The Replica Symmetric Phase of Random Constraint Satisfaction Problems

Noela Müller

Goethe-University Frankfurt

Youth in High-dimensions ICTP Triest, 2nd of July 2020

Joint work with Amin Coja–Oghlan and Tobias Kapetanopoulos

OVERVIEW

- Planted Coloring
- Solution space geometry
- Results

Planted Coloring: Step 1

Given: $V = \{x_1, \ldots, x_n\}$ set of *n* vertices, and $q \in \mathbb{N}$ colours

For each $i \in [n]$ independently, draw a uniform colour $\sigma^*(x_i)$ from [q]

Planted Coloring: Step 2

For each $i, j \in [n]$ with $\sigma(x_i) \neq \sigma(x_j)$, let $\{x_i, x_j\} \in E$ w. p. d/n, d > 0.

THE INFERENCE PROBLEM

Goal: Draw conclusions about σ^* from G = (V, E).

The inference problem

I) Is ${m G}^*({m \sigma}^*)$ distinguishable from the binomial random graph ${m G}(n,(q-1)p/(qn))?$

II) With

$$\omega(\tau, \boldsymbol{\sigma}^*) = \frac{1}{n} \sum_{i=1}^n \mathbf{1} \left\{ \tau_{x_i} = \boldsymbol{\sigma}_{x_i}^* \right\},\,$$

do there exist a polynomial-time algorithm \mathcal{A} and $\varepsilon > 0$ such that $\mathcal{A}(\mathbf{G}^*)$ outputs a colouring τ with

$$\mathbb{P}\left(\omega(au, oldsymbol{\sigma}^*) > (1+arepsilon)/q
ight) = 1 - o(1)?$$

EVOLUTION OF THE SOLUTION SPACE OF PLANTED COLOURING

FIGURE: An adaption of Krząkała and Zdeborová '09.

ALGORITHMIC AND INFORMATION-THEORETIC PREDICTIONS

 d_{clust} d_{KS} d

FIGURE: Predictions by Decelle, Krząkała, Moore and Zdeborová '13

Deterministic spectral algorithm with expected polynomial running time that finds a colouring correlated with the ground truth with probability 1 - o(1), if d > c for some large absolute constant c.

The algorithm starts with a spectral approach and then performs some local improvement steps to yield a proper colouring.

- verify prediction on the location of the condensation threshold
- ▶ identify d_{cond} as the threshold below which it is not information-theoretically possible to discern the planted and the null model

MORE GENERAL RANDOM CONSTRAINT SATISFACTION PROBLEMS

• variable set
$$V = \{x_1, \ldots, x_n\}$$

• constraints $F = \{a_1, \ldots, a_m\}$, chosen randomly

MORE GENERAL RANDOM CONSTRAINT SATISFACTION PROBLEMS

- variable set $V = \{x_1, \ldots, x_n\}$
- constraints $F = \{a_1, \ldots, a_m\}$, chosen randomly

EVOLUTION OF *SOL*

If each constraint binds exactly k variables, consider

 $\boldsymbol{m} \sim Poi(dn/k)$

many constraints.

How does the solution space evolve when the density parameter d increases?

EVOLUTION OF *SOL*

If each constraint binds exactly k variables, consider

 $\boldsymbol{m} \sim Poi(dn/k)$

many constraints.

How does the solution space evolve when the density parameter d increases? Important quantities:

- The number of solutions: partition function Z(G)
- ► The uniform measure on solutions: Boltzmann distribution µ_G: If Z(G) > 0, set

$$\mu_G(\sigma) = \frac{\mathbf{1}\{\sigma \text{ is a solution}\}}{Z(G)}$$

• Inspect $Z(\mathbb{G})$ and $\mu_{\mathbb{G}}$ for increasing *density* parameters d > 0.

EVOLUTION OF THE SOLUTION SPACE OF RCSPS

FIGURE: An adaption of a conjecture by Krząkała, Montanari, Ricci-Tersenghi, Semerjian and Zdeborová '07.

THEOREM (Coja-Oghlan, Kapetanopoulos, Müller '20)

Let d > 0. With γ a Po(d)-random variable, $\rho_1^{(\pi)}, \rho_2^{(\pi)}, \ldots$ chosen from $\pi \in P(\Omega)$ and $\psi_1, \psi_2, \ldots \in \Psi$ chosen from P, all mutually independent, let

$$\mathcal{B}(d,P,\pi) = \mathbb{E}\left[q^{-1} \xi^{-\boldsymbol{\gamma}} A\left(\sum_{\sigma \in \Omega} \prod_{i=1}^{\boldsymbol{\gamma}} \sum_{\tau \in \Omega^k} \mathbf{1}_{\{\tau_k = \sigma\}} \psi_i(\tau) \prod_{j=1}^{k-1} \rho_{ki+j}^{(\pi)}(\tau_j)\right) - \frac{d(k-1)}{k\xi} A\left(\sum_{\tau \in \Omega^k} \psi_1(\tau) \prod_{j=1}^k \rho_j^{(\pi)}(\tau_j)\right)\right],$$

$$d_{ ext{cond}} = \inf \left\{ d > 0 \, : \, \sup_{\pi \in \mathcal{P}^2_*(\Omega)} \mathcal{B}(d, P, \pi) > \ln q + rac{d}{k} \ln \xi
ight\}.$$

Then $1/(k-1) \leq d_{cond}(q) < \infty$ and for all $d < d_{cond}(q)$ we have

 $\sqrt[n]{Z(\mathbb{G})} \xrightarrow{n \to \infty} q\xi^{d/k}$ in probability.

By constrast, for any $d > d_{cond}(q)$ there exists $\varepsilon > 0$ such that

$$\limsup_{n\to\infty} \mathrm{P}\left[\sqrt[n]{Z(\mathbb{G})} > q\xi^{d/k} - \varepsilon\right]^{\frac{1}{n}} < 1 - \varepsilon.$$

LIMITING DISTRIBUTION

Let $(\mathcal{K}_{\ell})_{\ell \geq 1}$ be Poisson variables with means $E[\mathcal{K}_{\ell}] = \frac{1}{2\ell} (d(k-1))^{\ell}$ and let $(\psi_{\ell,i,j})_{\ell,i,j \geq 1}$ be a sequence of samples from P, all mutually independent.

THEOREM (Coja-Oghlan, Kapetanopoulos, Müller '20)

Suppose that $0 < d < d_{\rm cond}$ and $\mathbb G$ is a random factor graph model that satisfies certain assumptions. Let

$$\begin{split} \mathcal{K} &= \exp\left(\frac{d(k-1)(1-\mathsf{tr}(\varPhi))}{2} + \mathbf{1}\{k=2\}\frac{d^2(1-\mathsf{tr}(\varPhi^2))}{4}\right) \\ &\times \prod_{\ell=2+1\{k=2\}}^{\infty} \exp\left(\frac{(d(k-1))^{\ell}}{2\ell} \left(1-\mathsf{tr}(\varPhi^{\ell})\right)\right) \prod_{i=1}^{K_{\ell}} \mathsf{tr} \prod_{j=1}^{\ell} \varPhi_{\psi_{\ell}}. \end{split}$$

Then $\mathcal{K} > 0$ almost surely and

$$\frac{Z(\mathbb{G})}{q^{n+\frac{1}{2}}\xi^{\boldsymbol{m}}}\prod_{\lambda\in \operatorname{Eig}(\varPhi)\setminus\{1\}}\sqrt{1-d(k-1)\lambda} \xrightarrow{n\to\infty} \mathcal{K}$$

in distribution.

PREVIOUS RESULTS

- Coja-Oghlan, Krząkała, Perkins and Zdeborová '17
- ► Coja-Oghlan, Efthymiou, Jaafari, Kang and Kapetanopoulos '18

OPEN QUESTIONS FOR PLANTED COLORING

- Does a variant of the Alon-Kahale algorithm work up to condensation?
- For three communities: Prove $d_{rec} = d_{cond} = d_{KS}$.

Advertisement

INFERENCE PROBLEMS: ALGORITHMS AND LOWER BOUNDS

31st of August to 4th of September

Registration: fellingh@math.uni-frankfurt.de