The Replica Symmetric Phase of Random Constraint Satisfaction Problems

Noela Müller

Goethe-University Frankfurt

> Youth in High-dimensions
> ICTP Triest, 2nd of July 2020

Joint work with Amin Coja-Oghlan and Tobias Kapetanopoulos

Overview

- Planted Coloring
- Solution space geometry
- Results

Planted Coloring: Step 1

Given: $V=\left\{x_{1}, \ldots, x_{n}\right\}$ set of n vertices, and $q \in \mathbb{N}$ colours
For each $i \in[n]$ independently, draw a uniform colour $\sigma^{*}\left(x_{i}\right)$ from [q]

Planted Coloring: Step 2

For each $i, j \in[n]$ with $\sigma\left(x_{i}\right) \neq \boldsymbol{\sigma}\left(x_{j}\right)$, let $\left\{x_{i}, x_{j}\right\} \in E$ w. p. $d / n, d>0$.

The inference problem

Goal: Draw conclusions about σ^{*} from $G=(V, E)$.

The inference problem

I) Is $\boldsymbol{G}^{*}\left(\boldsymbol{\sigma}^{*}\right)$ distinguishable from the binomial random graph $\boldsymbol{G}(n,(q-1) p /(q n))$?
iI) With

$$
\omega\left(\tau, \boldsymbol{\sigma}^{*}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left\{\tau_{x_{i}}=\boldsymbol{\sigma}_{x_{i}}^{*}\right\},
$$

do there exist a polynomial-time algorithm \mathcal{A} and $\varepsilon>0$ such that $\mathcal{A}\left(\boldsymbol{G}^{*}\right)$ outputs a colouring τ with

$$
\mathbb{P}\left(\omega\left(\tau, \boldsymbol{\sigma}^{*}\right)>(1+\varepsilon) / q\right)=1-o(1) ?
$$

Evolution of the solution space of PLANTED COLOURING

Figure: An adaption of Krząkała and Zdeborová '09.

Algorithmic and information-theoretic PREDICTIONS

Figure: Predictions by Decelle, Krząkała, Moore and Zdeborová '13

Algorithmic Result: Alon \& Kahale 1997

Deterministic spectral algorithm with expected polynomial running time that finds a colouring correlated with the ground truth with probabilty $1-o(1)$, if $d>c$ for some large absolute constant c.

The algorithm starts with a spectral approach and then performs some local improvement steps to yield a proper colouring.

Our Results

- verify prediction on the location of the condensation threshold
- identify $d_{\text {cond }}$ as the threshold below which it is not information-theoretically possible to discern the planted and the null model

More general Random Constraint Satisfaction Problems

- variable set $V=\left\{x_{1}, \ldots, x_{n}\right\}$
- constraints $F=\left\{a_{1}, \ldots, a_{m}\right\}$, chosen randomly

More general Random Constraint Satisfaction Problems

- variable set $V=\left\{x_{1}, \ldots, x_{n}\right\}$
- constraints $F=\left\{a_{1}, \ldots, a_{m}\right\}$, chosen randomly

Evolution of SOL

If each constraint binds exactly k variables, consider

$$
\boldsymbol{m} \sim \operatorname{Poi}(d n / k)
$$

many constraints.
How does the solution space evolve when the density parameter d increases?

Evolution of SOL

If each constraint binds exactly k variables, consider

$$
\boldsymbol{m} \sim \operatorname{Poi}(d n / k)
$$

many constraints.

How does the solution space evolve when the density parameter d increases? Important quantities:

- The number of solutions: partition function $Z(G)$
- The uniform measure on solutions: Boltzmann distribution μ_{G} : If $Z(G)>0$, set

$$
\mu_{G}(\sigma)=\frac{1\{\sigma \text { is a solution }\}}{Z(G)}
$$

- Inspect $Z(\mathbb{G})$ and $\mu_{\mathbb{G}}$ for increasing density parameters $d>0$.

Evolution of the solution space of rCSPs

Figure: An adaption of a conjecture by Krząkała, Montanari, Ricci-Tersenghi, Semerjian and Zdeborová '07.

Theorem (Coja-Oghlan, Kapetanopoulos, Müller '20)

Let $d>0$. With γ a $\operatorname{Po}(d)$-random variable, $\rho_{1}^{(\pi)}, \rho_{2}^{(\pi)}, \ldots$ chosen from $\pi \in P(\Omega)$ and $\psi_{1}, \psi_{2}, \ldots \in \Psi$ chosen from P, all mutually independent, let

$$
\left.\left.\begin{array}{c}
\mathcal{B}(d, P, \pi)=\mathrm{E}\left[q ^ { - 1 } \xi ^ { - \gamma } A \left(\sum_{\sigma \in \Omega} \prod_{i=1}^{\gamma} \sum_{\tau \in \Omega^{k}} 1\left\{\tau_{k}=\sigma\right\} \psi_{i}(\tau) \prod_{j=1}^{k-1} \rho_{k i+j}^{(\pi)}\left(\tau_{j}\right)\right.\right.
\end{array}\right)-\frac{d(k-1)}{k \xi} A\left(\sum_{\tau \in \Omega^{k}} \psi_{1}(\tau) \prod_{j=1}^{k} \rho_{j}^{(\pi)}\left(\tau_{j}\right)\right)\right] .
$$

Then $1 /(k-1) \leq d_{\text {cond }}(q)<\infty$ and for all $d<d_{\text {cond }}(q)$ we have

$$
\sqrt[n]{Z(\mathbb{G})} \quad \xrightarrow{n \rightarrow \infty} \quad q \xi^{d / k} \quad \text { in probability. }
$$

By constrast, for any $d>d_{\text {cond }}(q)$ there exists $\varepsilon>0$ such that

$$
\limsup _{n \rightarrow \infty} \mathrm{P}\left[\sqrt[n]{Z(\mathbb{G})}>q \xi^{d / k}-\varepsilon\right]^{\frac{1}{n}}<1-\varepsilon
$$

Limiting Distribution

Let $\left(K_{\ell}\right)_{\ell \geq 1}$ be Poisson variables with means $\mathrm{E}\left[K_{\ell}\right]=\frac{1}{2 \ell}(d(k-1))^{\ell}$ and let $\left(\psi_{\ell, i, j}\right)_{\ell, i, j \geq 1}$ be a sequence of samples from P, all mutually independent.

Theorem (Coja-Oghlan, Kapetanopoulos, Müller '20)

Suppose that $0<d<d_{\text {cond }}$ and \mathbb{G} is a random factor graph model that satisfies certain assumptions. Let

$$
\begin{aligned}
\mathcal{K}= & \exp \left(\frac{d(k-1)(1-\operatorname{tr}(\Phi))}{2}+\mathbf{1}\{k=2\} \frac{d^{2}\left(1-\operatorname{tr}\left(\Phi^{2}\right)\right)}{4}\right) \\
& \times \prod_{\ell=2+1\{k=2\}}^{\infty} \exp \left(\frac{(d(k-1))^{\ell}}{2 \ell}\left(1-\operatorname{tr}\left(\Phi^{\ell}\right)\right)\right) \prod_{i=1}^{K_{\ell}} \operatorname{tr} \prod_{j=1}^{\ell} \Phi_{\psi_{\ell, i, j}}
\end{aligned}
$$

Then $\mathcal{K}>0$ almost surely and

$$
\frac{Z(\mathbb{G})}{q^{n+\frac{1}{2}} \xi^{\boldsymbol{m}}} \prod_{\lambda \in \operatorname{Eig}(\Phi) \backslash\{1\}} \sqrt{1-d(k-1) \lambda} \xrightarrow{n \rightarrow \infty} \mathcal{K}
$$

in distribution.

Previous results

- Coja-Oghlan, Krząkała, Perkins and Zdeborová '17
- Coja-Oghlan, Efthymiou, Jaafari, Kang and Kapetanopoulos '18

Open Questions for Planted Coloring

- Does a variant of the Alon-Kahale algorithm work up to condensation?
- For three communities: Prove $d_{\mathrm{rec}}=d_{\mathrm{cond}}=d_{\mathrm{Ks}}$.

Advertisement

Inference Problems:
 ALGORITHMS AND LOWER BOUNDS

31st of August to 4th of September

Registration:

fellingh@math.uni-frankfurt.de

