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Understanding Gradient Descent for Over-parameterized Deep Neural Networks

Training a neural network is difficult (NP-hardness,
local /disconnected minima...), but it works remarkably well!
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Over-parameterization (Stochastic) gradient descent
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Landscape Connectivity and Dropout Stability
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[SM20] A. Shevchenko and M. Mondelli, “Landscape Connectivity and Dropout
Stability of SGD Solutions for Over-parameterized Neural Networks”, ICML, 2020.
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Landscape Connectivity

® SGD minima connected via piecewise linear path with
constant loss [Garipov et al., 2018; Draxler et al., 2018]
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Landscape Connectivity

® SGD minima connected via piecewise linear path with
constant loss [Garipov et al., 2018; Draxler et al., 2018]
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® Mode connectivity proved assuming properties of well-trained
networks (dropout/noise stability) [Kuditipudi et al., 2019]
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Landscape of Neural Networks

® Local minima are globally optimal for deep linear networks and
networks with more neurons than training samples

e Connected sublevel sets for one wide layer and pyramidal topology

® Energy gap scaling exponentially with input dimension
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Landscape of Neural Networks

® | ocal minima are globally optimal for deep linear networks and
networks with more neurons than training samples

® Connected sublevel sets for one wide layer and pyramidal topology

® Energy gap scaling exponentially with input dimension

Strong assumptions on the model and poor scaling of parameters ®

Marco Mondelli (IST Austria) 5/18



Understanding Gradient Descent for Over-parameterized Deep Neural Networks

Mean Field View of Neural Networks
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Discrete dynamics of SGD Continuous dynamics of
gradient flow

® Two layers [Mei et al., 2018; Rotskoff et al., 2018; Chizat et
al., 2018; Sirignano et al., 2018; .. ]

® Multiple layers [Nguyen, 2019; Sirignano et al., 2019; Araujo
et al., 2019]
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Warm-Up: Two-Layer Networks

Data: {(x1,y1),---,(Xn, ¥n)} ~iid P(RY x R)
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Warm-Up: Two-Layer Networks

Data: {(x1,y1),---,(Xn, ¥n)} ~iid P(RY x R)

Goal: Minimize loss Ly(0) = E{ (y - /:t/zN: aio(x; w,-)>2}, 0 = (w,a)
i=1
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Warm-Up: Two-Layer Networks

Data: {(x1,y1),---,(Xn, ¥n)} ~iid P(RY x R)

Goal: Minimize loss Ly(0) = IE{ (y - /:sz: aio(x; w,-)>2}, 0 = (w,a)
i=1
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Warm-Up: Two-Layer Networks

Data: {(x1,y1),---,(Xn, ¥n)} ~iid P(RY x R)

Goal: Minimize loss Ly(0) = IE{ (y - /:sz: aio(x; w,-)>2}, 0 = (w,a)
i=1

N
1 2
. . pk+l _ pk _ k - wk
Online SGD: 6% = 0% + aNV g« <(yk N ;—1 ajo(xx; wi )) >

® y bounded, Vo (x; w) sub-gaussian
® o bounded and differentiable, Vo bounded and Lipschitz

® initialization of a; with bounded support
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Dropout Stability

Dropout stability: loss does not change much if we remove part
of neurons (and suitably rescale remaining neurons).
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Dropout Stability

Lm(0) = {(y—za, xw,)}

0 is cp-dropout stable if |Ly(0) — Ly(0)] < ep
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Dropout Stability

Li(6) = ]E{ (y - % ﬁl a0 (x, w,-))2}

0 is cp-dropout stable if |Ly(0) — Ly(0)] < ep
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Dropout Stability and Connectivity

L(0) = E{ (v~ Al/,i:;a,a(x, w,-))2}

0 is ep-dropout stable if |Ly(0) — Ly(0)| < ep

6 and @' are ec-connected if there exists a continuous path
connecting them where the loss does not increase more than ¢
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Dropout Stability and Connectivity

0 is ep-dropout stable if [Ly(0) — Lp(0)] < ep

6 and @' are ec-connected if there exists a continuous path
connecting them where the loss does not increase more than e¢

40
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Dropout Stability, Provably

e N = # neurons of full network e o = step size of SGD

e M = # neurons after dropout e D = dimension of weights

Theorem [SM20]

Let 6% be obtained after k SGD iterations. Then, with probability
1—e %, for all k € [T/a], 0 is ep-dropout stable with

_ KeKT® <\/Iog M + z

NI +\/a( D—HogN—I—z)).
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Dropout Stability, Provably

e N = # neurons of full network e o = step size of SGD

e M = # neurons after dropout e D = dimension of weights

Theorem [SM20]

Let 6% be obtained after k SGD iterations. Then, with probability
1—e %, for all k € [T/a], 0 is ep-dropout stable with

_ KeKT® <\/Iog M + z

N + Vo D+IogN—|—z)>.

[log M
Change in loss scales as % + v/ a(D + log N)
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Connectivity, Provably

Theorem [SM20]

Let 8% be obtained after k SGD iterations using {(xj,yj)}jf:o ~P,

and (0") after k” SGD iterations using {(x},¥)) J"io ~P.
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Connectivity, Provably

Theorem [SM20]

Let 8% be obtained after k SGD iterations using {(xj,yj)}jf:o ~P,
and (0") after k” SGD iterations using {(x},¥)) J,‘io ~ P. Then,
with probability 1 — e=", for all k € [T/a] and k" € [T'/a], 6%
and (0')%" are ec-connected with

KeKmaxTT/p(\/Io%F—i-z_i_\F( D+IogN+z)>.
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Connectivity, Provably

Theorem [SM20]
Let 8% be obtained after k SGD iterations using {(xj,yj)}f:o ~ P,
and (0") after k” SGD iterations using {(x},¥)) J,‘io ~ P. Then,
with probability 1 — e=", for all k € [T/a] and k" € [T'/a], 6%
and (6")¥" are ec-connected with

KeKmaxTT/)3<\/Io%F+z+\F( D+IogN+z)>.

log N
® Change in loss scales as 1/% + v/ a(D + log N)
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Connectivity, Provably

Theorem [SM20]

Let 8% be obtained after k SGD iterations using {(xj,yj)}jf:o ~P,
and (0") after k” SGD iterations using {(x},¥)) J,‘io ~ P. Then,
with probability 1 — e=", for all k € [T/a] and k" € [T'/a], 6%
and (0')%" are ec-connected with

KeKmaxTT/)3<\/Io%F+z+\F( D—l—logN—i—z)).

log N
® Change in loss scales as 1/% + v/ a(D + log N)

® Can connect SGD solutions obtained from different training
data (but same data distribution) and different initialization
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Discrete dynamics of SGD

Proof Idea

Continuous dynamics of
gradient flow
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Proof Idea
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Discrete dynamics of SGD Continuous dynamics of
gradient flow

® 90X close to N i.i.d. particles that evolve with gradient flow
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Proof Idea

CO0CQ0

O 00

Discrete dynamics of SGD Continuous dynamics of
gradient flow

® 90X close to N i.i.d. particles that evolve with gradient flow

e [n(6%) and Lpy(6%) concentrate to the same limit
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Proof Idea

CO0CQ0

O 00

Discrete dynamics of SGD Continuous dynamics of
gradient flow

® 90X close to N i.i.d. particles that evolve with gradient flow
e [n(6%) and Lpy(6%) concentrate to the same limit

® Dropout stability with M = N/2 = connectivity
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Multilayer Networks

e N = # neurons per layer of full network e o = step size of SGD

e M = max. # neurons per layer after dropout e D = max(dx, d,)

Theorem [SM20]

Let 8% be obtained after k SGD iterations, with k = T /a. Then,
w. p. 1— e, 0k is ep-dropout stable with

ep = K(T,L) <\/\5/$Z+ I\jgNN+\/a( D+IogN+z)>.

Let (6')%" be obtained after k' SGD iterations, with k' = T'/a.
Then, w. p. 1 — e %, 6% and (8)%" are ec-connected with

ec = K(T, T’,L)( N

SO OENAE e D+|ogN+z)>.
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Numerical Results
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Global Convergence Without Rates
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Discrete dynamics of SGD

A mean field view of the landscape of two-layer

neural networks
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Data Model

Data: {(x1,y1),.--, (Xn, ¥n)} ~iia. P(RY x R)
Xj ~ Unlf(Q) and yi = f(X,')
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Data Model

Data: {(x1,y1),.--, (Xn, ¥n)} ~iia. P(RY x R)
Xj ~ Unlf(Q) and yi = f(X,')
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Problem Statement

Goal: Minimize loss Ly(w) = E{( _1 o(x; Wi))z}

Marco Mondelli (IST Austria) 16 / 18



Understanding Gradient Descent for Over-parameterized Deep Neural Networks

Problem Statement

Goal: Minimize loss Ly(w) = E{( - = o(x; W")>2}

® 5 ‘bump’-like
o(x;w;) = KO(x — w;)

® w; = center of bump

® ) = width of the bump
K(x) = 6~ 9K(x/9)
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Exponential and Dimension-free Convergence Rate

Theorem [JMM20]

Let f be ~-strongly concave, o a bump of width §, and w*
obtained after k SGD iterations with step size . Then, with high
probability,

Ly(w®) < Ly(w®) e 2% 4+ A(N, a,d) ,
n(w") < Ly(w”), , ( )

exp. rate

loss at step k distance to opt.

where A(N,a,9) - 0as N — oo, « — 0, and § — 0.

® As ) — 0, gradient flow optimizes a displacement convex loss.

[JMM20] A. Javanmard, M. Mondelli, and A. Montanari, “Analysis of a Two-Layer
Neural Network via Displacement Convexity”, Annals of Statistics, 2020+.
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Thank You for Your Attention

hidden layer 1 hidden layer 2 hidden layer 3

input layer
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