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Unsupervised generative models
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 (General Idea: Use generative model to approximate the real-
world data.

[1] Chuang Wang, Hong Hu, Yue M. Lu, A Solvable High-Dimensional Model of GAN, NeurIPS, 2019
[2] Chuang Wang, Yonina C. Eldar, Yue M. Lu, Subspace Estimation from Incomplete Observations: A
High-Dimensional Analysis, IEEE Journal of Selected Topics in Signal Processing, 2018

[3] Chuang Wang, Yue M. Lu, The scaling limit of high-dimensional online independent component
analysis, NIPS 2017




Collaborators

Yue Lu @ Harvard Hong Hu @ Harvard

Chuang Wang, Hong Hu, Yue M. Lu, A Solvable High-Dimensional Model of GAN, NeurIPS, 2019



Introduction of GAN

GAN: sample from an unknown distribution  [Goodfellow2014]
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Generative Adversarial Network (GAN)

Progressive GAN, Nvidia, ICLR 2018



Generative Adversarial Network (GAN)
 Challenge

* Multiple stationary points
* Oscillation

* Mode Collapsing
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e Objective: min max LyrEye pwe)J (Y, Yy w”,w)

J(y?® y“: wP, w®) = D (y®; wP) — Dy(y“; w?) + regularizer

* Training method: -~ Probability that the input is real

Stochastic gradient descent/ascent
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Precise analysis in high-dimensions

Main idea: Stochastic learning as a stochastic dynamics
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A simple solvable GAN model

Real data: ykR = g(fck + ak)

~

Generator: ykG — g( G’é’k + ak)

Discriminator: D(y;’wD) = ﬁ(nywD)
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Training algorithm

* Training algorithm
Stochastic gradient ascent/descent
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* High-dimensional analysis 2o = o, nt” =7, 7° — 0, i.e. n —

dwp = 7PE[V b ]dt + 7P \/V&r[VwPJ]dBt

dw = —FOE[V 0 At + 76 \/var[vng]dBt
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Dynamics of Microscopic state

Dynamics of gradient flow in High-dimensional limit

dwy = ’T‘(ﬁtw? + Ltwf)dt
dw? T(gt £+ :qvtwf + htw?)dt -+ T\/EdBt

where B; is the standard Brownian motion,

and g;, g;, Ly, hy and b; are some deterministic functions.

Probability law: Integral partial differential equation
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Microscopic states and Macroscopic state

Microscopic states

Macroscopic states
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Three n-D vectors
Three scalars
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Main Theory on Macroscopic dynamics

Rescaled time ¢ =£%k/n
Theorem: As n — 00, (g7, q;, r¢) converges weakly to

the unique solution of the system of ODESs

d
ﬁ(th,th,m) =g(q7, g7 rt)

Rigorous characterization:
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Stationary State analysis i(q? .q;,7) =0

dt
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Phase diagram
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Multi-modes cases

0-.... = 1 Noises help converge!
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Conclusion

* \We present an exact and tractable analysis of the training
dynamics of a shallow GAN in high dimensions.

* We analyze the training process at two levels:

Macroscopic dynamics are deterministic described by a
coupled ODE

Microscopic dynamics are stochastic: The evolution of the
detailed weights remains stochastic and it is characterized by
an SDE.

* We show that the noise level is essential to the convergence:
Strong noise leads to failure of feature recovery.

Weak noise causes oscillation.
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