Understanding Gradient Descent for Over-parameterized Deep Neural Networks

Marco Mondelli

Institute of Science and Technology Austria (IST Austria)

Youth in High-dimensions, 2 July 2020

Training a neural network is difficult (NP-hardness, local/disconnected minima...), but it works remarkably well!

Over-parameterization

(Stochastic) gradient descent

Landscape Connectivity and Dropout Stability

[SM20] A. Shevchenko and M. Mondelli, "Landscape Connectivity and Dropout Stability of SGD Solutions for Over-parameterized Neural Networks", *ICML*, 2020.

Landscape Connectivity

 SGD minima connected via piecewise linear path with constant loss [Garipov et al., 2018; Draxler et al., 2018]

Landscape Connectivity

 SGD minima connected via piecewise linear path with constant loss [Garipov et al., 2018; Draxler et al., 2018]

 Mode connectivity proved assuming properties of well-trained networks (dropout/noise stability) [Kuditipudi et al., 2019]

Landscape of Neural Networks

- Local minima are globally optimal for deep linear networks and networks with more neurons than training samples
- Connected sublevel sets for one wide layer and pyramidal topology
- Energy gap scaling exponentially with input dimension

Landscape of Neural Networks

- Local minima are globally optimal for deep linear networks and networks with more neurons than training samples
- Connected sublevel sets for one wide layer and pyramidal topology
- Energy gap scaling exponentially with input dimension

Strong assumptions on the model and poor scaling of parameters ©

Mean Field View of Neural Networks

Discrete dynamics of SGD

Continuous dynamics of gradient flow

- Two layers [Mei et al., 2018; Rotskoff et al., 2018; Chizat et al., 2018; Sirignano et al., 2018; . . .]
- Multiple layers [Nguyen, 2019; Sirignano et al., 2019; Araujo et al., 2019]

Data:
$$\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \sim_{\text{i.i.d.}} \mathbb{P}(\mathbb{R}^d \times \mathbb{R})$$

Data:
$$\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \sim_{\text{i.i.d.}} \mathbb{P}(\mathbb{R}^d \times \mathbb{R})$$

Goal: Minimize loss
$$L_N(\theta) = \mathbb{E}\left\{\left(y - \frac{1}{N}\sum_{i=1}^N a_i \sigma(\mathbf{x}; \mathbf{w}_i)\right)^2\right\}, \ \theta = (\mathbf{w}, a)$$

Data:
$$\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \sim_{\text{i.i.d.}} \mathbb{P}(\mathbb{R}^d \times \mathbb{R})$$

Goal: Minimize loss
$$L_N(\theta) = \mathbb{E}\left\{\left(y - \frac{1}{N}\sum_{i=1}^N a_i \sigma(\mathbf{x}; \mathbf{w}_i)\right)^2\right\}, \ \theta = (\mathbf{w}, \mathbf{a})$$

Online SGD:
$$\theta^{k+1} = \theta^k + \alpha N \nabla_{\theta^k} \left(\left(y_k - \frac{1}{N} \sum_{i=1}^N a_i^k \sigma(\mathbf{x}_k; \mathbf{w}_i^k) \right)^2 \right)$$

Data:
$$\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \sim_{\text{i.i.d.}} \mathbb{P}(\mathbb{R}^d \times \mathbb{R})$$

Goal: Minimize loss
$$L_N(\theta) = \mathbb{E}\left\{\left(y - \frac{1}{N}\sum_{i=1}^N a_i \sigma(\mathbf{x}; \mathbf{w}_i)\right)^2\right\}, \ \theta = (\mathbf{w}, \mathbf{a})$$

Online SGD:
$$\theta^{k+1} = \theta^k + \alpha N \nabla_{\theta^k} \left(\left(y_k - \frac{1}{N} \sum_{i=1}^N a_i^k \sigma(\mathbf{x}_k; \mathbf{w}_i^k) \right)^2 \right)$$

- y bounded, $\nabla_{\boldsymbol{w}} \sigma(\boldsymbol{x}; \boldsymbol{w})$ sub-gaussian
- ullet σ bounded and differentiable, $abla\sigma$ bounded and Lipschitz
- initialization of a_i with bounded support

Dropout Stability

Dropout stability: loss does not change much if we remove part of neurons (and suitably rescale remaining neurons).

Dropout Stability

$$L_M(\theta) = \mathbb{E}\left\{\left(y - \frac{1}{M}\sum_{i=1}^{M} a_i \sigma(\mathbf{x}, \mathbf{w}_i)\right)^2\right\}$$

 θ is ε_{D} -dropout stable if $|L_{N}(\theta) - L_{M}(\theta)| \leq \varepsilon_{\mathrm{D}}$

Dropout Stability

$$L_M(\boldsymbol{\theta}) = \mathbb{E}\left\{\left(y - \frac{1}{M}\sum_{i=1}^{M}a_i\sigma(\boldsymbol{x}, \boldsymbol{w}_i)\right)^2\right\}$$

 θ is ε_{D} -dropout stable if $|L_{N}(\theta) - L_{M}(\theta)| \leq \varepsilon_{\mathrm{D}}$

Dropout Stability and Connectivity

$$L_M(\theta) = \mathbb{E}\left\{\left(y - \frac{1}{M}\sum_{i=1}^{M} a_i \sigma(\mathbf{x}, \mathbf{w}_i)\right)^2\right\}$$

$$\theta$$
 is ε_{D} -dropout stable if $|L_{N}(\theta) - L_{M}(\theta)| \leq \varepsilon_{\mathrm{D}}$

heta and heta' are $arepsilon_{\mathrm{C}}$ -connected if there exists a continuous path connecting them where the loss does not increase more than $arepsilon_{\mathrm{C}}$

Dropout Stability and Connectivity

$$L_M(\boldsymbol{\theta}) = \mathbb{E}\left\{\left(y - \frac{1}{M}\sum_{i=1}^{M} a_i \sigma(\boldsymbol{x}, \boldsymbol{w}_i)\right)^2\right\}$$

 θ is ε_{D} -dropout stable if $|L_{N}(\theta) - L_{M}(\theta)| \leq \varepsilon_{\mathrm{D}}$

heta and heta' are $arepsilon_{\mathrm{C}}$ -connected if there exists a continuous path connecting them where the loss does not increase more than $arepsilon_{\mathrm{C}}$

Dropout Stability, Provably

- *N* = # neurons of full network
- M = # neurons after dropout

- $\bullet \ \alpha = \mathsf{step} \ \mathsf{size} \ \mathsf{of} \ \mathsf{SGD}$
- *D* = dimension of weights

Theorem [SM20]

Let θ^k be obtained after k SGD iterations. Then, with probability $1-e^{-z^2}$, for all $k\in [T/\alpha]$, θ^k is $\varepsilon_{\rm D}$ -dropout stable with

$$arepsilon_{\mathrm{D}} = \mathcal{K} e^{\mathcal{K} \mathcal{T}^3} \left(rac{\sqrt{\log M} + z}{\sqrt{M}} + \sqrt{lpha} \left(\sqrt{D + \log N} + z
ight) \right).$$

Dropout Stability, Provably

- *N* = # neurons of full network
- M = # neurons after dropout

- $\alpha = \text{step size of SGD}$
- *D* = dimension of weights

Theorem [SM20]

Let θ^k be obtained after k SGD iterations. Then, with probability $1 - e^{-z^2}$, for all $k \in [T/\alpha]$, θ^k is ε_D -dropout stable with

$$arepsilon_{\mathrm{D}} = \mathcal{K}e^{\mathcal{K}T^3} \left(rac{\sqrt{\log M} + z}{\sqrt{M}} + \sqrt{lpha} ig(\sqrt{D + \log N} + z ig)
ight).$$

Change in loss scales as
$$\sqrt{\frac{\log M}{M}} + \sqrt{\alpha(D + \log N)}$$

Theorem [SM20]

Let θ^k be obtained after k SGD iterations using $\{(\mathbf{x}_j, y_j)\}_{j=0}^k \sim \mathbb{P}$, and $(\theta')^{k'}$ after k' SGD iterations using $\{(\mathbf{x}_j', y_j')\}_{j=0}^{k'} \sim \mathbb{P}$.

Theorem [SM20]

Let $\boldsymbol{\theta}^k$ be obtained after k SGD iterations using $\{(\boldsymbol{x}_j,y_j)\}_{j=0}^k \sim \mathbb{P}$, and $(\boldsymbol{\theta}')^{k'}$ after k' SGD iterations using $\{(\boldsymbol{x}_j',y_j')\}_{j=0}^{k'} \sim \mathbb{P}$. Then, with probability $1-e^{-z^2}$, for all $k \in [T/\alpha]$ and $k' \in [T'/\alpha]$, $\boldsymbol{\theta}^k$ and $(\boldsymbol{\theta}')^{k'}$ are ε_{C} -connected with

$$\varepsilon_{\mathrm{C}} = K e^{K \max(T, T')^3} \left(\frac{\sqrt{\log N} + z}{\sqrt{N}} + \sqrt{\alpha} \left(\sqrt{D + \log N} + z \right) \right).$$

Theorem [SM20]

Let $\boldsymbol{\theta}^k$ be obtained after k SGD iterations using $\{(\mathbf{x}_j, y_j)\}_{j=0}^k \sim \mathbb{P}$, and $(\boldsymbol{\theta}')^{k'}$ after k' SGD iterations using $\{(\mathbf{x}_j', y_j')\}_{j=0}^{k'} \sim \mathbb{P}$. Then, with probability $1 - e^{-\mathbf{z}^2}$, for all $k \in [T/\alpha]$ and $k' \in [T'/\alpha]$, $\boldsymbol{\theta}^k$ and $(\boldsymbol{\theta}')^{k'}$ are $\varepsilon_{\mathbf{C}}$ -connected with

$$\varepsilon_{\mathrm{C}} = K e^{K \max(T, T')^3} \left(\frac{\sqrt{\log N} + z}{\sqrt{N}} + \sqrt{\alpha} \left(\sqrt{D + \log N} + z \right) \right).$$

• Change in loss scales as $\sqrt{\frac{\log N}{N}} + \sqrt{\alpha(D + \log N)}$

Theorem [SM20]

Let $\boldsymbol{\theta}^k$ be obtained after k SGD iterations using $\{(\boldsymbol{x}_j,y_j)\}_{j=0}^k \sim \mathbb{P}$, and $(\boldsymbol{\theta}')^{k'}$ after k' SGD iterations using $\{(\boldsymbol{x}_j',y_j')\}_{j=0}^{k'} \sim \mathbb{P}$. Then, with probability $1-e^{-z^2}$, for all $k\in [T/\alpha]$ and $k'\in [T'/\alpha]$, $\boldsymbol{\theta}^k$ and $(\boldsymbol{\theta}')^{k'}$ are ε_{C} -connected with

$$\varepsilon_{\mathrm{C}} = K e^{K \max(T, T')^3} \left(\frac{\sqrt{\log N} + z}{\sqrt{N}} + \sqrt{\alpha} \left(\sqrt{D + \log N} + z \right) \right).$$

- Change in loss scales as $\sqrt{\frac{\log N}{N}} + \sqrt{\alpha(D + \log N)}$
- Can connect SGD solutions obtained from different training data (but same data distribution) and different initialization

Discrete dynamics of SGD

Continuous dynamics of gradient flow

Discrete dynamics of SGD

Continuous dynamics of gradient flow

ullet $heta^k$ close to N i.i.d. particles that evolve with gradient flow

Discrete dynamics of SGD

Continuous dynamics of gradient flow

- ullet $oldsymbol{ heta}^k$ close to N i.i.d. particles that evolve with gradient flow
- ullet $L_N(oldsymbol{ heta}^k)$ and $L_M(oldsymbol{ heta}^k)$ concentrate to the same limit

Discrete dynamics of SGD

Continuous dynamics of gradient flow

- ullet $oldsymbol{ heta}^k$ close to N i.i.d. particles that evolve with gradient flow
- $L_N(\theta^k)$ and $L_M(\theta^k)$ concentrate to the same limit
- Dropout stability with $M = N/2 \Rightarrow$ connectivity

Multilayer Networks

• *N* = # neurons per layer of full network

- $\bullet \ \alpha = \mathsf{step} \ \mathsf{size} \ \mathsf{of} \ \mathsf{SGD}$
- ullet $M=\max$. # neurons per layer after dropout
- $\bullet \ D = \max(d_x, d_y)$

Theorem [SM20]

Let θ^k be obtained after k SGD iterations, with $k=T/\alpha$. Then, w. p. $1-e^{-z^2}$, θ^k is $\varepsilon_{\rm D}$ -dropout stable with

$$\varepsilon_{\mathrm{D}} = K(T, L) \left(\frac{\sqrt{D} + z}{\sqrt{M}} + \frac{\sqrt{\log N}}{\sqrt{N}} + \sqrt{\alpha} \left(\sqrt{D + \log N} + z \right) \right).$$

Let $(\theta')^{k'}$ be obtained after k' SGD iterations, with $k' = T'/\alpha$. Then, w. p. $1 - e^{-z^2}$, θ^k and $(\theta')^{k'}$ are $\varepsilon_{\rm C}$ -connected with

$$\varepsilon_{\mathrm{C}} = K(T, T', L) \left(\frac{\sqrt{D + \log N} + z}{\sqrt{N}} + \sqrt{\alpha} \left(\sqrt{D + \log N} + z \right) \right).$$

Numerical Results

Global Convergence Without Rates

Discrete dynamics of SGD

Continuous dynamics of gradient flow

Many tasks in machine learning and signal processing can be solved by minimizing

a convex function of a measure. This includes sparse spikes deconvolution or

training a neural network with a single hidden layer. For these problems, we study a simple minimization method; the unknown measure is discretized into a mixture of particles and a continuous-time gradient descent is performed on their weights

Data Model

Data:
$$\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \sim_{\text{i.i.d.}} \mathbb{P}(\mathbb{R}^d \times \mathbb{R})$$

 $\mathbf{x}_i \sim \mathsf{Unif}(\Omega) \text{ and } y_i = f(\mathbf{x}_i)$

Data Model

Data:
$$\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \sim_{\text{i.i.d.}} \mathbb{P}(\mathbb{R}^d \times \mathbb{R})$$

 $\mathbf{x}_i \sim \mathsf{Unif}(\Omega) \text{ and } y_i = f(\mathbf{x}_i)$

- ullet Ω bounded and convex
- $\begin{tabular}{ll} \bullet & f \mbox{ positive, smooth and} \\ \gamma\mbox{-strongly concave} \end{tabular}$

Problem Statement

Goal: Minimize loss
$$L_N(\mathbf{w}) = \mathbb{E}\left\{\left(y - \frac{1}{N}\sum_{i=1}^N \sigma(\mathbf{x}; \mathbf{w}_i)\right)^2\right\}$$

Problem Statement

Goal: Minimize loss
$$L_N(\mathbf{w}) = \mathbb{E}\left\{\left(y - \frac{1}{N}\sum_{i=1}^N \sigma(\mathbf{x}; \mathbf{w}_i)\right)^2\right\}$$

- σ 'bump'-like $\sigma(\mathbf{x}; \mathbf{w}_i) = K^{\delta}(\mathbf{x} \mathbf{w}_i)$
 - $\mathbf{w}_i = \text{center of bump}$
- δ = width of the bump $K^{\delta}(\mathbf{x}) = \delta^{-d} K(\mathbf{x}/\delta)$

Exponential and Dimension-free Convergence Rate

Theorem [JMM20]

Let f be γ -strongly concave, σ a bump of width δ , and ${\pmb w}^k$ obtained after k SGD iterations with step size α . Then, with high probability,

$$\underbrace{L_{\textit{N}}(\textbf{\textit{w}}^{\textit{k}})}_{\text{loss at step }\textit{k}} \leq L_{\textit{N}}(\textbf{\textit{w}}^{0})\underbrace{e^{-2\gamma\textit{k}\alpha}}_{\text{exp. rate}} + \underbrace{\Delta(\textit{N},\alpha,\delta)}_{\text{distance to opt.}},$$

where $\Delta(N, \alpha, \delta) \to 0$ as $N \to \infty$, $\alpha \to 0$, and $\delta \to 0$.

• As $\delta \to 0$, gradient flow optimizes a **displacement convex** loss.

[JMM20] A. Javanmard, M. Mondelli, and A. Montanari, "Analysis of a Two-Layer Neural Network via Displacement Convexity", *Annals of Statistics*, 2020+.

Thank You for Your Attention

