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Maximum independent sets

Definition

An independent set is a subset of vertices I ⊆ V s.t., for every u, v ∈ I,
(u, v) 6∈ E. It is said to be maximal if there is not a larger independent
set I ′ ⊆ V s.t. I ⊆ I ′. And maximum if there is no larger one.

The independence number (α(G)) is the size of the MIS.

Figure: (a) In purple, example of a maximum independent set. (b)
This independent set is maximal but not maximum, as the previous
one is larger.

(!) Finding MIS or IN are NP-hard tasks[FriezeMcDiarmid’97]



Random graphs

Sparse Erdös-Rényi graphs

A graph G = (V,E) of size n is formed by establishing an edge
between each pair of vertices independently and with a fixed
probability λ/n. Where λ > 0 is the mean degree.

Figure: Image generated using applet from www. networkpages. nl
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Random graphs

Configuration Model

I assign to each vertex v ∈ V a number dv of half-edges.

I sequentially match uniformly each half-edge to another.

I repeat until finished.

Figure: Visualisation of the Configuration Model construction.



Random graphs
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Random graphs
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Random graphs

Let D(n) be the r.v. that gives the degree of a uniform vertex.

Convergence assumption (CA): we will always assume that,

for some r.v. D, D(n) P−→ D and E(D(n)2)
n→∞−−−→ E(D2) <∞.

Theorem (Probability of simplicity[Janson’09])

Under the (CA), the probability of G ∼ CMn(d̄) being simple is
asymptotically positive.

Then, properties of this model also hold for simple graphs.

Theorem (Giant component[MolloyReed’98])

Let G ∼ CMn(d̄) and assume (CA). Then, there is w.h.p. a
giant component iff ν > 1.

Where ν is some parameter explicitly defined in terms of the
asymptotic degree distribution.



Sequential algorithms

At each time t ≥ 0 they break the vertex set into three sets:
active At, blocked Bt and unexplored Ut vertices.

In each step, they select a vertex from Ut, declare it active and
block their neighbours.

Figure: Example of sequential exploration.

In the degree-greedy only minimum degree vertices activate.

(!) At most n steps. Have polynomial time complexity.



Previous results

Very few existing characterisations of MIS of random graphs.

Erdös-Rényi

The work on maximum matchings in [KarpSipser’81][Aaronson
et al’98] implies the optimality of DG for ER graphs of mean
degree λ < e.

Configuration Model

Fluid limit for DG [Wormald’99] and asymptotic independence
number [Ding et al’16] for regular graphs. Fluid limits for
greedy algorithms [Bermolen et al’17] [Brightwell et al’17].



First optimality characterisation

A selection sequence is a finite sequence of vertices (vi)
k
i=1 s.t.

{vi}ki=1 defines a maximal independent set.

Given a selection sequence, the j-th remaining graph Gj is the
subgraph obtained by removing v1, . . . , vj and their
neighbourhoods from G.

Proposition (Sufficient condition for asymptotic optimality)

Let G ∼ CMn(d̄(n)). If the asymptotic degree distribution has an
exponentially thin tail and the DG defines w.h.p. a selection
sequence that selects only vertices of degree 1 or 0 until the
remaining graph is subcritical, then (for every 0 < α < 1)
σDG(G) = α(G) +OP(nα); where σDG(G) is the size of the IS
found by the DGA.

(!) Objective: find conditions for this proposition to hold.



Main results

The map M1(·) gives the distribution obtained after matching
the original degree 1 vertices of the graph.

Two characterisations of the near optimality condition based on
this:

Theorem (One application of the map)

Assume the degree distribution has mean λ > 0 and finite second
moment. If ν̃ := G′′D(Q)/λ < 1 (where Q := (1− p1/λ) and GD(z) is
the generating function of the degree r.v. D), then, (for every
0 < α < 1) σDG(G) = α(G) +OP(nα).

(!) Easy to verify but not general.



Main results

General criterion for asymptotic optimality: after a finite
number of applications of M1(·) the resulting distribution is
subcritical.

Theorem (Further applications of the map)

Define (for every i, j ≥ 1) ηj(i) := (−1)j−i
(
j
i

)
Ii≤j and

Q̃ :=
∑
i≥2 iQ

ipi/Q
2λ and (aj)j∈N the components of

(QkpkI{k≥2})k∈N in the base {ηj(·)}j∈N. The remaining graph after
one application of the map has distribution

M
(n)
1
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p
(n)
k

)
(i)

P−→M1
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p
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k

)
(i) :=

∑
j≥i

aj(−1)j−iQ̃j
(
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)
, for i ≥ 1.

(!) By means of this theorem, the general criterion may be
verified.



Applications

Proposition (Value of independence numbers)

Let G ∼ CMn(d̄(n)). Then, if the general criterion holds, we will have
that

α(G) = n

1−
∞∑
i=1

µ(i)(1)(1−Qi)
2

+

∞∑
j=2

(1−Qji )µ
(i)(j)

+ oP(n).

Proposition (Upper bound for independence numbers)

Let G ∼ CMn(d̄(n)). We can define parameters µ∗(i)(j) and Q∗i s.t.

α(G) ≤ n

1−
∞∑
i=1

µ∗(i)(1)(1−Q∗i )
2

+

∞∑
j=2

(1−Q∗ji )µ∗(i)(j)

+ oP(n).



Applications

Proposition (e-phenomenon)

Let G ∼ ERn(λ). If λ < e, then σDG(G) = σ(G) + oP(n).
Furthermore, in this case, α(G) = n

(
z(λ) + λ

2 z(λ)2
)

+ oP(n); where

z(λ) := e−W (λ) with W (x) the Lambert function.

For this, we analyse the sequence of degree distributions (the

distribution is always pj = Ai
µji
j! e
−µi +Biδj1)


µi+1 =

e−Aie−µi−Ai−1e
−µi−1

Ai−Ai−1e
−µi−1

µi
− e−µi

 Aiµi
Ai−Ai−1e

−µi−1
,

Ai+1 = e
−Aie

−µi−Ai−1e
−µi−1

Ai−Ai−1e
−µi−1

µi
Ai.

The solution is given in terms of the tetration operation. Result
follows by convergence of tetration in (e−1, e1/e).



Appendix: scaling limits

They are deterministic limits for stochastic processes, analogous
to the law of large numbers. Using Prohorov’s approach we
proved that:

Lemma

Let (X
(n)
t (1), X

(n)
t (2), ...) be a sequence of continuous time Markov

jump processes. Then, under suitable conditions the processes converge
in probability towards the solution of the following system of equations

yt(1) = y0(1) +

∫ t

0

δ1(ys(1), ys(2), ...)ds

yt(2) = y0(2) +

∫ t

0

δ2(ys(1), ys(2), ...)ds

. . .

Here δi(·) is a function called drift associated to the process

X
(n)
t (i) that gives its expected evolution.



Appendix: strategy of the proofs

Remember: the map M1(·) gives the distribution obtained after
matching the original degree 1 vertices of the graph.

The matching dynamics is broken into two stages:

I Phase 1: vertices of degree 1 are matched but the edges of their
neighbours are kept as new vertices.

I Phase 2: the vertices corresponding to edges of blocked vertices
are matched and the edges so formed removed.

First characterisation: concentration of the final values of
unmatched half-edges (U

(n)
t ) and unexplored degree k ≥ 1 vertices

(µ
(n)
t (k)) at the end of phase 1 (T1) + percolation argument.

U
(n)
T1
/n

P−→ Q2λ(
µ
(n)
T1

(2), ..., µ
(n)
T1

(i), ...
)

P−→
(
Q2p2, ..., Q

ipi, ...
)

Where we define Q := 1− p1/λ.



Appendix: strategy of the proofs

Second characterisation: scaling limit for the dynamics of
phase 2.
Number of unmatched half-edges (ut), blocked half-edges (bt)
and number of degree k ≥ 1 vertices (µt(k)):

ut = λ−
∫ t
0 2usds

bt = b0 −
∫ t
0 (bs + us)ds

µt(k) = QkpkI{k≥2} +
∫ t
0 (k + 1)µs(k + 1)− kµs(k)ds (for k ≥ 1)

Then, ut = λQ2e−2t and bt = Q2λe−2t − e−t
∑

i≥2 iQ
ipi.

And the equations for the degree measure are decoupled if
rewritten in the base

ηk(i) = (−1)k−i
(
k

i

)
I{i≤k}


