU kind such that:

Error(f ; f̂) ≤ O

(
C (a, d)

C 2
f

Na

)
.

We can replace d with effective dimension q � d when there is
‘low-dimensional structure’. Ex: low-degree polynomials.

12 / 60

Our Results - Representation

Approximate f : Rd → R over a ball of radius r , with respect to
squared error

Let F be fourier transform of f . Suppose:

1

(2π)d

∫
(1 + ‖ξ‖Θ(ad))|F (ξ)|dξ =: Cf

(roughly speaking, f has Θ(ad) bounded derivatives)

There exists a two layer network with N non-linear units of ReLU and
smoothed ReLU kind such that:

Error(f ; f̂) ≤ O

(
C (a, d)

C 2
f

Na

)
.

We can replace d with effective dimension q � d when there is
‘low-dimensional structure’. Ex: low-degree polynomials.

13 / 60

Our Results - Representation

Approximate f : Rd → R over a ball of radius r , with respect to
squared error

Let F be fourier transform of f . Suppose:

1

(2π)d

∫
(1 + ‖ξ‖Θ(ad))|F (ξ)|dξ =: Cf

(roughly speaking, f has Θ(ad) bounded derivatives)

There exists a two layer network with N non-linear units of ReLU and
smoothed ReLU kind such that:

Error(f ; f̂) ≤ O

(
C (a, d)

C 2
f

Na

)
.

We can replace d with effective dimension q � d when there is
‘low-dimensional structure’. Ex: low-degree polynomials.

14 / 60

Our Results - Representation

Approximate f : Rd → R over a ball of radius r , with respect to
squared error

Let F be fourier transform of f . Suppose:

1

(2π)d

∫
(1 + ‖ξ‖Θ(ad))|F (ξ)|dξ =: Cf

(roughly speaking, f has Θ(ad) bounded derivatives)

There exists a two layer network with N non-linear units of ReLU and
smoothed ReLU kind such that:

Error(f ; f̂) ≤ O

(
C (a, d)

C 2
f

Na

)
.

We can replace d with effective dimension q � d when there is
‘low-dimensional structure’. Ex: low-degree polynomials.

15 / 60

Our Results - Representation

For functions with Θ(ad) bounded derivatives,2 previous results
implement taylor series approximation

O(1
Na) squared error - but complex deep networks with no known

training results

Our results show that we can do the same with a two-layer network

2Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.
16 / 60

Our Results - Representation

For functions with Θ(ad) bounded derivatives,2 previous results
implement taylor series approximation

O(1
Na) squared error - but complex deep networks with no known

training results

Our results show that we can do the same with a two-layer network

2Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.
17 / 60

Our Results - Representation

For functions with Θ(ad) bounded derivatives,2 previous results
implement taylor series approximation

O(1
Na) squared error - but complex deep networks with no known

training results

Our results show that we can do the same with a two-layer network

2Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.
18 / 60

Our Results - Learning Polynomials

Consider degree q polynomials over d-dimensional input.

With suitable random feature sampling, we can learn this class of
functions via GD upto error ε with:

O
(
C (q)d2qsubpoly(1/ε)

)
neurons of ReLU and smoothed ReLU kind.

First sub-polynomial learning bounds

19 / 60

Our Results - Learning Polynomials

Consider degree q polynomials over d-dimensional input.

With suitable random feature sampling, we can learn this class of
functions via GD upto error ε with:

O
(
C (q)d2qsubpoly(1/ε)

)
neurons of ReLU and smoothed ReLU kind.

First sub-polynomial learning bounds

20 / 60

Our Results - Learning Polynomials

Consider degree q polynomials over d-dimensional input.

With suitable random feature sampling, we can learn this class of
functions via GD upto error ε with:

O
(
C (q)d2qsubpoly(1/ε)

)
neurons of ReLU and smoothed ReLU kind.

First sub-polynomial learning bounds

21 / 60

Corrective Mechanism - The Main Idea

Divide Neurons into multiple groups.

First group approximates the function under consideration.

Second group approximates the error produced by the first and
corrects it.

Third group approximates and corrects the error by the first two
groups and so on.

Under certain conditions, ‘a’ corrective steps give a rate of 1/Na.

22 / 60

Corrective Mechanism - The Main Idea

Divide Neurons into multiple groups.

First group approximates the function under consideration.

Second group approximates the error produced by the first and
corrects it.

Third group approximates and corrects the error by the first two
groups and so on.

Under certain conditions, ‘a’ corrective steps give a rate of 1/Na.

23 / 60

Corrective Mechanism - The Main Idea

Divide Neurons into multiple groups.

First group approximates the function under consideration.

Second group approximates the error produced by the first and
corrects it.

Third group approximates and corrects the error by the first two
groups and so on.

Under certain conditions, ‘a’ corrective steps give a rate of 1/Na.

24 / 60

Corrective Mechanism - The Main Idea

Divide Neurons into multiple groups.

First group approximates the function under consideration.

Second group approximates the error produced by the first and
corrects it.

Third group approximates and corrects the error by the first two
groups and so on.

Under certain conditions, ‘a’ corrective steps give a rate of 1/Na.

25 / 60

Corrective Mechanism - The Main Idea

Divide Neurons into multiple groups.

First group approximates the function under consideration.

Second group approximates the error produced by the first and
corrects it.

Third group approximates and corrects the error by the first two
groups and so on.

Under certain conditions, ‘a’ corrective steps give a rate of 1/Na.

26 / 60

Representation to Learning: Random Features Model

2 layer network (one linear, one non-linear):

f̂ (x) =
N∑
i=1

κiReLU(〈wi , x〉 − Ti)

Draw wi ,Ti at random and optimize over κi .

Reduces non-convex optimization problem to a smooth convex
optimization problem.

SGD for neural networks with a large number of neurons reduces to
this approximately.

27 / 60

Representation to Learning: Random Features Model

2 layer network (one linear, one non-linear):

f̂ (x) =
N∑
i=1

κiReLU(〈wi , x〉 − Ti)

Draw wi ,Ti at random and optimize over κi .

Reduces non-convex optimization problem to a smooth convex
optimization problem.

SGD for neural networks with a large number of neurons reduces to
this approximately.

28 / 60

Representation to Learning: Random Features Model

2 layer network (one linear, one non-linear):

f̂ (x) =
N∑
i=1

κiReLU(〈wi , x〉 − Ti)

Draw wi ,Ti at random and optimize over κi .

Reduces non-convex optimization problem to a smooth convex
optimization problem.

SGD for neural networks with a large number of neurons reduces to
this approximately.

29 / 60

Representation to Learning: Random Features Model

2 layer network (one linear, one non-linear):

f̂ (x) =
N∑
i=1

κiReLU(〈wi , x〉 − Ti)

Draw wi ,Ti at random and optimize over κi .

Reduces non-convex optimization problem to a smooth convex
optimization problem.

SGD for neural networks with a large number of neurons reduces to
this approximately.

30 / 60

Representation to Learning: Random Features Model

Pick wi ,Ti from some tractable distribution.

Show via. probabilistic method that there exists κ0
i which achieves an

error of at most ε.

The ‘random features’ optimization must give κ∗i which can do better
than κ0

i (error of at most ‘ε’)

31 / 60

Representation to Learning: Random Features Model

Pick wi ,Ti from some tractable distribution.

Show via. probabilistic method that there exists κ0
i which achieves an

error of at most ε.

The ‘random features’ optimization must give κ∗i which can do better
than κ0

i (error of at most ‘ε’)

32 / 60

Representation to Learning: Random Features Model

Pick wi ,Ti from some tractable distribution.

Show via. probabilistic method that there exists κ0
i which achieves an

error of at most ε.

The ‘random features’ optimization must give κ∗i which can do better
than κ0

i (error of at most ‘ε’)

33 / 60

Memorization - Proof

Data : {(x1, y1), . . . , (xn, yn)}. Construct discrete Fourier transform:

F (ξ) =
n∑

j=1

yje
i〈ξ,xj 〉 .

ξ ∼ N (0, σ2Id), σ ∼
√

log n
θ , θ = min. distance.

‘Inverse Fourier tranform’:

yj ≈ EF (ξ)e−i〈ξ,xj 〉

= E|F (ξ)| cos(〈ξ, xj〉+ ψ(ξ)) (1)

34 / 60

Memorization - Proof

Data : {(x1, y1), . . . , (xn, yn)}. Construct discrete Fourier transform:

F (ξ) =
n∑

j=1

yje
i〈ξ,xj 〉 .

ξ ∼ N (0, σ2Id), σ ∼
√

log n
θ , θ = min. distance.

‘Inverse Fourier tranform’:

yj ≈ EF (ξ)e−i〈ξ,xj 〉

= E|F (ξ)| cos(〈ξ, xj〉+ ψ(ξ)) (1)

35 / 60

Memorization - Proof

Data : {(x1, y1), . . . , (xn, yn)}. Construct discrete Fourier transform:

F (ξ) =
n∑

j=1

yje
i〈ξ,xj 〉 .

ξ ∼ N (0, σ2Id), σ ∼
√

log n
θ , θ = min. distance.

‘Inverse Fourier tranform’:

yj ≈ EF (ξ)e−i〈ξ,xj 〉

= E|F (ξ)| cos(〈ξ, xj〉+ ψ(ξ)) (1)

36 / 60

Memorization - Proof

‘Cosine Representation’ : cos function as integrals of ReLU. Let
T ∼ unif[−2, 2], independent of ξ.

yj ≈ EC (1 + Õ(1/θ2))|F (ξ)|η(T , ξ)ReLU
(
〈ξ,xj 〉
ω0
− T

)
(2)

Contruct empirical estimator: (ξk ,Tk) ∼ N (0, σ2Id)× Unif[−2, 2]
i.i.d:

ŷ
(1)
j =

1

N0

N0∑
k=1

C (1 + Õ(1/θ2))|F (ξk)|η(Tk , ξk)ReLU
(
〈ξk ,xj 〉
ω0
− Tk

)
.

37 / 60

Memorization - Proof

‘Cosine Representation’ : cos function as integrals of ReLU. Let
T ∼ unif[−2, 2], independent of ξ.

yj ≈ EC (1 + Õ(1/θ2))|F (ξ)|η(T , ξ)ReLU
(
〈ξ,xj 〉
ω0
− T

)
(2)

Contruct empirical estimator: (ξk ,Tk) ∼ N (0, σ2Id)× Unif[−2, 2]
i.i.d:

ŷ
(1)
j =

1

N0

N0∑
k=1

C (1 + Õ(1/θ2))|F (ξk)|η(Tk , ξk)ReLU
(
〈ξk ,xj 〉
ω0
− Tk

)
.

38 / 60

Memorization - Proof

Contraction in `2 via Gaussian concentration:

E‖y − ŷ(1)‖2
2 ≤ Õ(n

θ4N0
)‖y‖2

2

Correction step: replace y with y− ŷ(1) and estimate it with ŷ(2). We
conclude:

E‖y − ŷ(1) − ŷ(2)‖2
2 ≤

[
Õ(n

θ4N0
)
]2
‖y‖2

2 .

Continue l = O(log n
ε) times:

E‖y −
l∑

s=1

ŷ(s)‖ ≤
[
Õ(n

θ4N0
)
]l
‖y‖2

2 ≤ ε .

We conclude that memorization requires Õ(n
θ4 log 1

ε) activation
functions.

39 / 60

Memorization - Proof

Contraction in `2 via Gaussian concentration:

E‖y − ŷ(1)‖2
2 ≤ Õ(n

θ4N0
)‖y‖2

2

Correction step: replace y with y− ŷ(1) and estimate it with ŷ(2). We
conclude:

E‖y − ŷ(1) − ŷ(2)‖2
2 ≤

[
Õ(n

θ4N0
)
]2
‖y‖2

2 .

Continue l = O(log n
ε) times:

E‖y −
l∑

s=1

ŷ(s)‖ ≤
[
Õ(n

θ4N0
)
]l
‖y‖2

2 ≤ ε .

We conclude that memorization requires Õ(n
θ4 log 1

ε) activation
functions.

40 / 60

Memorization - Proof

Contraction in `2 via Gaussian concentration:

E‖y − ŷ(1)‖2
2 ≤ Õ(n

θ4N0
)‖y‖2

2

Correction step: replace y with y− ŷ(1) and estimate it with ŷ(2). We
conclude:

E‖y − ŷ(1) − ŷ(2)‖2
2 ≤

[
Õ(n

θ4N0
)
]2
‖y‖2

2 .

Continue l = O(log n
ε) times:

E‖y −
l∑

s=1

ŷ(s)‖ ≤
[
Õ(n

θ4N0
)
]l
‖y‖2

2 ≤ ε .

We conclude that memorization requires Õ(n
θ4 log 1

ε) activation
functions.

41 / 60

Memorization - Proof

Contraction in `2 via Gaussian concentration:

E‖y − ŷ(1)‖2
2 ≤ Õ(n

θ4N0
)‖y‖2

2

Correction step: replace y with y− ŷ(1) and estimate it with ŷ(2). We
conclude:

E‖y − ŷ(1) − ŷ(2)‖2
2 ≤

[
Õ(n

θ4N0
)
]2
‖y‖2

2 .

Continue l = O(log n
ε) times:

E‖y −
l∑

s=1

ŷ(s)‖ ≤
[
Õ(n

θ4N0
)
]l
‖y‖2

2 ≤ ε .

We conclude that memorization requires Õ(n
θ4 log 1

ε) activation
functions.

42 / 60

Representation Theorems

Similar procedure as Memorization.

Uses a mixture of ReLU and smoothed ReLU (SReLUk) activation
functions. SReLUk are same as ReLU outside a neighborhood of 0
and are 2k times continuously differentiable.

(a) ReLU (b) SReLU1

Figure: Illustrating ReLU and SReLU activation functions.

43 / 60

Representation Theorems

Similar procedure as Memorization.

Uses a mixture of ReLU and smoothed ReLU (SReLUk) activation
functions. SReLUk are same as ReLU outside a neighborhood of 0
and are 2k times continuously differentiable.

(a) ReLU (b) SReLU1

Figure: Illustrating ReLU and SReLU activation functions.

44 / 60

Representation Theorems

Approximate target function f by f̂ (1) (two layer SReLUk network)
with N activation functions.

(f − f̂ (1))2 ≤
C 2
f

N
.

Where Cf is a norm on the Fourier transform of f .3

Fourier transform of f̂ (1) is an unbiased estimator for the Fourier
tranform of f . Therefore, (roughly)

Cf−f̂ (1) ≤ C
Cf√
N
.

3Barron 1993.
45 / 60

Representation Theorems

Approximate target function f by f̂ (1) (two layer SReLUk network)
with N activation functions.

(f − f̂ (1))2 ≤
C 2
f

N
.

Where Cf is a norm on the Fourier transform of f .3

Fourier transform of f̂ (1) is an unbiased estimator for the Fourier
tranform of f . Therefore, (roughly)

Cf−f̂ (1) ≤ C
Cf√
N
.

3Barron 1993.
46 / 60

Representation Theorems

Approximate target function f by f̂ (1) (two layer SReLUk network)
with N activation functions.

(f − f̂ (1))2 ≤
C 2
f

N
.

Where Cf is a norm on the Fourier transform of f .3

Fourier transform of f̂ (1) is an unbiased estimator for the Fourier
tranform of f . Therefore, (roughly)

Cf−f̂ (1) ≤ C
Cf√
N
.

3Barron 1993.
47 / 60

Representation Theorems

Let f rem := f − f̂ (1). We can approximate f rem by f̂ (2) with N
non-linear units such that:

(f rem − f̂ (2))2 ≤
C 2
f rem

N
≤

C 2
f

N2
.

Therefore, f̂ (1) + f̂ (2) approximates f up to an error of 1
N2 . We can

continue this ‘a’ times to get rates of 1
Na .

After each corrective step, the remainder function becomes less and
less smooth till further approximation is impossible (depending on
how smooth the original function is).

48 / 60

Representation Theorems

Let f rem := f − f̂ (1). We can approximate f rem by f̂ (2) with N
non-linear units such that:

(f rem − f̂ (2))2 ≤
C 2
f rem

N
≤

C 2
f

N2
.

Therefore, f̂ (1) + f̂ (2) approximates f up to an error of 1
N2 . We can

continue this ‘a’ times to get rates of 1
Na .

After each corrective step, the remainder function becomes less and
less smooth till further approximation is impossible (depending on
how smooth the original function is).

49 / 60

Representation Theorems

Let f rem := f − f̂ (1). We can approximate f rem by f̂ (2) with N
non-linear units such that:

(f rem − f̂ (2))2 ≤
C 2
f rem

N
≤

C 2
f

N2
.

Therefore, f̂ (1) + f̂ (2) approximates f up to an error of 1
N2 . We can

continue this ‘a’ times to get rates of 1
Na .

After each corrective step, the remainder function becomes less and
less smooth till further approximation is impossible (depending on
how smooth the original function is).

50 / 60

Application : Learning Low-degree Polynomials

Consider f (x) =
∑

V JV pV (x) - degree q multinomial over Rd .

State of the art learning result via GD:4 Ω(d2qpoly(1/ε))

Purely representation results with complex deep networks:5

O(dqpolylog(1
ε)). (No learning guarantees)

Our results for learning: O(dq(1+δ)subpolyq(1/ε)) (δ → 0 as
ε→ 0). Gives us the first sub-polynomial learning guarantees.

4Andoni et al. 2014; Yehudai and Shamir 2019.
5Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.

51 / 60

Application : Learning Low-degree Polynomials

Consider f (x) =
∑

V JV pV (x) - degree q multinomial over Rd .

State of the art learning result via GD:4 Ω(d2qpoly(1/ε))

Purely representation results with complex deep networks:5

O(dqpolylog(1
ε)). (No learning guarantees)

Our results for learning: O(dq(1+δ)subpolyq(1/ε)) (δ → 0 as
ε→ 0). Gives us the first sub-polynomial learning guarantees.

4Andoni et al. 2014; Yehudai and Shamir 2019.
5Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.

52 / 60

Application : Learning Low-degree Polynomials

Consider f (x) =
∑

V JV pV (x) - degree q multinomial over Rd .

State of the art learning result via GD:4 Ω(d2qpoly(1/ε))

Purely representation results with complex deep networks:5

O(dqpolylog(1
ε)). (No learning guarantees)

Our results for learning: O(dq(1+δ)subpolyq(1/ε)) (δ → 0 as
ε→ 0). Gives us the first sub-polynomial learning guarantees.

4Andoni et al. 2014; Yehudai and Shamir 2019.
5Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.

53 / 60

Application : Learning Low-degree Polynomials

Consider f (x) =
∑

V JV pV (x) - degree q multinomial over Rd .

State of the art learning result via GD:4 Ω(d2qpoly(1/ε))

Purely representation results with complex deep networks:5

O(dqpolylog(1
ε)). (No learning guarantees)

Our results for learning: O(dq(1+δ)subpolyq(1/ε)) (δ → 0 as
ε→ 0). Gives us the first sub-polynomial learning guarantees.

4Andoni et al. 2014; Yehudai and Shamir 2019.
5Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.

54 / 60

Application: Learning Low-degree Polynomials

Learning results are an application of the representation results under
random features regime.

f (x) effective dimension q << d . It is infinitely differentiable - so we

can achieve rates of C(a,q)
Na for arbitrary a ∈ N.

Sample ωi and Ti from a tractable distribution, there exist
coefficients bi such that the random neural network

f̂ (x ;b) =
N∑
i=1

biSReLUji

(
〈ωi , x〉√

q
− Ti

)

approximates f up to a squared error of C (a, q)d
q(a+1)

Na in expectation

55 / 60

Application: Learning Low-degree Polynomials

Learning results are an application of the representation results under
random features regime.

f (x) effective dimension q << d . It is infinitely differentiable - so we

can achieve rates of C(a,q)
Na for arbitrary a ∈ N.

Sample ωi and Ti from a tractable distribution, there exist
coefficients bi such that the random neural network

f̂ (x ;b) =
N∑
i=1

biSReLUji

(
〈ωi , x〉√

q
− Ti

)

approximates f up to a squared error of C (a, q)d
q(a+1)

Na in expectation

56 / 60

Application: Learning Low-degree Polynomials

Learning results are an application of the representation results under
random features regime.

f (x) effective dimension q << d . It is infinitely differentiable - so we

can achieve rates of C(a,q)
Na for arbitrary a ∈ N.

Sample ωi and Ti from a tractable distribution, there exist
coefficients bi such that the random neural network

f̂ (x ;b) =
N∑
i=1

biSReLUji

(
〈ωi , x〉√

q
− Ti

)

approximates f up to a squared error of C (a, q)d
q(a+1)

Na in expectation

57 / 60

Learning Low-degree Polynomials

Whenever N ≥ C (a, q)dq a+1
a (εδ)−

1
a , with probability atleast 1− δ

(over the randomness in the weights), we can pick coefficients bi ,j ,V
so that squared error is at most ε.

Let a→∞ slowly enough as ε→ 0. This gives us subpolynomial
bounds.

58 / 60

Learning Low-degree Polynomials

Whenever N ≥ C (a, q)dq a+1
a (εδ)−

1
a , with probability atleast 1− δ

(over the randomness in the weights), we can pick coefficients bi ,j ,V
so that squared error is at most ε.

Let a→∞ slowly enough as ε→ 0. This gives us subpolynomial
bounds.

59 / 60

Thank You

60 / 60

	Introduction
	Overview of Results and Techniques
	Memorization
	Representation Theorems
	Learning Low-degree Polynomials

