

Investigating the limits of active learning in the Perceptron model

Luca Saglietti

Hugo Cui, Lenka Zdeborova

Outline

- Pool based active learning
- Theoretical framework
 Gardner volume and mutual information
 Large deviation on the selection process
- Algorithmic implications
 Uncertainty sampling strategies
 Approaching the theoretical bounds with AMP
- Perspectives

Pool based active learning

Choosing the most informative data samples for labelling \rightarrow best test accuracy.

Pool-based active learning: potential set of samples is large, but obtaining the labels is expensive. the learner can only query samples that belong to a pre-existing, fixed pool of samples. One is given a certain budget \rightarrow the cardinal of the final training set.

Applications: Machine learning - text classification, drug discovery, model computational chemistry Train a model $O(N^2)$ The pool-based ≈ O(N³) Labeled active learning cycle Unlabeled data data pool O(N)Annotator Select queries (human or machine)

Simple learning model

Teacher-student Perceptron model (of course!)

Teacher-vector of weights $\rightarrow \mathbf{x}_{0}$

```
Input samples \rightarrow matrix \mathbf{F} \in \mathbf{IR}^{P \times N}, \mathbf{P} = \alpha \mathbf{N}.
```

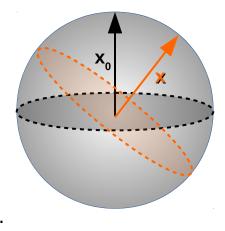
```
Ground truth labels \rightarrow vector Y \in \mathbb{R}^{P} according to Y = sign(F \cdot x<sub>0</sub>).
```

Student perceptron \rightarrow x such that **Y** = sign(**F** · x) on the training set **F**.

Generalization error \rightarrow distance in weight space between teacher and student functions.

Budget of the student: $0 < n \le \alpha$. Select and query the labels of a subset **S** of cardinality |S| = nN, according to some active learning criterion.

NOTE: **F** i.i.d. normal \rightarrow full set of input data is unstructured and uncorrelated, BUT in the labelled subset **S** non-trivial correlations can appear!



Gardner volume and mutual information

$$egin{aligned} \mathcal{I}(oldsymbol{x}^0;oldsymbol{Y}|oldsymbol{F}) &= \mathcal{H}(oldsymbol{Y}|oldsymbol{F}) = \mathcal{H}(oldsymbol{Y}|oldsymbol{F}) = \mathcal{H}(oldsymbol{Y}|oldsymbol{F}) &= -\int doldsymbol{Y}\int doldsymbol{x}^0 P_X(oldsymbol{x}^0) P_{ ext{out}}(oldsymbol{Y}|oldsymbol{F}\cdotoldsymbol{x}^0) & ext{ln} \int doldsymbol{x} P_X(oldsymbol{x}) P_{ ext{out}}(oldsymbol{Y}|oldsymbol{F}\cdotoldsymbol{x}) & ext{ln} \end{aligned}$$

The Gardner volume **v** represents the extent of the version space, i.e. the **entropy of hypotheses** in the model class consistent with the labeled training set. This provides a natural measure of the quality of the student training.

$$\ln v \equiv \frac{1}{N} \mathbb{E}_{\boldsymbol{x}^{0},\boldsymbol{Y}} \ln \int d\boldsymbol{x} P_{X}(\boldsymbol{x}) P_{\text{out}}(\boldsymbol{Y} | \boldsymbol{F} \cdot \boldsymbol{x})$$

Large deviations of the selection process

Count the number of possible labelled subsets that induce a given generalization error \rightarrow Legendre transform. Introduce a temperature β and a chemical potential Φ :

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \text{Selection} \\ \text{variables} \\ \mathbb{P}_{\beta,\phi}\left(\!\!\left\{\sigma_{\mu}\right\}\right) = \left[\int d\boldsymbol{x} P_{X}(\boldsymbol{x}) \prod_{\mu=1}^{\alpha N} P_{\mathrm{out}}(y^{\mu} | \boldsymbol{F}^{\mu} \cdot \boldsymbol{x})^{\sigma_{\mu}}\right]^{\beta} e^{\substack{\phi \sum_{\mu} \sigma_{\mu}}} \\ e^{\phi \sum_{\mu} \sigma_{\mu}} \end{array} \\ \\ \begin{array}{l} \text{Free entropy} : \\ \Phi(\beta,\phi) = \mathbb{E}_{\boldsymbol{F},\boldsymbol{x}^{\mathbf{0}}} \frac{1}{N} \ln\Xi = \mathbb{E}_{\boldsymbol{F},\boldsymbol{x}^{\mathbf{0}}} \frac{1}{N} \ln\sum_{\sigma_{\mu}} \mathbb{P}_{\beta,\phi}(\{\sigma_{\mu}\}). \\ \\ = \underset{v,n}{\operatorname{extr}} \left\{ \Sigma(n,v) + \beta \ln v + \phi n \right\}. \end{array}$$

Inverting the Lengendre transform gives us the sought **complexity** :

$$\Sigma(n,v) = \Phi(\beta,\phi) - \beta \ln v - n\phi|_{\partial_{\beta}\Phi = \ln v, \partial_{\phi}\Phi = n}$$

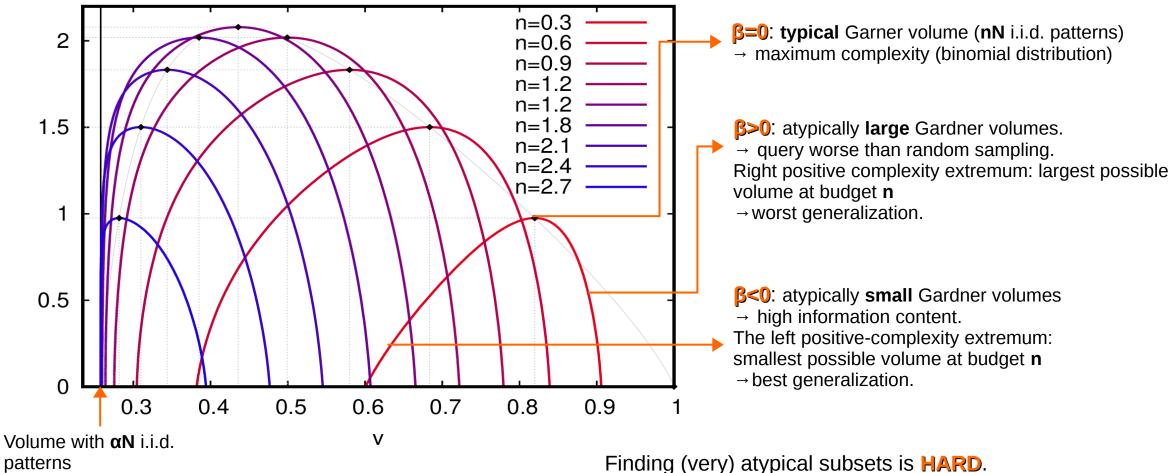
The analysis is completely **agnostic** on how the selection process is achieved

Large deviations of the selection process

Replica symmetric assumption \rightarrow order parameters:

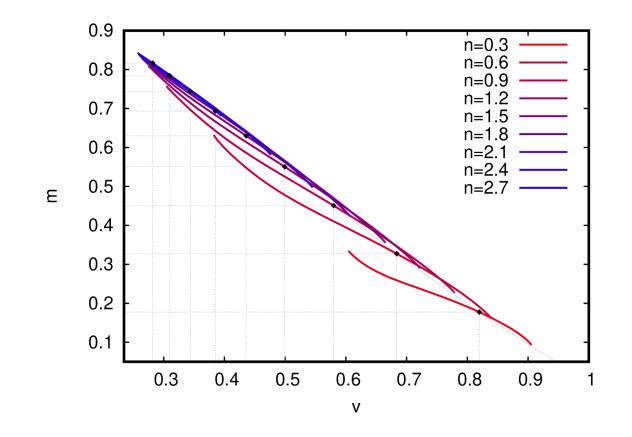
•
$$q = \frac{1}{N} \sum_{i} \left\langle \langle x_{i} \rangle_{\boldsymbol{x}|S} \right\rangle_{S}^{2}$$
, Typical overlap between students with different labelled subsets
• $Q = \frac{1}{N} \sum_{i} \left\langle \langle x_{i} \rangle_{\boldsymbol{x}|S}^{2} \right\rangle_{S}$, Typical overlap between students with same labelled subset
• $r = \frac{1}{N} \sum_{i} \left\langle \langle x_{i} \rangle_{\boldsymbol{x}|S} \right\rangle_{S}$, Typical norm of a student
• $m = \frac{1}{N} \sum_{i} \left\langle \langle x_{i} x_{i}^{0} \rangle_{\boldsymbol{x}|S} \right\rangle_{S}$, Typical magnetization of a student
• $m = \frac{1}{N} \sum_{i} \left\langle \langle x_{i} x_{i}^{0} \rangle_{\boldsymbol{x}|S} \right\rangle_{S}$, Typical magnetization of a student
• $m = \frac{1}{N} \sum_{i} \left\langle \langle x_{i} x_{i}^{0} \rangle_{\boldsymbol{x}|S} \right\rangle_{S}$, Typical magnetization of a student
• $m = \frac{1}{N} \sum_{i} \left\langle \langle x_{i} x_{i}^{0} \rangle_{\boldsymbol{x}|S} \right\rangle_{S}$, Typical magnetization of a student
• $m = \frac{1}{N} \sum_{i} \left\langle \langle x_{i} x_{i}^{0} \rangle_{\boldsymbol{x}|S} \right\rangle_{S}$, Typical magnetization of a student
• $m = \frac{1}{N} \sum_{i} \left\langle \langle x_{i} x_{i}^{0} \rangle_{\boldsymbol{x}|S} \right\rangle_{S}$, Typical magnetization of a student
• $m = \frac{1}{N} \sum_{i} \left\langle \langle x_{i} x_{i}^{0} \rangle_{\boldsymbol{x}|S} \right\rangle_{S}$, Typical magnetization of a student
• $m = \frac{1}{N} \sum_{i} \left\langle \langle x_{i} x_{i}^{0} \rangle_{\boldsymbol{x}|S} \right\rangle_{S}$, Typical magnetization of a student
• $m = \frac{1}{N} \sum_{i} \left\langle \langle x_{i} x_{i}^{0} \rangle_{\boldsymbol{x}|S} \right\rangle_{S}$, Typical magnetization of a student
• $m = \frac{1}{N} \sum_{i} \left\langle \langle x_{i} x_{i}^{0} \rangle_{\boldsymbol{x}|S} \right\rangle_{S}$, Typical magnetization of a student
• $m = \frac{1}{N} \sum_{i} \left\langle \langle x_{i} x_{i}^{0} \rangle_{\boldsymbol{x}|S} \right\rangle_{S}$, Typical magnetization of a student
• $m = \frac{1}{N} \sum_{i} \left\langle x_{i} \rangle_{\boldsymbol{x}|S} \right\rangle_{S}$, Typical magnetization of a student
• $m = \frac{1}{N} \sum_{i} \left\langle x_{i} \rangle_{\boldsymbol{x}|S} \right\rangle_{S}$, Typical magnetization of a student
• $m = \frac{1}{N} \sum_{i} \left\langle x_{i} \rangle_{i} \left\langle x_{i} \rangle_{i} \right\rangle_{S}$, Typical magnetization of a student
• $m = \frac{1}{N} \sum_{i} \left\langle x_{i} \rangle_{i} \left\langle x_{i} \rangle_{i} \right\rangle_{S}$, Typical magnetization of a student
• $m = \frac{1}{N} \sum_{i} \left\langle x_{i} \rangle_{i} \left\langle x_{i} \rangle_{i} \right\rangle_{S}$, Typical magnetization of a student
• $m = \frac{1}{N} \sum_{i} \left\langle x_{i} \rangle_{i} \left\langle x_{i} \rangle_{i} \right\rangle_{S}$, Typical magnetization of a student
• $m = \frac{1}{N} \sum_{i} \left\langle x_{i} \rangle_{i} \left\langle x_{i} \rangle_{i} \right\rangle_{S}$, Typical magnetization of a student

Large deviations: results (α =3)



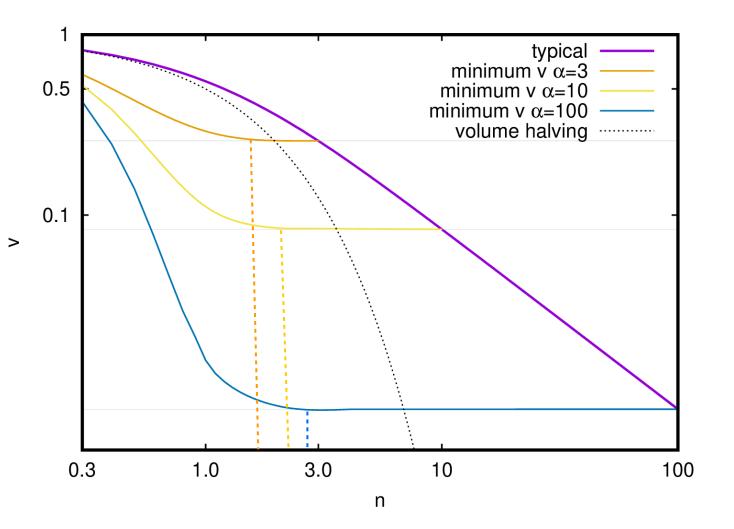
 \mathbf{M}

Large deviations: results



small Gardner volumes → high magnetizations → low generalization errors

Algorithmic implications



Active learning lower bound:

→ all the information contained in the full set of patterns is extracted after querying few samples (logarithmic fraction)

 \rightarrow valid for **any selection strategy**, even for an active learning algorithm that can access additional information on the structure of data (teacher, true labels, etc..)

HOWEVER...

With no prior (or external info) about the generative model the best information gain you can get is **1 bit per pattern**

- → Volume halving curve
- \rightarrow exponential decrease
- \rightarrow (still not easily achieved)

Uncertainty sampling strategies

When no external prior is available on the data structure, many active learning criteria rely on some form of **label-uncertainty measure**.

 \rightarrow **Uncertainty sampling**: iteratively selecting and labelling data-points where the **prediction** of the available trained model is the **least confident**.

Active learning CYCLE

1- train model on current labelled subset

2- evaluate model predictions at unlabelled datapoints

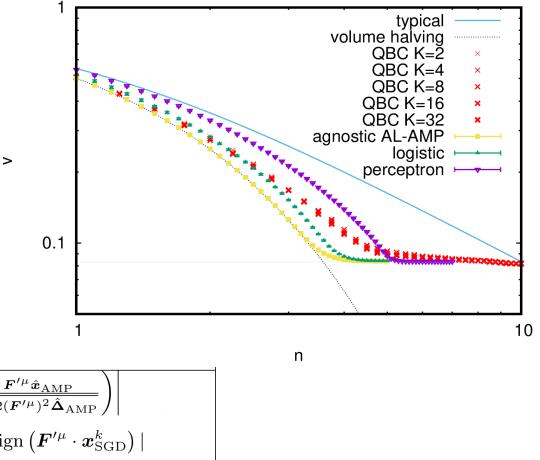
- 3- sort according to confidence (magnitude)
- 4- query most uncertain samples
- 5- repeat ...

→ Let's **benchmark** some known strategies!

Algorithmic results ($\alpha = 10$)

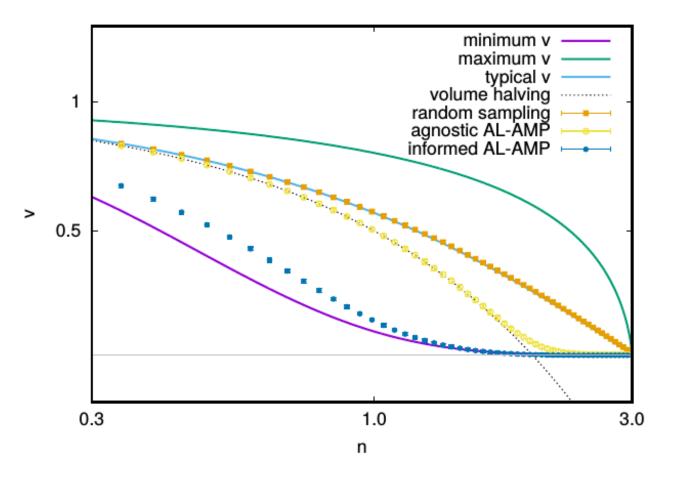
In GLM (i.i.d. Gaussian input data), in high dimension → Approximate Message Passing (AMP)

At convergence AMP yields an estimator of the **posterior** means and variances \rightarrow easy to evaluate model uncertainty on new data points



Uncertainty sampling strategies		g strategies
Heuristic	Required estimates	Sorting criterion
Agnostic AL-AMP	$\hat{oldsymbol{x}}_{ ext{AMP}}, \hat{oldsymbol{\Delta}}_{ ext{AMP}}$	$\operatorname{argmin}_{\mu} \left \operatorname{erf} \left(\frac{F^{\prime \mu} \hat{x}_{AMP}}{\sqrt{2(F^{\prime \mu})^2 \hat{\Delta}_{AMP}}} \right) \right $
Query by committee	$\{oldsymbol{x}_{ ext{SGD}}^k\}_{k=1}^K$	$rgmin_{\mu} \mid \sum_{k=1}^{K} \mathrm{sign} \left(oldsymbol{F}^{\prime \mu} \cdot oldsymbol{x}_{\mathrm{SGD}}^{k} ight) \mid$
Logistic regression	$oldsymbol{x}_{ ext{log}}$	$rgmin_{\mu} \left m{F}'^{\mu}\cdotm{x}_{ m log} ight $
Perceptron learning	$oldsymbol{x}_{ ext{perc}}$	$rgmin_{\mu} m{F}'^{\mu}\cdotm{x}_{ m perc} $

Algorithmic results ($\alpha = 3$)



Hard to emulate a scenario where the selection algorithm can access **external information** on data structure in our i.i.d. framework!

 \rightarrow Even in the extreme case where **all the true labels are disclosed to the student**, finding the subset that minimizes the Gardner volume is still a hard problem.

A label-informed AMP algorithm approaches our theoretical bound.

Limits of the approach and future research

Stability analysis -> **1RSB would be needed**

How to study AL in different models (where **volume # mutual info**)?

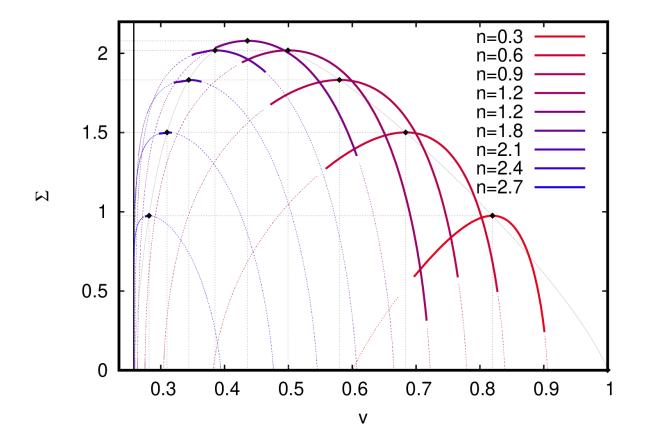
Understand the **convergence issues of AMP** (less constraints \rightarrow harder)?

Connect with other label reweighting strategies (soft labelling, distillation, ...)

THANK YOU FOR YOUR ATTENTION

Stability analysis

Free entropy in the 1RSB ansatz \rightarrow stability of the RS solution with respect to an **infinitesimal 1RSB perturbation**.



AMP iteration

$$\begin{split} \omega^t_{\mu} &= \sum_i F^{\mu}_i \hat{x}^{t-1}_i - g^{t-1}_{\mu} V^{t-1} \\ g^t_{\mu} &= \partial_{\omega} \varphi^{\text{out},t}_{\mu} \\ \Gamma^t_{\mu} &= -\partial^2_{\omega} \varphi^{\text{out},t}_{\mu} \\ A^t &= c_F \sum_{\mu} \Gamma^t_{\mu} \\ B^t_i &= \sum_{\mu} F^{\mu}_i g^t_{\mu} + \hat{x}^{t-1}_i A^t \\ \hat{x}^t_i &= \partial_B \varphi^{\text{in},t}_i \\ \Delta^t_i &= \partial^2_B \varphi^{\text{in},t}_i \\ V^t &= c_F \sum_i \Delta^t_i \end{split}$$

........

$$\begin{split} \varphi^{\text{out},t}_{\mu} &= \varphi^{\text{out}}(\omega^t_{\mu},V^t,y^{\mu}) \\ \varphi^{\text{in},t}_i &= \varphi^{\text{in}}(B^t_i,A^t) \end{split}$$

Estimating **model uncertainty** → hard problem!

In GLM (i.i.d. Gaussian input data), in high dimension \rightarrow Approximate Message Passing (AMP)

At convergence AMP yields an estimator of the **posterior means and variances**, and a prediction on new data points: