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Understanding Gradient Descent for Over-parameterized Deep Neural Networks

Training a neural network is difficult (NP-hardness,
local/disconnected minima. . .), but it works remarkably well!

Over-parameterization (Stochastic) gradient descent
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Landscape Connectivity and Dropout Stability

[SM20] A. Shevchenko and M. Mondelli, “Landscape Connectivity and Dropout
Stability of SGD Solutions for Over-parameterized Neural Networks”, ICML, 2020.
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Landscape Connectivity

• SGD minima connected via piecewise linear path with
constant loss [Garipov et al., 2018; Draxler et al., 2018]

• Mode connectivity proved assuming properties of well-trained
networks (dropout/noise stability) [Kuditipudi et al., 2019]
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Landscape of Neural Networks

• Local minima are globally optimal for deep linear networks and
networks with more neurons than training samples

• Connected sublevel sets for one wide layer and pyramidal topology
• Energy gap scaling exponentially with input dimension
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Landscape of Neural Networks

• Local minima are globally optimal for deep linear networks and
networks with more neurons than training samples

• Connected sublevel sets for one wide layer and pyramidal topology
• Energy gap scaling exponentially with input dimension

Strong assumptions on the model and poor scaling of parameters /
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Mean Field View of Neural Networks

Discrete dynamics of SGD

−→

Continuous dynamics of
gradient flow

• Two layers [Mei et al., 2018; Rotskoff et al., 2018; Chizat et
al., 2018; Sirignano et al., 2018; . . .]

• Multiple layers [Nguyen, 2019; Sirignano et al., 2019; Araujo
et al., 2019]
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Warm-Up: Two-Layer Networks

Data: {(x1, y1), . . . , (xn, yn)} ∼i.i.d. P(Rd × R)

Goal: Minimize loss LN(θ) = E
{(

y − 1
N

N∑
i=1

aiσ(x;wi)
)2
}

, θ = (w , a)

Online SGD: θk+1 = θk + αN∇θk

((
yk − 1

N

N∑
i=1

ak
i σ(xk ;wk

i )
)2
)

• y bounded, ∇wσ(x;w) sub-gaussian
• σ bounded and differentiable, ∇σ bounded and Lipschitz
• initialization of ai with bounded support
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Dropout Stability

and Connectivity

Dropout stability: loss does not change much if we remove part
of neurons (and suitably rescale remaining neurons).

θ is εD-dropout stable if |LN(θ)− LM(θ)| ≤ εD
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Dropout Stability and Connectivity

LM(θ) = E
{(

y − 1
M

M∑
i=1

aiσ(x,wi)
)2
}

θ is εD-dropout stable if |LN(θ)− LM(θ)| ≤ εD

θ and θ′ are εC-connected if there exists a continuous path
connecting them where the loss does not increase more than εC
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Dropout Stability, Provably
• N = # neurons of full network
• M = # neurons after dropout

• α = step size of SGD
• D = dimension of weights

Theorem [SM20]
Let θk be obtained after k SGD iterations. Then, with probability
1 − e−z2 , for all k ∈ [T/α], θk is εD-dropout stable with

εD = KeKT 3
(√

logM + z√
M

+
√
α
(√

D + logN + z
))

.

Change in loss scales as
√

logM
M +

√
α(D + logN)
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Connectivity, Provably

Theorem [SM20]
Let θk be obtained after k SGD iterations using {(xj , yj)}k

j=0 ∼ P,
and (θ′)k′ after k ′ SGD iterations using {(x ′

j , y ′
j )}k′

j=0 ∼ P.

Then,
with probability 1 − e−z2 , for all k ∈ [T/α] and k ′ ∈ [T ′/α], θk

and (θ′)k′ are εC-connected with

εC = KeK max(T ,T ′)3
(√

logN + z√
N

+
√
α
(√

D + logN + z
))

.

• Change in loss scales as
√

logN
N +

√
α(D + logN)

• Can connect SGD solutions obtained from different training
data (but same data distribution) and different initialization
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Proof Idea

Discrete dynamics of SGD

−→

Continuous dynamics of
gradient flow

• θk close to N i.i.d. particles that evolve with gradient flow

• LN(θ
k) and LM(θk) concentrate to the same limit

• Dropout stability with M = N/2 ⇒ connectivity
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Multilayer Networks
• N = # neurons per layer of full network
• M = max. # neurons per layer after dropout

• α = step size of SGD
• D = max(dx , dy )

Theorem [SM20]
Let θk be obtained after k SGD iterations, with k = T/α. Then,
w. p. 1 − e−z2 , θk is εD-dropout stable with

εD = K (T , L)
(√

D + z√
M

+

√
logN√

N
+
√
α
(√

D + logN + z
))

.

Let (θ′)k′ be obtained after k ′ SGD iterations, with k ′ = T ′/α.
Then, w. p. 1 − e−z2 , θk and (θ′)k′ are εC-connected with

εC = K (T ,T ′, L)
(√

D + logN + z√
N

+
√
α
(√

D + logN + z
))

.
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Numerical Results
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Global Convergence Without Rates

Discrete dynamics of SGD

−→

Continuous dynamics of
gradient flow
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Data Model

Data: {(x1, y1), . . . , (xn, yn)} ∼i.i.d. P(Rd × R)

xi ∼ Unif(Ω) and yi = f (xi)

• Ω bounded and convex

• f positive, smooth and
γ-strongly concave
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Problem Statement

Goal: Minimize loss LN(w) = E
{(

y − 1
N

N∑
i=1

σ(x;wi)
)2}

• σ ‘bump’-like
σ(x;wi) = K δ(x − wi)

• wi = center of bump

• δ = width of the bump
K δ(x) = δ−dK (x/δ)
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Exponential and Dimension-free Convergence Rate

Theorem [JMM20]
Let f be γ-strongly concave, σ a bump of width δ, and wk

obtained after k SGD iterations with step size α. Then, with high
probability,

LN(wk)︸ ︷︷ ︸
loss at step k

≤ LN(w0) e−2γkα︸ ︷︷ ︸
exp. rate

+ ∆(N, α, δ)︸ ︷︷ ︸
distance to opt.

,

where ∆(N, α, δ) → 0 as N → ∞, α → 0, and δ → 0.

• As δ → 0, gradient flow optimizes a displacement convex loss.

[JMM20] A. Javanmard, M. Mondelli, and A. Montanari, “Analysis of a Two-Layer
Neural Network via Displacement Convexity”, Annals of Statistics, 2020+.
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Thank You for Your Attention

Marco Mondelli (IST Austria) 18 / 18


