Front-end Electronics and Data Acquisition in Particle Physics

Igor Konorov

Institute for Hadronic Structure and Fundamental Symmetries (E18)

Technical University of Munich

Department of Physics

Joint ICTP-IAEASchool on FPGA-based SoC and its Applications for Nuclear and Related Instrumentation 25 January – 19 February

Uhrenturm der TVM

ТЛП

Overview

DAQ and front-end electronics

FPGA-based Time-to-Digital Converter

Preprocessing Detector Signal in FPGA

FPGA Technology

- Digital Logic
- Programmable
- Parallel
- DSPs
- Serial links

Data Acquisition System

- The process of sampling detector signals
- Conversion to digital form
- Data processing
- Transmission to PC for further processing, visualization, and storage

Data Acquisition System

Amplitude - amount of energy released in Detector

Time - when particle crossed Detector

FPGA functionalities :

- Glue Logic custom logic, slow interfaces: SPI, I2C, JTAG, LVDS ...
- Control and synchronization
- Data processing noise suppression, data size reduction, conversion
- Serial links to Computer Ethernet, PCIE, USB...

Multi Channel System

Particle Physics Experiment (COMPASS)

Tracking detectors : coordinates of charge particles => particle trajectories

Particle identification detectors : RICH, Calorimeters, Muon Detectors

300 000 detector channels

LHC Experiments (CMS Experiment)

3 other LHC experiments

- ATLAS
- LHCb
- ALICE

Joint ICTP-IAEA School on FPGA-based SoC and its Application 2021

Number of channels > 10^7

FPGAs in High-Energy Physics

1. Detector Front-End Electronics (FEE)

3. Trigger Logic

2.

FEE: Detector Readout

Time-to-Digital Converters

- Time information only:
 - Scintillation detectors
 - light emission
 - Many types of wire detectors
 - Ionization of gas by charged particle

Special circuit : Time-to-Digital-Converter (TDC)

Analog-to-Digital Converters

- Signal Amplitude and Time of signal arrival
- Energy loss measurement
 - Calorimeters
 - Silicon detectors

Sampling Analog-to-Digital Converter (ADC)

Joint ICTP-IAEA School on FPGA-based SoC and its Application 2021

SciFi detector

Drift tube

How to Measure Time

Counter-based TDC

System Clock Maximum Clock frequency is limited

FPGA Features : Clock Management Tile

PLL consists of

- Phase detector (PFD)
- Charge pump (CP)
- Loop filter with defined time properties (LF)
- Voltage controlled oscillator (VCO)

. .

ТШ

FINE BITS

FPGA-based TDCs. Multiple Clock Phases

FPGA-based TDC. SERDES

IO Blocks of modern FPGAs :

- IO delay, programmable with step 50-70 ps
- SERDES serializer/deserializer, speed 0.8 1.2 Gbps

Performance : 1 Gbps => bin size 1 ns => resolution 290 ps

SERDES : improved circuit for FF metastability problem !

FPGA-based TDC. SERDES

IO Blocks of modern FPGAs :

- IO delay, programmable with step 50-70 ps
- SERDES serializer/deserializer, speed 0.8 1.2 Gbps

Performance : 1 Gbps => bin size 0.5 ns => resolution 144 ps

SERDES : improved circuit for FF metastability problem !

ТШТ

FPGA-based TDC. SERDES

IO Blocks of modern FPGAs :

- IO delay, programmable with step 50-70 ps
- SERDES serializer/deserializer, speed 0.8 1.2 Gbps

Performance : 1 Gbps => bin size 0.25 ns => resolution 72 ps

TDC : Differential Non-Linearity

Scan of IDELAY

TDC. Differential Non-Linearity

Limits of SERDES IDELAY quantization and DNL degradation limits TDC resolution to ~50ps

Vernier Converter

 $T = T1 \cdot (n1-1) - T2 \cdot (n2-1)$

Metrologia41(2004) 17–32PII: S0026-1394(04)70012-2 Review of methods for time intervalmeasurements with picosecond resolution J[´]ozef Kalisz

ТШТ

Taped Delay Line TDC

Big variation of bin sizes Solutions :

- Two TDLs for one measurement
- Combine both measurements
- Precision improvements by factor 1.8

High Res. TDC E. Bayer and M. Traxler GSI

Joint ICTP-IAEA School on FPGA-based SoC and its Application 2021

Time Delay [ps]

40

30

20

10

0

Bin Width [ps]

ADC Front-End Data Processing

ADC readout – Preamplifier and Shaper

Created charge proportional to energy deposit => Amplitude measurement

- Charge-sensitive (CS) preamplifier
- Shaping: CR differentiator and RC integrator
- 12-bit ADC (AD7450) with $f_{\text{sample}} = 1 \text{ MHz}$

Noise on Signals

Pedestal Calculation

Pedestal

$$\bar{S} = \frac{\sum_{k=0}^{N-1} s_k}{N}$$

 $s_k = \{a_{11} a_{10} a_9 a_8 a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0\} - \text{bit vector}$

•
$$N = 2^m \Rightarrow$$
 Integer DIVISION is shift by m bits

ТЛП

Noise Calculation

Standard deviation :
$$\sigma^2 = \frac{1}{N-1} \sum_{i=0}^{N-1} (s_i - \bar{s})^2 \quad (1),$$
where $\bar{S} = \frac{\sum_{k=0}^{N-1} s_k}{N}$

Equation (1) is not convenient for moving statistics calculations

Therefore equation (1) is converted to : $\sigma^2 = \overline{S^2} - \overline{S}^2$ (2),

where
$$\overline{S^2} = \frac{\sum_{k=0}^{N-1} s_k^2}{N}$$
 and $\overline{S} = \frac{\sum_{k=0}^{N-1} s_k}{N}$

 σ^2 - called variance

Baseline Follower

• Continuous calculation of pedestal with limited number of samples N

$$\sum_{Ped} = \sum_{Ped} - \bar{S} + s_i$$
, where $\bar{S} = \frac{\sum_{Ped}}{N}$ and used instead of s_{i-N}

Continuous variance calculation

Joint ICTP-IAEA School on FPGA-based SoC and its Application 2021

Simulation of Pedestal and Variance Calculation

Moving Average Filter

New sample $v_i = \sum_{j=0}^{M-1} s_{i+j} / M$, noise : $\sigma = \frac{\sigma}{\sqrt{M}}$

Signal Detection

Different algorithms :

- 1. Amplitude over threshold:
- 2. Window over threshold:
- 3. Difference between consecutive samples over threshold:

 $\sum |s_i - s_{i-1}| >$ thr

 $s_i > \text{thr}$

 $\sum \frac{s_i}{N} > \text{thr}$

4. Window over baseline:

5. For baseline follower and continuous sigma calculation:

 $(|s_i - \bar{s}| > x \cdot \sigma) \wedge (|s_{i+1} - \bar{s}| > x \cdot \sigma) \wedge (|s_{i+2} - \bar{s}| > x \cdot \sigma) \wedge \dots \wedge (|s_{i+n} - \bar{s}| > x \cdot \sigma)$

Comparison Between Algorithms

Areas where trigger condition is fulfilled are highlighted. S/N = 6

Parameter for algorithm 3: N = 15

Parameter for algorithm 4: length of averaging windows = 16, distance = 30

Signal Feature Extraction

What we want to know about signal for further analysis?

Signal Amplitude – energy released in detector => energy lost by particle Signal Time – when signal occurred => to synchronize with other detectors

Motivation

- Instead of signal samples transmit Signal Amplitude and Signal Time
- Reduce amount of data for transmission

Amplitude Extraction algorithms:

- Sample with maximum amplitude
- Signal integral : $\sum (s_i \bar{S})$
- Function fit
 - Most precise but requires a lot of resources
- Advanced digital filters FFT, FIR

Signal Time Extraction – Constant Fraction Discriminator

- Difference of two signals B_i
 - Scaled samples $f \cdot s_i$
 - Delayed samples s_{i-t}
- Zero crossing defines signal time
 - Coarse time = i if $B_i < 0$ and $B_{i+1} > 0$

Digital Constant Fraction Discriminator

Additional signal compared to original:

Delay of 2 samples

Time measurement:

- Subtraction of delayed signal from original
- Interpolation of zero crossing

scaled

Commercial and Custom ADC and TDC Modules

1ch , $14b\ 250\ MHz$

64ch , 16b 125 MHz

64ch 200ps, 32ch 100 ps

64ch , 12b 80 MHz

Z Boson decay

Screenshot of CERN video

https://home.cern/resources/video/physics/z-e-e-collision-event-animation https://home.cern/resources/video/experiments/cms-event-collision-simulation-13-tev