Front-end Electronics and Data Acquisition in Particle Physics

Igor Konorov

Institute for Hadronic Structure and Fundamental Symmetries (E18)

Technical University of Munich

Department of Physics

Joint ICTP-IAEASchool on FPGA-based SoC and its Applications for Nuclear and Related Instrumentation 25 January – 19 February

Unrenturn der TUM

πm

Overview

DAQ and front-end electronics

FPGA-based Time-to-Digital Converter

Preprocessing Detector Signal in FPGA

FPGA Technology

- **-** Digital Logic
- **•** Programmable
- **Parallel**
- **DSPs**
- **Serial links**

Data Acquisition System

- The process of sampling detector signals
- Conversion to digital form
- Data processing
- Transmission to PC for further processing, visualization, and storage

Data Acquisition System

Amplitude - amount of energy released in Detector

Time - when particle crossed Detector

FPGA functionalities :

- **Glue Logic** custom logic, slow interfaces: SPI, I2C, JTAG, LVDS …
- **Control and synchronization**
- **Data processing – noise suppression, data size reduction, conversion**
- **Serial links to Computer – Ethernet, PCIE, USB…**

Multi Channel System

Particle Physics Experiment (COMPASS)

Tracking detectors : coordinates of charge particles => particle trajectories

Particle identification detectors : RICH, Calorimeters, Muon Detectors

300 000 detector channels

LHC Experiments (CMS Experiment)

3 other LHC experiments

- **ATLAS**
- LHC_b
- ALICE

Number of channels $> 10^7$

FPGAs in High-Energy Physics

1. Detector Front-End Electronics (FEE)

2. Data Acquisition and (Sub-)Event Building

3. Trigger Logic

FEE: Detector Readout

Time-to-Digital Converters

- **Time information only**:
	- **Scintillation detectors**
		- **I** light emission
	- **Many types of wire detectors**
		- **Ionization of gas by charged particle**

Special circuit : Time-to-Digital-Converter (TDC)

Analog-to-Digital Converters

- **Signal Amplitude and Time of signal arrival**
- **Energy loss measurement**
	- **Calorimeters**
	- **Silicon detectors**

Sampling Analog-to-Digital Converter (ADC)

Joint ICTP-IAEA School on FPGA-based SoC and its Application 2021

SciFi detector

How to Measure Time

Counter-based TDC

System Clock Maximum Clock frequency is limited

FPGA Features : Clock Management Tile

PLL consists of

- **Phase detector** (PFD)
- **Charge pump** (CP)
- **Loop filter with defined time properties** (LF)
- **Voltage controlled oscillator** (VCO)

FINE BITS

FPGA-based TDC. SERDES

IO Blocks of modern FPGAs :

- **IO delay, programmable with step 50-70 ps**
- SERDES serializer/deserializer, speed 0.8 1.2 Gbps

Performance : 1 Gbps => bin size 1 ns => resolution 290 ps

SERDES : improved circuit for FF metastability problem !

FPGA-based TDC. SERDES

IO Blocks of modern FPGAs :

- **IO delay, programmable with step 50-70 ps**
- SERDES serializer/deserializer, speed 0.8 1.2 Gbps

Performance : 1 Gbps => bin size 0.5 ns => resolution 144 ps

SERDES : improved circuit for FF metastability problem !

ππ

FPGA-based TDC. SERDES

IO Blocks of modern FPGAs :

- **IO delay, programmable with step 50-70 ps**
- SERDES serializer/deserializer, speed 0.8 1.2 Gbps

Performance : 1 Gbps => bin size 0.25 ns => resolution 72 ps

TDC : Differential Non-Linearity

Scan of IDELAY

 $\mathbf{0}$

 -0.05

 $-0.$

 -0.15

 -0.2

TDC. Differential Non-Linearity

Limits of SERDES IDELAY quantization and DNL degradation limits TDC resolution to ~50ps

Vernier Converter

 $T = T1 \cdot (n1-1) - T2 \cdot (n2-1)$

Metrologia41(2004) 17–32PII: S0026-1394(04)70012-2 Review of methods for time intervalmeasurements with picosecond resolution J ́ozef Kalisz

Taped Delay Line TDC

Big variation of bin sizes Solutions :

- Two TDLs for one measurement
- Combine both measurements
- **Precision improvements by factor 1.8**

High Res. TDC E. Bayer and M. Traxler **GSI**

Joint ICTP-IAEA School on FPGA-based SoC and its Application 2021

Time Delay [ps]

40

30

20

10

0

Bin Width [ps]

ADC Front-End Data Processing

ADC readout – Preamplifier and Shaper

Created charge proportional to energy deposit \Rightarrow Amplitude measurement

- Charge-sensitive (CS) preamplifier
- Shaping: CR differentiator ۰ and RC integrator
- 12-bit ADC (AD7450) with \bullet $f_{\text{sample}} = 1 \text{ MHz}$

Noise on Signals

Pedestal Calculation

• Pedestal

$$
\bar{S} = \frac{\sum_{k=0}^{N-1} s_k}{N}
$$

 $s_k = \{a_{11} a_{10} a_9 a_8 a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0\}$ – bit vector

$$
\bullet\quad \text{Tip}
$$

•
$$
N = 2^m
$$
 \Rightarrow Integer DIVISION is shift by m bits

If m = 7
\n
$$
\sum_{k=0}^{6} s_k = a_{18} |a_{17}| a_{16} |a_{15}| a_{14} |a_{13}| a_{12} |a_{11}| |a_{10}| a_{9} |a_{8}| a_{7} |a_{6}| a_{5} |a_{4}| a_{3} |a_{2}| a_{1}| a_{0}
$$
\nShift
\n
$$
\bar{S} = \frac{\sum_{k=0}^{N-1} s_k}{N} = a_{18} |a_{17}| a_{16} |a_{15}| a_{14} |a_{13}| a_{12} |a_{11}| a_{10}| a_{9} |a_{8}| a_{7} |a_{6}| a_{5} |a_{4}| a_{13} |a_{2}| a_{1}| a_{0}
$$
\n
$$
\bar{S} = \frac{\sum_{k=0}^{N-1} s_k}{N} = a_{11} |a_{10}| a_{9} |a_{8}| a_{7} |a_{6}| a_{5} |a_{4}| a_{3} |a_{2}| a_{1}| a_{0}
$$

Noise Calculation

Standard deviation :
$$
\sigma^2 = \frac{1}{N-1} \sum_{i=0}^{N-1} (s_i - \overline{s})^2
$$
 (1),
where
$$
\overline{s} = \frac{\sum_{k=0}^{N-1} s_k}{N}
$$

Equation (1) is not convenient for moving statistics calculations

 \boldsymbol{N}

Therefore equation (1) is converted to : $\sigma^2 = \overline{S^2} - \overline{S}^2$ (2),

where
$$
\overline{S^2} = \frac{\sum_{k=0}^{N-1} s_k^2}{N}
$$
 and $\overline{S} = \frac{\sum_{k=0}^{N-1} s_k}{N}$

 σ^2 - called variance

Baseline Follower

• Continuous calculation of pedestal with limited number of samples N

$$
\sum_{Ped} = \sum_{Ped} -\bar{S} + s_i
$$
, where $\bar{S} = \frac{\sum_{ped}}{N}$ and used instead of s_{i-N}

• Continuous variance calculation

Joint ICTP-IAEA School on FPGA-based SoC and its Application 2021

Simulation of Pedestal and Variance Calculation

Moving Average Filter

New sample $v_i = \sum_{j=0}^{M-1} s_{i+j} / M$, noise : $\sigma =$ σ \boldsymbol{M}

Signal Detection

Different algorithms :

- 1. Amplitude over threshold: $s_i > \text{thr}$
- 2. Window over threshold:
- 3. Difference between consecutive samples over threshold:

 $\sum |s_i - s_{i-1}| > \text{thr}$

 s_i

 $\frac{s_l}{N}$ > thr

4. Window over baseline:

5. For baseline follower and continuous sigma calculation:

 $(|s_i - \bar{s}| > x \cdot \sigma) \wedge (|s_{i+1} - \bar{s}| > x \cdot \sigma) \wedge (|s_{i+2} - \bar{s}| > x \cdot \sigma) \wedge \cdots \wedge (|s_{i+n} - \bar{s}| > x \cdot \sigma)$

Comparison Between Algorithms

Areas where trigger condition is fulfilled are highlighted. $S/N = 6$

Parameter for algorithm $3: N = 15$

Parameter for algorithm 4: length of averaging windows = 16, distance = 30

Signal Feature Extraction

What we want to know about signal for further analysis?

Signal Amplitude – energy released in detector => energy lost by particle Signal Time – when signal occurred => to synchronize with other detectors

Motivation

- Instead of signal samples transmit Signal Amplitude and Signal Time
- Reduce amount of data for transmission

Amplitude Extraction algorithms:

- Sample with maximum amplitude
- Signal integral : $\Sigma(s_i \bar{S})$
- **Function fit**
	- Most precise but requires a lot of resources
- **Advanced digital filters FFT, FIR**

Signal Time Extraction – Constant Fraction **Discriminator**

- Difference of two signals B_i ٠
	- Scaled samples $f \cdot s_i$ ۰
	- Delayed samples s_{i-t} \bullet
- Zero crossing defines signal time \bullet
	- Coarse time = i if $B_i < 0$ and $B_{i+1} > 0$ ۰

Digital Constant Fraction Discriminator

Additional signal compared to original:

Delay of 2 samples

Time measurement:

- Subtraction of delayed signal from original
- Interpolation of zero crossing \bullet

Commercial and Custom ADC and TDC Modules

1ch , 14b 250 MHz

64ch 200ps, 32ch 100 ps

64ch , 12b 80 MHz

64ch , 16b 125 MHz

Z Boson decay

Screenshot of CERN video

<https://home.cern/resources/video/physics/z-e-e-collision-event-animation> https://home.cern/resources/video/experiments/cms-event-collision-simulation-13-tev