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Maximum independent sets

Definition

An independent set is a subset of vertices I C V s.t., for every u,v € I,
(u,v) € E. It is said to be mazimal if there is not a larger independent
set I' CV s.t. I CI'. And mazimum if there is no larger one.

The independence number (a(G)) is the size of the MIS.

(a) (b)

Figure: (a) In purple, example of a mazimum independent set. (b)
This independent set is maximal but not mazximum, as the previous
one is larger.

(!) Finding MIS or IN are NP-hard tasks[FriezeMcDiarmid’97]



A graph G = (V, E) of size n is formed by establishing an edge
between each pair of vertices independently and with a fixed
probability A/n. Where A > 0 is the mean degree.
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» assign to each vertex v € V' a number d, of half-edges.

» sequentially match uniformly each half-edge to another.

» repeat until finished.
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Figure: Visualisation of the Configuration Model construction.
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Random graphs

Let D™ be the r.v. that gives the degree of a uniform vertex.

Convergence assumption (CA): we will always assume that,
for some r.v. D, D(™ 5 D and E(D™?) 222, E(D?) < oo.

Theorem (Probability of simplicity[Janson’09])

Under the (CA), the probability of G ~ CM,(d) being simple is
asymptotically positive.

Then, properties of this model also hold for simple graphs.
Theorem (Giant component[MolloyReed’98])

Let G ~ CM,(d) and assume (CA). Then, there is w.h.p. a
giant component iff v > 1.

Where v is some parameter explicitly defined in terms of the
asymptotic degree distribution.



Sequential algorithms

At each time ¢t > 0 they break the vertex set into three sets:
active Ay, blocked B; and unexplored U; vertices.

In each step, they select a vertex from U;, declare it active and
block their neighbours.

: % o °o : % o ‘o : %
Time t = Time t =3 Time t = 23
Figure: Example of sequential exploration.

In the degree-greedy only minimum degree vertices activate.

(') At most n steps. Have polynomial time complexity.



Very few existing characterisations of MIS of random graphs.

The work on maximum matchings in [KarpSipser’81|[Aaronson
et al’98] implies the optimality of DG for ER graphs of mean
degree A\ < e.

Fluid limit for DG [Wormald’99] and asymptotic independence
number [Ding et al’16] for regular graphs. Fluid limits for
greedy algorithms [Bermolen et al’17] [Brightwell et al’17].



First optimality characterisation

A selection sequence is a finite sequence of vertices (vi)?zl s.t.
{v;}¥_, defines a maximal independent set.

Given a selection sequence, the j-th remaining graph G; is the
subgraph obtained by removing vy, ...,v; and their
neighbourhoods from G.

Proposition (Sufficient condition for asymptotic optimality)

Let G ~ CM,,(d™). If the asymptotic degree distribution has an
exponentially thin tail and the DG defines w.h.p. a selection
sequence that selects only vertices of degree 1 or 0 until the
remaining graph is subcritical, then (for every 0 < a < 1)
opc(G) = a(G) + Op(n®); where opc(QG) is the size of the IS
found by the DGA.

(') Objective: find conditions for this proposition to hold.



The map M; (-) gives the distribution obtained after matching
the original degree 1 vertices of the graph.

Two characterisations of the near optimality condition based on
this:

Assume the degree distribution has mean A > 0 and finite second
moment. If v := G'5(Q)/X <1 (where Q := (1 —p1/A) and Gp(z) is
the generating function of the degree r.v. D), then, (for every
0<a< 1) Upg(G) = a(G) + O]P:(’I’La).

(') Easy to verify but not general.



Main results

General criterion for asymptotic optimality: after a finite
number of applications of M (-) the resulting distribution is
subcritical.

Theorem (Further applications of the map)

Define (for every i,j > 1) n;(i) := (—1)7~ 1(3)L<] and

Q= > 50 1Q'pi /Q*X and (a;)jen the components of
(Qkpk]l{k_zg})keN in the base {n;(-)};jen. The remaining graph after
one application of the map has distribution

MM (pggﬂ) (i) KMl( (")) Zaj )= ZQJ( > fori > 1.

(') By means of this theorem, the general criterion may be
verified.



Let G ~ CM,(d"™). Then, if the general criterion holds, we will have
that

a(G)=n<1—fj“(i)(1’(+Q’+fj (1 - QD )+0n»<n)-

Let G ~ CM,,(d"™). We can define parameters u*¥(4) and QF s.t.

o0

(@) <n (1 ZM+Z N )) + op(n).
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Let G ~ ER,(\). If A <e, then opc(G) = O'(G) + op(n).
Furthermore, in this case, a(G) = n (2(A) + 32(\)?) + op(n); where
2(A\) == e~ W) with W (x) the Lambert functwn.

For this, we analyse the sequence of degree distributions (the

J
distribution is always p; = Ai%e_“i + B;dj1)

Aie_”i—Ai_le_’ui_l
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The solution is given in terms of the tetration operation. Result
follows by convergence of tetration in (e~!,e!/€).



Appendix: scaling limits

They are deterministic limits for stochastic processes, analogous
to the law of large numbers. Using Prohorov’s approach we
proved that:

Lemma

Let (Xt(n)(l),Xt(")(Z), ...) be a sequence of continuous time Markov
Jump processes. Then, under suitable conditions the processes converge
in probability towards the solution of the following system of equations

mn=%m+éammm%wwws

M@=WQ+A5MMM%®WM8

Here 6;(+) is a function called drift associated to the process
Xt(n) (1) that gives its expected evolution.



Appendix: strategy of the proofs

Remember: the map M (-) gives the distribution obtained after
matching the original degree 1 vertices of the graph.

The matching dynamics is broken into two stages:

» Phase 1: vertices of degree 1 are matched but the edges of their
neighbours are kept as new vertices.

» Phase 2: the vertices corresponding to edges of blocked vertices

are matched and the edges so formed removed.

First characterisation: concentration of the final values of
unmatched half-edges (Ut(n)) and unexplored degree k > 1 vertices

(ME")(k)) at the end of phase 1 (T}) + percolation argument.
Uy fn <5 QP

n n);,. P i
(u%l)(Z), ...,,u(Tl)(z)7 ) — (Q2p2, oy Q'pi, )
Where we define @ :=1— p;1/A.



Appendix: strategy of the proofs

Second characterisation: scaling limit for the dynamics of
phase 2.

Number of unmatched half-edges (u;), blocked half-edges (b;)
and number of degree k > 1 vertices (u(k)):

U= A\ — fg Qugds
by = bo — [ (bs + us)ds
pe(k) = Q iy + fo (b + Dps(k + 1) = kps(k)ds (for k> 1)

Then, u; = AQ%e% and by = Q*Ne 2 — et > o iQ'p;.
And the equations for the degree measure are decoupled if
rewritten in the base

i) = (—1)F~ (k
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