A Corrective View of Neural Networks: Representation, Memorization and Learning

Dheeraj Nagaraj

MIT

June 2020

Joint work with Guy Bresler

Overview

(1) Introduction
(2) Overview of Results and Techniques
(3) Memorization

4 Representation Theorems
(5) Learning Low-degree Polynomials

Introduction

Neural Networks are universal approximators ${ }^{1}$. We introduce a mathematical tool to obtain

- Sharp bounds on the number of neurons required for representation

[^0]
Introduction

Neural Networks are universal approximators ${ }^{1}$. We introduce a mathematical tool to obtain

- Sharp bounds on the number of neurons required for representation
- State of the art memorization results

[^1]
Introduction

Neural Networks are universal approximators ${ }^{1}$. We introduce a mathematical tool to obtain

- Sharp bounds on the number of neurons required for representation
- State of the art memorization results
- Subpolynomial bounds on number of neurons required to learn low-degree polynomials via. SGD/GD

[^2]
Our Results - Memorization

- Neural networks can memorize (or interpolate) arbitrary labels quite easily

Our Results - Memorization

- Neural networks can memorize (or interpolate) arbitrary labels quite easily
- Long line of papers aims to understand memorization in over-parametrized networks via the study of SGD/GD

Our Results - Memorization

- Given n arbitrary points in \mathcal{S}^{d-1} with arbitrary labels, how many neurons are necessary to memorize (or interpolate) ?

Our Results - Memorization

- Given n arbitrary points in \mathcal{S}^{d-1} with arbitrary labels, how many neurons are necessary to memorize (or interpolate) ?
- minimum distance: θ, max error: ϵ (achieved via GD) Two-layer ReLU networks require $\tilde{O}\left(\frac{n}{\theta^{4}} \log \frac{1}{\epsilon}\right)$ non-linear units

Our Results - Memorization

- Given n arbitrary points in \mathcal{S}^{d-1} with arbitrary labels, how many neurons are necessary to memorize (or interpolate) ?
- minimum distance: θ, max error: ϵ (achieved via GD) Two-layer ReLU networks require $\tilde{O}\left(\frac{n}{\theta^{4}} \log \frac{1}{\epsilon}\right)$ non-linear units
- Near optimal in n for two layer ReLU networks and first work to achieve this via. GD

Our Results - Memorization

Work	Assumption	Guarantee	Remarks
$\begin{array}{\|lll} \hline \text { Allen-Zhu, } & \text { Li, } & \text { and } \\ \text { Song } 2018 \end{array}$	Minimum distance θ	$O\left(\frac{n^{24} d}{\theta^{6}}\right)$	
Du et al. 2019	Distinct points	$O\left(n^{6}\right)$	factors
Ji and Telgarsky 2019	NTK separability Minimum distance θ	$\begin{aligned} & \log (n) \\ & 0\left(\frac{n^{2}}{\theta^{4}}\right) \\ & \hline \end{aligned}$	
Oymak and Soltanolkotabi 2019	$\begin{aligned} & d \leq n \leq c d^{2}, \text { data } \\ & \text { i.i.d unif }\left(\mathcal{S}^{d-1}\right) \end{aligned}$	$O\left(\frac{n^{2}}{d}\right)$	$\begin{array}{ll} \hline \begin{array}{l} \text { w.h.p } \\ \text { data } \end{array} & \text { over } \\ \hline \end{array}$
Song and Yang 2019	Distinct points	$O\left(n^{4}\right)$	extra factors
Daniely 2019	$\begin{aligned} & n=d^{n}=\quad \text { i.i.d } \\ & u n i f\left(\mathcal{S}^{d-1}\right) \end{aligned}$	$\hat{O}(n / d)$	w.h.p data \quad over
Kawaguchi Huang 2019 and	Minimum distance θ	Of(n	
Our Work	Minimum distanc	$\stackrel{O}{\left(\frac{n}{4}\right.}$)	

Table: Comparison of Guarantees for number of non-linear units

Our Results - Representation

- Approximate $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ over a ball of radius r, with respect to squared error

Our Results - Representation

- Approximate $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ over a ball of radius r, with respect to squared error
- Let F be fourier transform of f. Suppose:

$$
\frac{1}{(2 \pi)^{d}} \int\left(1+\|\xi\|^{\Theta(a d)}\right)|F(\xi)| d \xi=: C_{f}
$$

(roughly speaking, f has $\Theta(a d)$ bounded derivatives)

Our Results - Representation

- Approximate $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ over a ball of radius r, with respect to squared error
- Let F be fourier transform of f. Suppose:

$$
\frac{1}{(2 \pi)^{d}} \int\left(1+\|\xi\|^{\Theta(a d)}\right)|F(\xi)| d \xi=: C_{f}
$$

(roughly speaking, f has $\Theta(a d)$ bounded derivatives)

- There exists a two layer network with N non-linear units of ReLU and smoothed ReLU kind such that:

$$
\operatorname{Error}(f ; \hat{f}) \leq O\left(C(a, d) \frac{C_{f}^{2}}{N^{a}}\right)
$$

Our Results - Representation

- Approximate $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ over a ball of radius r, with respect to squared error
- Let F be fourier transform of f. Suppose:

$$
\frac{1}{(2 \pi)^{d}} \int\left(1+\|\xi\|^{\Theta(a d)}\right)|F(\xi)| d \xi=: C_{f}
$$

(roughly speaking, f has $\Theta(a d)$ bounded derivatives)

- There exists a two layer network with N non-linear units of ReLU and smoothed ReLU kind such that:

$$
\operatorname{Error}(f ; \hat{f}) \leq O\left(C(a, d) \frac{C_{f}^{2}}{N^{a}}\right)
$$

- We can replace d with effective dimension $q \ll d$ when there is 'low-dimensional structure'. Ex: low-degree polynomials.

Our Results - Representation

- For functions with $\Theta(a d)$ bounded derivatives, ${ }^{2}$ previous results implement taylor series approximation

[^3]
Our Results - Representation

- For functions with $\Theta(a d)$ bounded derivatives, ${ }^{2}$ previous results implement taylor series approximation
- $O\left(\frac{1}{N^{a}}\right)$ squared error - but complex deep networks with no known training results

[^4]
Our Results - Representation

- For functions with $\Theta(a d)$ bounded derivatives, ${ }^{2}$ previous results implement taylor series approximation
- $O\left(\frac{1}{N^{a}}\right)$ squared error - but complex deep networks with no known training results
- Our results show that we can do the same with a two-layer network

[^5]
Our Results - Learning Polynomials

- Consider degree q polynomials over d-dimensional input.

Our Results - Learning Polynomials

- Consider degree q polynomials over d-dimensional input.
- With suitable random feature sampling, we can learn this class of functions via GD upto error ϵ with:

$$
O\left(C(q) d^{2 q} \operatorname{subpoly}(1 / \epsilon)\right)
$$

neurons of ReLU and smoothed ReLU kind.

Our Results - Learning Polynomials

- Consider degree q polynomials over d-dimensional input.
- With suitable random feature sampling, we can learn this class of functions via GD upto error ϵ with:

$$
O\left(C(q) d^{2 q} \operatorname{subpoly}(1 / \epsilon)\right)
$$

neurons of ReLU and smoothed ReLU kind.

- First sub-polynomial learning bounds

Corrective Mechanism - The Main Idea

- Divide Neurons into multiple groups.

Corrective Mechanism - The Main Idea

- Divide Neurons into multiple groups.
- First group approximates the function under consideration.

Corrective Mechanism - The Main Idea

- Divide Neurons into multiple groups.
- First group approximates the function under consideration.
- Second group approximates the error produced by the first and corrects it.

Corrective Mechanism - The Main Idea

- Divide Neurons into multiple groups.
- First group approximates the function under consideration.
- Second group approximates the error produced by the first and corrects it.
- Third group approximates and corrects the error by the first two groups and so on.

Corrective Mechanism - The Main Idea

- Divide Neurons into multiple groups.
- First group approximates the function under consideration.
- Second group approximates the error produced by the first and corrects it.
- Third group approximates and corrects the error by the first two groups and so on.
- Under certain conditions, 'a' corrective steps give a rate of $1 / N^{a}$.

Representation to Learning: Random Features Model

- 2 layer network (one linear, one non-linear):

$$
\hat{f}(x)=\sum_{i=1}^{N} \kappa_{i} \operatorname{ReLU}\left(\left\langle w_{i}, x\right\rangle-T_{i}\right)
$$

Representation to Learning: Random Features Model

- 2 layer network (one linear, one non-linear):

$$
\hat{f}(x)=\sum_{i=1}^{N} \kappa_{i} \operatorname{ReLU}\left(\left\langle w_{i}, x\right\rangle-T_{i}\right)
$$

- Draw w_{i}, T_{i} at random and optimize over κ_{i}.

Representation to Learning: Random Features Model

- 2 layer network (one linear, one non-linear):

$$
\hat{f}(x)=\sum_{i=1}^{N} \kappa_{i} \operatorname{ReLU}\left(\left\langle w_{i}, x\right\rangle-T_{i}\right)
$$

- Draw w_{i}, T_{i} at random and optimize over κ_{i}.
- Reduces non-convex optimization problem to a smooth convex optimization problem.

Representation to Learning: Random Features Model

- 2 layer network (one linear, one non-linear):

$$
\hat{f}(x)=\sum_{i=1}^{N} \kappa_{i} \operatorname{ReLU}\left(\left\langle w_{i}, x\right\rangle-T_{i}\right)
$$

- Draw w_{i}, T_{i} at random and optimize over κ_{i}.
- Reduces non-convex optimization problem to a smooth convex optimization problem.
- SGD for neural networks with a large number of neurons reduces to this approximately.

Representation to Learning: Random Features Model

- Pick w_{i}, T_{i} from some tractable distribution.

Representation to Learning: Random Features Model

- Pick w_{i}, T_{i} from some tractable distribution.
- Show via. probabilistic method that there exists κ_{i}^{0} which achieves an error of at most ϵ.

Representation to Learning: Random Features Model

- Pick w_{i}, T_{i} from some tractable distribution.
- Show via. probabilistic method that there exists κ_{i}^{0} which achieves an error of at most ϵ.
- The 'random features' optimization must give κ_{i}^{*} which can do better than κ_{i}^{0} (error of at most ' ϵ ')

Memorization - Proof

- Data : $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$. Construct discrete Fourier transform:

$$
F(\xi)=\sum_{j=1}^{n} y_{j} e^{i\left\langle\xi, x_{j}\right\rangle}
$$

Memorization - Proof

- Data : $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$. Construct discrete Fourier transform:

$$
F(\xi)=\sum_{j=1}^{n} y_{j} e^{i\left\langle\xi, x_{j}\right\rangle}
$$

- $\xi \sim \mathcal{N}\left(0, \sigma^{2} I_{d}\right), \sigma \sim \frac{\sqrt{\log n}}{\theta}, \theta=$ min. distance.

Memorization - Proof

- Data : $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$. Construct discrete Fourier transform:

$$
F(\xi)=\sum_{j=1}^{n} y_{j} e^{i\left\langle\xi, x_{j}\right\rangle}
$$

- $\xi \sim \mathcal{N}\left(0, \sigma^{2} I_{d}\right), \sigma \sim \frac{\sqrt{\log n}}{\theta}, \theta=\min$. distance.
- 'Inverse Fourier tranform':

$$
\begin{align*}
y_{j} & \approx \mathbb{E} F(\xi) e^{-i\left\langle\xi, x_{j}\right\rangle} \\
& =\mathbb{E}|F(\xi)| \cos \left(\left\langle\xi, x_{j}\right\rangle+\psi(\xi)\right) \tag{1}
\end{align*}
$$

Memorization - Proof

- 'Cosine Representation' : cos function as integrals of ReLU. Let $T \sim$ unif[-2, 2], independent of ξ.

$$
\begin{equation*}
y_{j} \approx \mathbb{E} C\left(1+\tilde{O}\left(1 / \theta^{2}\right)\right)|F(\xi)| \eta(T, \xi) \operatorname{ReLU}\left(\frac{\left\langle\xi, x_{j}\right\rangle}{\omega_{0}}-T\right) \tag{2}
\end{equation*}
$$

Memorization - Proof

- 'Cosine Representation' : cos function as integrals of ReLU. Let $T \sim$ unif[-2, 2], independent of ξ.

$$
\begin{equation*}
y_{j} \approx \mathbb{E} C\left(1+\tilde{O}\left(1 / \theta^{2}\right)\right)|F(\xi)| \eta(T, \xi) \operatorname{ReLU}\left(\frac{\left\langle\xi, x_{j}\right\rangle}{\omega_{0}}-T\right) \tag{2}
\end{equation*}
$$

- Contruct empirical estimator: $\left(\xi_{k}, T_{k}\right) \sim \mathcal{N}\left(0, \sigma^{2} I_{d}\right) \times \operatorname{Unif}[-2,2]$ i.i.d:

$$
\hat{y}_{j}^{(1)}=\frac{1}{N_{0}} \sum_{k=1}^{N_{0}} C\left(1+\tilde{O}\left(1 / \theta^{2}\right)\right)\left|F\left(\xi_{k}\right)\right| \eta\left(T_{k}, \xi_{k}\right) \operatorname{ReLU}\left(\frac{\left\langle\xi_{k}, x_{j}\right\rangle}{\omega_{0}}-T_{k}\right)
$$

Memorization - Proof

- Contraction in ℓ^{2} via Gaussian concentration:

$$
\mathbb{E}\left\|\mathbf{y}-\hat{\mathbf{y}}^{(1)}\right\|_{2}^{2} \leq \tilde{O}\left(\frac{n}{\theta^{4} N_{0}}\right)\|\mathbf{y}\|_{2}^{2}
$$

Memorization - Proof

- Contraction in ℓ^{2} via Gaussian concentration:

$$
\mathbb{E}\left\|\mathbf{y}-\hat{\mathbf{y}}^{(1)}\right\|_{2}^{2} \leq \tilde{O}\left(\frac{n}{\theta^{4} N_{0}}\right)\|\mathbf{y}\|_{2}^{2}
$$

- Correction step: replace \mathbf{y} with $\mathbf{y}-\hat{\mathbf{y}}^{(1)}$ and estimate it with $\hat{\mathbf{y}}^{(2)}$. We conclude:

$$
\mathbb{E}\left\|\mathbf{y}-\hat{\mathbf{y}}^{(1)}-\hat{\mathbf{y}}^{(2)}\right\|_{2}^{2} \leq\left[\tilde{O}\left(\frac{n}{\theta^{4} N_{0}}\right)\right]^{2}\|\mathbf{y}\|_{2}^{2}
$$

Memorization - Proof

- Contraction in ℓ^{2} via Gaussian concentration:

$$
\mathbb{E}\left\|\mathbf{y}-\hat{\mathbf{y}}^{(1)}\right\|_{2}^{2} \leq \tilde{O}\left(\frac{n}{\theta^{4} N_{0}}\right)\|\mathbf{y}\|_{2}^{2}
$$

- Correction step: replace \mathbf{y} with $\mathbf{y}-\hat{\mathbf{y}}^{(1)}$ and estimate it with $\hat{\mathbf{y}}^{(2)}$. We conclude:

$$
\mathbb{E}\left\|\mathbf{y}-\hat{\mathbf{y}}^{(1)}-\hat{\mathbf{y}}^{(2)}\right\|_{2}^{2} \leq\left[\tilde{O}\left(\frac{n}{\theta^{4} N_{0}}\right)\right]^{2}\|\mathbf{y}\|_{2}^{2}
$$

- Continue $I=O\left(\log \frac{\eta}{\epsilon}\right)$ times:

$$
\mathbb{E}\left\|\mathbf{y}-\sum_{s=1}^{l} \hat{\mathbf{y}}^{(s)}\right\| \leq\left[\tilde{O}\left(\frac{n}{\theta^{4} N_{0}}\right)\right]^{\prime}\|\mathbf{y}\|_{2}^{2} \leq \epsilon
$$

Memorization - Proof

- Contraction in ℓ^{2} via Gaussian concentration:

$$
\mathbb{E}\left\|\mathbf{y}-\hat{\mathbf{y}}^{(1)}\right\|_{2}^{2} \leq \tilde{O}\left(\frac{n}{\theta^{4} N_{0}}\right)\|\mathbf{y}\|_{2}^{2}
$$

- Correction step: replace \mathbf{y} with $\mathbf{y}-\hat{\mathbf{y}}^{(1)}$ and estimate it with $\hat{\mathbf{y}}^{(2)}$. We conclude:

$$
\mathbb{E}\left\|\mathbf{y}-\hat{\mathbf{y}}^{(1)}-\hat{\mathbf{y}}^{(2)}\right\|_{2}^{2} \leq\left[\tilde{O}\left(\frac{n}{\theta^{4} N_{0}}\right)\right]^{2}\|\mathbf{y}\|_{2}^{2}
$$

- Continue $I=O\left(\log \frac{\eta}{\epsilon}\right)$ times:

$$
\mathbb{E}\left\|\mathbf{y}-\sum_{s=1}^{l} \hat{\mathbf{y}}^{(s)}\right\| \leq\left[\tilde{O}\left(\frac{n}{\theta^{4} N_{0}}\right)\right]^{\prime}\|\mathbf{y}\|_{2}^{2} \leq \epsilon
$$

- We conclude that memorization requires $\tilde{O}\left(\frac{n}{\theta^{4}} \log \frac{1}{\epsilon}\right)$ activation functions.

Representation Theorems

- Similar procedure as Memorization.

Representation Theorems

- Similar procedure as Memorization.
- Uses a mixture of ReLU and smoothed ReLU (SReLU ${ }_{k}$) activation functions. SReLU_{k} are same as ReLU outside a neighborhood of 0 and are $2 k$ times continuously differentiable.

Figure: Illustrating ReLU and SReLU activation functions.

Representation Theorems

- Approximate target function f by $\hat{f}^{(1)}$ (two layer SReLU_{k} network) with N activation functions.

[^6]
Representation Theorems

- Approximate target function f by $\hat{f}^{(1)}$ (two layer SReLU_{k} network) with N activation functions.

$$
\left(f-\hat{f}^{(1)}\right)^{2} \leq \frac{C_{f}^{2}}{N}
$$

Where C_{f} is a norm on the Fourier transform of $f .{ }^{3}$

[^7]
Representation Theorems

- Approximate target function f by $\hat{f}^{(1)}$ (two layer SReLU ${ }_{k}$ network) with N activation functions.

$$
\left(f-\hat{f}^{(1)}\right)^{2} \leq \frac{C_{f}^{2}}{N}
$$

Where C_{f} is a norm on the Fourier transform of f. ${ }^{3}$

- Fourier transform of $\hat{f}^{(1)}$ is an unbiased estimator for the Fourier tranform of f. Therefore, (roughly)

$$
C_{f-\hat{f}^{(1)}} \leq C \frac{C_{f}}{\sqrt{N}}
$$

[^8]
Representation Theorems

- Let $f^{\text {rem }}:=f-\hat{f}^{(1)}$. We can approximate $f^{\text {rem }}$ by $\hat{f}^{(2)}$ with N non-linear units such that:

$$
\left(f^{\mathrm{rem}}-\hat{f}^{(2)}\right)^{2} \leq \frac{C_{\text {frem }}^{2}}{N} \leq \frac{C_{f}^{2}}{N^{2}} .
$$

Representation Theorems

- Let $f^{\text {rem }}:=f-\hat{f}^{(1)}$. We can approximate $f^{\text {rem }}$ by $\hat{f}^{(2)}$ with N non-linear units such that:

$$
\left(f^{\mathrm{rem}}-\hat{f}^{(2)}\right)^{2} \leq \frac{C_{\text {frem }}^{2}}{N} \leq \frac{C_{f}^{2}}{N^{2}}
$$

- Therefore, $\hat{f}^{(1)}+\hat{f}^{(2)}$ approximates f up to an error of $\frac{1}{N^{2}}$. We can continue this ' a ' times to get rates of $\frac{1}{N^{a}}$.

Representation Theorems

- Let $f^{\text {rem }}:=f-\hat{f}^{(1)}$. We can approximate $f^{\text {rem }}$ by $\hat{f}^{(2)}$ with N non-linear units such that:

$$
\left(f^{\mathrm{rem}}-\hat{f}^{(2)}\right)^{2} \leq \frac{C_{\text {frem }}^{2}}{N} \leq \frac{C_{f}^{2}}{N^{2}}
$$

- Therefore, $\hat{f}^{(1)}+\hat{f}^{(2)}$ approximates f up to an error of $\frac{1}{N^{2}}$. We can continue this ' a ' times to get rates of $\frac{1}{N^{a}}$.
- After each corrective step, the remainder function becomes less and less smooth till further approximation is impossible (depending on how smooth the original function is).

Application : Learning Low-degree Polynomials

- Consider $f(x)=\sum_{V} J_{V} p_{V}(x)$ - degree q multinomial over \mathbb{R}^{d}.

[^9]
Application : Learning Low-degree Polynomials

- Consider $f(x)=\sum_{V} J_{V} p_{V}(x)$ - degree q multinomial over \mathbb{R}^{d}.
- State of the art learning result via GD: ${ }^{4} \Omega\left(d^{2 q} \operatorname{poly}(1 / \epsilon)\right)$

[^10]
Application : Learning Low-degree Polynomials

- Consider $f(x)=\sum_{V} J_{V} p_{V}(x)$ - degree q multinomial over \mathbb{R}^{d}.
- State of the art learning result via GD: ${ }^{4} \Omega\left(d^{2 q}\right.$ poly $\left.(1 / \epsilon)\right)$
- Purely representation results with complex deep networks: ${ }^{5}$ $O\left(d^{q}\right.$ polylog $\left.\left(\frac{1}{\epsilon}\right)\right)$. (No learning guarantees)

[^11]
Application : Learning Low-degree Polynomials

- Consider $f(x)=\sum_{V} J_{V} p_{V}(x)$ - degree q multinomial over \mathbb{R}^{d}.
- State of the art learning result via GD: ${ }^{4} \Omega\left(d^{2 q} \operatorname{poly}(1 / \epsilon)\right)$
- Purely representation results with complex deep networks: ${ }^{5}$ $O\left(d^{a}\right.$ polylog $\left.\left(\frac{1}{\epsilon}\right)\right)$. (No learning guarantees)
- Our results for learning: $O\left(d^{q(1+\delta)}\right.$ subpoly $\left._{q}(1 / \epsilon)\right)(\delta \rightarrow 0$ as $\epsilon \rightarrow 0$). Gives us the first sub-polynomial learning guarantees.

[^12]
Application: Learning Low-degree Polynomials

- Learning results are an application of the representation results under random features regime.

Application: Learning Low-degree Polynomials

- Learning results are an application of the representation results under random features regime.
- $f(x)$ effective dimension $q \ll d$. It is infinitely differentiable - so we can achieve rates of $\frac{C(a, q)}{N^{a}}$ for arbitrary $a \in \mathbb{N}$.

Application: Learning Low-degree Polynomials

- Learning results are an application of the representation results under random features regime.
- $f(x)$ effective dimension $q \ll d$. It is infinitely differentiable - so we can achieve rates of $\frac{C(a, q)}{N^{a}}$ for arbitrary $a \in \mathbb{N}$.
- Sample ω_{i} and T_{i} from a tractable distribution, there exist coefficients b_{i} such that the random neural network

$$
\hat{f}(x ; \mathbf{b})=\sum_{i=1}^{N} b_{i} \operatorname{SReLU}_{j_{i}}\left(\frac{\left\langle\omega_{i}, x\right\rangle}{\sqrt{q}}-T_{i}\right)
$$

approximates f up to a squared error of $C(a, q) \frac{d^{q(a+1)}}{N^{a}}$ in expectation

Learning Low-degree Polynomials

- Whenever $N \geq C(a, q) d^{q \frac{a+1}{a}}(\epsilon \delta)^{-\frac{1}{a}}$, with probability atleast $1-\delta$ (over the randomness in the weights), we can pick coefficients $b_{i, j, V}$ so that squared error is at most ϵ.

Learning Low-degree Polynomials

- Whenever $N \geq C(a, q) d^{q \frac{a+1}{a}}(\epsilon \delta)^{-\frac{1}{a}}$, with probability atleast $1-\delta$ (over the randomness in the weights), we can pick coefficients $b_{i, j, V}$ so that squared error is at most ϵ.
- Let $a \rightarrow \infty$ slowly enough as $\epsilon \rightarrow 0$. This gives us subpolynomial bounds.

Thank You

[^0]: ${ }^{1}$ Cybenko 1989.

[^1]: ${ }^{1}$ Cybenko 1989.

[^2]: ${ }^{1}$ Cybenko 1989.

[^3]: ${ }^{2}$ Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.

[^4]: ${ }^{2}$ Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.

[^5]: ${ }^{2}$ Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.

[^6]: ${ }^{3}$ Barron 1993.

[^7]: ${ }^{3}$ Barron 1993.

[^8]: ${ }^{3}$ Barron 1993.

[^9]: ${ }^{4}$ Andoni et al. 2014; Yehudai and Shamir 2019.
 ${ }^{5}$ Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.

[^10]: ${ }^{4}$ Andoni et al. 2014; Yehudai and Shamir 2019.
 ${ }^{5}$ Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.

[^11]: ${ }^{4}$ Andoni et al. 2014; Yehudai and Shamir 2019.
 ${ }^{5}$ Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.

[^12]: ${ }^{4}$ Andoni et al. 2014; Yehudai and Shamir 2019.
 ${ }^{5}$ Liang and Srikant 2016; Safran and Shamir 2017; Yarotsky 2017.

