

Dynamics of Generative Adversarial Network in the high-dimensional limit

Chuang Wang (王闯) wangchuang@ia.ac.cn

Institute of Automation, Chinese Academy of Science (CASIA)

July 30, 2019 @ CSRC-ICTP Joint Workshop on Big Data, Machine Learning and Complexity Research

Unsupervised generative models

Principal Component Analysis
High Dimensions → Low Dimensions

Az
ightarrow x

 $oldsymbol{z} \sim \mathcal{N}$

$$a_1z_1 + a_2z_2 \rightarrow x$$

Assume: $z_1 \perp z_2$

$$f_m(...f_2(f_1(\boldsymbol{z}))...) o \boldsymbol{x}$$

- Objective: Retrieve semantic meaningful features
- General Idea: Use generative model to approximate the realworld data.
- [1] Chuang Wang, Hong Hu, Yue M. Lu, A Solvable High-Dimensional Model of GAN, NeurIPS, 2019
- [2] **Chuang Wang**, Yonina C. Eldar, Yue M. Lu, Subspace Estimation from Incomplete Observations: A High-Dimensional Analysis, IEEE Journal of Selected Topics in Signal Processing, 2018
- [3] **Chuang Wang**, Yue M. Lu, The scaling limit of high-dimensional online independent component analysis, NIPS 2017

Collaborators

Yue Lu @ Harvard

Hong Hu @ Harvard

Chuang Wang, Hong Hu, Yue M. Lu, A Solvable High-Dimensional Model of GAN, NeurIPS, 2019

Introduction of GAN

GAN: sample from an unknown distribution [Goodfellow2014]

- Generator
- Discriminator

Training: two-player game

- D aims to distinguish whether
 an input is real or comes from G
- G aims to fool D

Generative Adversarial Network (GAN)

Generative Adversarial Network (GAN)

- Challenge
 - Multiple stationary points
 - Oscillation
 - Mode Collapsing
- $\bullet \ \ \text{Objective:} \ \min_{\boldsymbol{w}^G} \max_{\boldsymbol{w}^D} \mathbb{E}_{\boldsymbol{y}^R} \mathbb{E}_{\boldsymbol{y}^G \sim p(\boldsymbol{w}^G)} J(\boldsymbol{y}^R, \boldsymbol{y}^G; \boldsymbol{w}^D, \boldsymbol{w}^G) \\$

$$J(\boldsymbol{y}^R, \boldsymbol{y}^G; \boldsymbol{w}^D, \boldsymbol{w}^G) = D_1(\boldsymbol{y}^R; \boldsymbol{w}^D) - D_2(\boldsymbol{y}^G; \boldsymbol{w}^D) + \text{regularizer}$$

• Training method:

Probability that the input is real

Stochastic gradient descent/ascent

$$egin{aligned} oldsymbol{w}_{k+1}^{\mathrm{D}} &= oldsymbol{w}_k^{\mathrm{D}} + au^{\mathrm{D}}
abla_{oldsymbol{w}_k^D} J \ oldsymbol{w}_{k+1}^{\mathrm{G}} &= oldsymbol{w}_k^{\mathrm{G}} - au^{\mathrm{G}}
abla_{oldsymbol{w}_k^G} J \end{aligned}$$

Precise analysis in high-dimensions

Main idea: Stochastic learning as a stochastic dynamics

Chuang Wang, Hong Hu, Yue M. Lu, A Solvable High-Dimensional Model of GAN, NeurIPS, 2019

A simple solvable GAN model

Real data:
$$oldsymbol{y}_k^R = g(oldsymbol{\xi} c_k + oldsymbol{a}_k)$$

Generator:
$$oldsymbol{y}_k^G = \widetilde{g}(oldsymbol{w}^G \widetilde{c}_k + \widetilde{oldsymbol{a}}_k)$$

Discriminator:
$$D(\boldsymbol{y}; \boldsymbol{w}^D) = \widehat{D}(\boldsymbol{y}^T \boldsymbol{w}^D)$$

Training algorithm

Training algorithm
 Stochastic gradient ascent/descent

$$egin{aligned} oldsymbol{w}_{k+1}^{\mathrm{D}} &= oldsymbol{w}_k^{\mathrm{D}} + au^{\mathrm{D}}
abla_{oldsymbol{w}_k^D} J \ oldsymbol{w}_{k+1}^{\mathrm{G}} &= oldsymbol{w}_k^{\mathrm{G}} - au^{\mathrm{G}}
abla_{oldsymbol{w}_k^G} J \end{aligned}$$

Small learning rate analysis

$$\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{w}_t^{\mathrm{D}} = \mathbb{E} \left[\nabla_{\boldsymbol{w}_t} J \right]$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{w}_t^{\mathrm{G}} = -\alpha \mathbb{E} \left[\nabla_{\boldsymbol{w}_t} J \right]$$

$$\frac{\tau^{\mathrm{D}}}{\tau^{\mathrm{G}}} = \alpha, \ \tau^{\mathrm{D}} \to 0$$
 n is finite

Mescheder et al., 2017; Nagarajan & Kolter, 2017; Roth et al., 2017; Mescheder et al., 2018; Heusel et al., 2017; Li et al., 2017 E V. Mazumdar, M. I. Jordan, S. S. Sastry, 2019

• High-dimensional analysis $\frac{\tau^{\mathrm{D}}}{\tau^{\mathrm{G}}}=\alpha,\;n\tau^{D}=\tau,\;\tau^{\mathrm{D}}\to0,\;i.e.\;n\to\infty$

$$d\boldsymbol{w}_{t}^{D} = \widetilde{\tau}^{D} \mathbb{E}[\nabla_{\boldsymbol{w}_{t}^{D}J}] dt + \widetilde{\tau}^{D} \sqrt{\operatorname{var}[\nabla_{\boldsymbol{w}_{t}^{D}J}]} dB_{t}$$

$$d\boldsymbol{w}_{t}^{G} = -\widetilde{\tau}^{G} \mathbb{E}[\nabla_{\boldsymbol{w}_{t}^{G}J}] dt + \widetilde{\tau}^{G} \sqrt{\operatorname{var}[\nabla_{\boldsymbol{w}_{t}^{G}J}]} d\widetilde{B}_{t}$$

Dynamics of Microscopic state

Dynamics of gradient flow in High-dimensional limit

$$dw_t^{G} = \widetilde{\tau} (\widetilde{g}_t w_t^{D} + L_t w_t^{G}) dt$$

$$dw_t^{D} = \tau (g_t \xi + \widetilde{g}_t w_t^{G} + h_t w_t^{D}) dt + \tau \sqrt{b_t} dB_t$$

where B_t is the standard Brownian motion, and g_t , \tilde{g}_t , L_t , h_t and b_t are some deterministic functions.

Probability law: Integral partial differential equation

Microscopic states and Macroscopic state

Microscopic states

ξ

 $oldsymbol{w}^{ ext{G}}$

 $w^{
m D}$

Three n-D vectors

Macroscopic states

 q_t^L

 q_t^{G}

 γ_{t}

Three scalars

Main Theory on Macroscopic dynamics

Rescaled time t = k/n

Theorem: As $n \to \infty$, (q_t^D, q_t^G, r_t) converges weakly to

the unique solution of the system of ODEs

$$\frac{d}{dt}(q_t^D, q_t^G, r_t) = \boldsymbol{g}(q_t^D, q_t^G, r_t)$$

Rigorous characterization:

$$\max_{0 \le k \le nT} \mathbb{E}[|q_t^{G} - q^{G,n}(\frac{k}{n})| + |q_t^{D} - q^{D,n}(\frac{k}{n})| + |r_t - r^n(\frac{k}{n})|] \le \frac{C(T)}{\sqrt{n}}$$

- [1] C. Wang, H. Hu, Y. M. Lu, A Solvable High-Dimensional Model of GAN, NIPS, 2019
- [2] C. Wang, Y. C. Eldar, Y. M. Lu, Subspace Estimation from Incomplete Observations: A High-Dimensional Analysis, IEEE JSTSP, 2018
- [3] S. Goldt, M. Advani, A. M. Saxe, F. Krzakala, and L. Zdeborová, "Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup," NIPS 2019

Stationary State analysis

13

$$\frac{d}{dt}(q_t^D, q_t^G, r_t) = 0$$

Chuang Wang, Hong Hu, Yue M. Lu, A Solvable High-Dimensional Model of GAN, NeurIPS, 2019

Phase diagram

d=2

Multi-modes cases Increase noises $[m{P}]_{1,1}^2 \ [m{P}]_{2,2}^2 \ [m{q}]_1^2 \ [m{q}]_2^2$ t = k/n

$$t = k/n$$

$$\sigma_{\mathrm{noise}}^2 = 1$$
 Noises help converge!

$$\frac{\tau^{G}}{2\tau^{D}} \cdot \Lambda_{\max}^{signal} \leq \tau^{D} \cdot \sigma_{noise}^{2} \leq \Lambda_{\min}^{signal}$$

Conclusion

- We present an exact and tractable analysis of the training dynamics of a shallow GAN in high dimensions.
- We analyze the training process at two levels:
 Macroscopic dynamics are deterministic described by a coupled ODE

Microscopic dynamics are stochastic: The evolution of the detailed weights remains stochastic and it is characterized by an SDE.

We show that the noise level is essential to the convergence:

Strong noise leads to failure of feature recovery.

Weak noise causes oscillation.

Thanks!

Chuang Wang wangchuang@ia.ac.cn