

Vivado Design Flow for SoC

Cristian Sisterna Universidad Nacional de San Juan Argentina

ICTP-IAEA

Why Vivado Design Suite?

Larger FPGAs lead to more difficult design issues

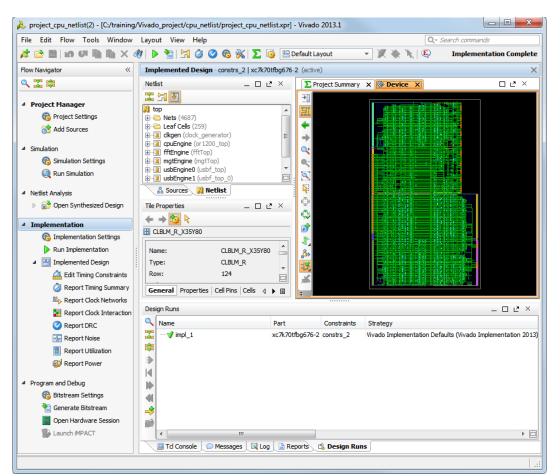
- Users integrating more functionality into the FPGA
 - Use of multiple hard logic objects (block RAMs, GTs, DSP slices, and microprocessors, for example)
- I/O and clock planning critical to FPGA performance
- Higher routing and utilization density
- Complex timing constraints with designs that have multiple clock domains
- FPGA designs are now looking like ASIC platform designs
- Assembled from IP cores—commercial or developed in-house
 - Maintaining place and route solutions is very important (this is resolved with the use of partitions)
 - Bottom-up design methodology
- Team design flows becoming a necessity
 Vivado Design Suite provides solution to all of the above

Vivado IDE Solution

Interactive design and analysis

• Timing analysis, connectivity, resource utilization, timing constraint analysis

RTL development and analysis

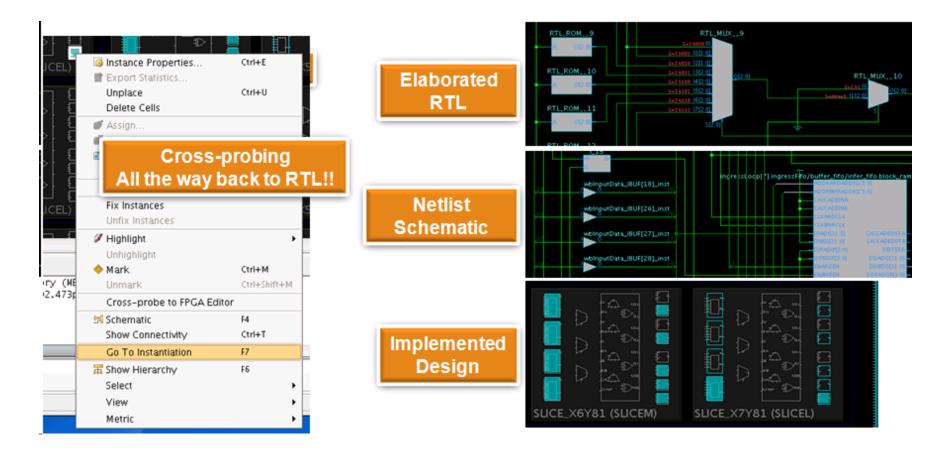

- Elaboration of HDL
- Hierarchical exploration
- Schematic generation

XSIM simulator integration

Synthesis, implementation and simulation in one package

I/O pin planning

Interactive rule-based I/O assignment



Hierarchical Design Analysis and Implementation Environment

Vivado Visualization Features

Visualize and debug a design at any flow stage

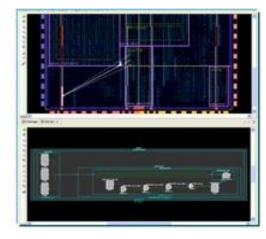
Cross-probing between netlist/schematic/RTL

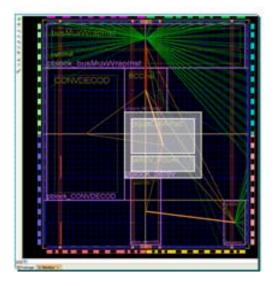
Gain Faster Timing Closure

• Analyze multiple implementation results

- Highlight failing timing paths from post-route timir analysis
- Quickly identify and constrain critical logic path

•Connectivity display


o I/Os, net bundles, clock domains


OHierarchical floorplanning

• Guide *place & route* toward better results

OUtilization estimates

All resource types shown for each Pblock Clocks or carry chains

Tool Command Line (.tcl) Features

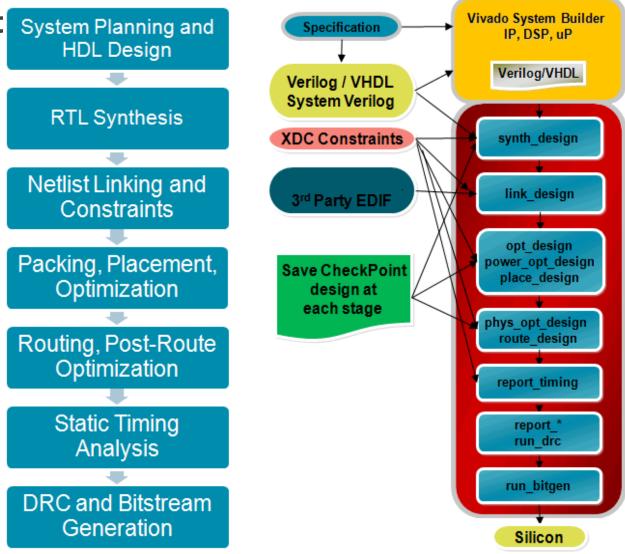
Tcl Console enables the designer to actively query the design netlist

- Full Tcl scripting support in two design flows
 - Project-based design flow provides easy project management by the Vivado IDE
 - Non-project batch design flow enables entire flow to be executed in memory
- Journal and log files can be used for script construction

Vivado Design Suite Introduction

Typical vs Vivado Design Flow

 Common constraint language (XDC) throughout flow


✓ Apply constraints at any stage

Reporting at any stage
 Robust Tcl API

Common data model throughout the flow

"In memory" model improves speed
Generate reports at all stages

Save checkpoint designs at any stage
 Netlist, constraints, place and route results

Project Data and Directories

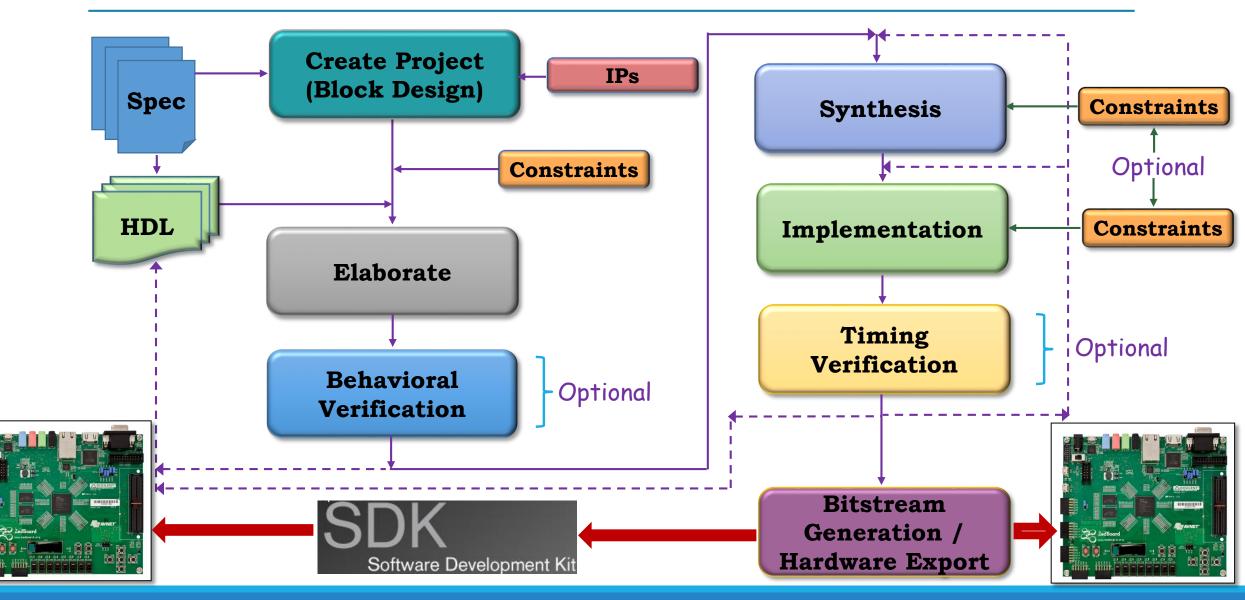
All project data is stored in a *project_name* directory containing the following directories

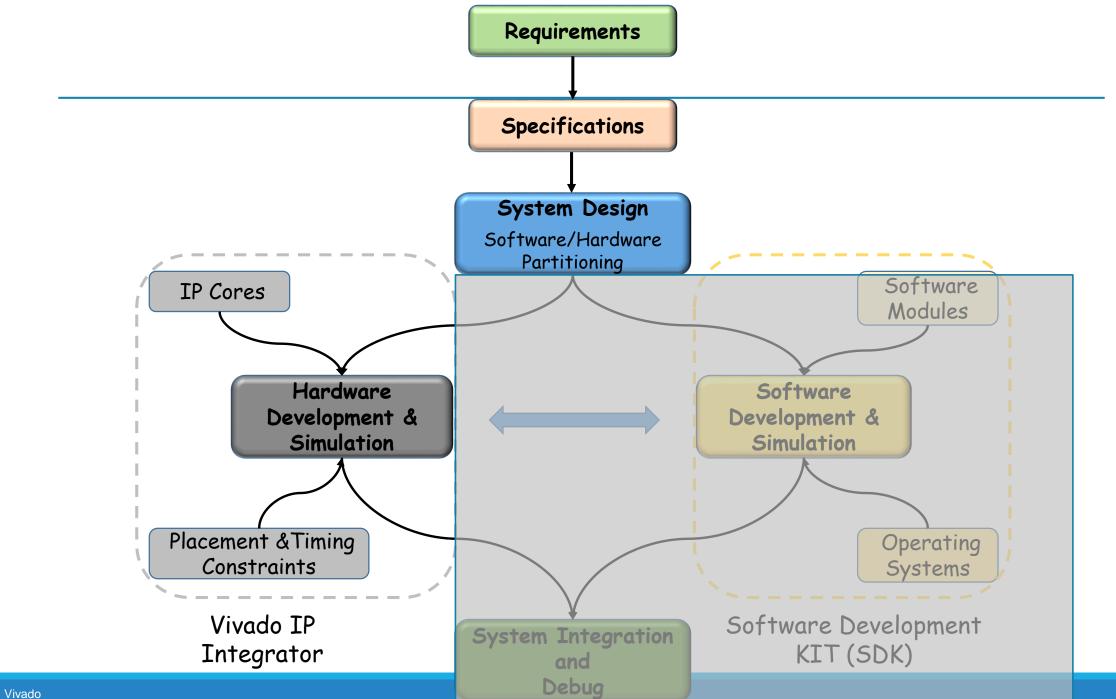
- *project_name.xpr* file: Object that is selected to open a project (Vivado IDE project file)
- *project_name.runs* directory: Contains all run data (synthesis, implementation)
- project_name.srcs directory: Contains all imported local HDL source files, netlists, and XDC files
- project_name.data directory: Stores floorplan and netlist data

Journal and Log Files

Journal file (vivado.jou)

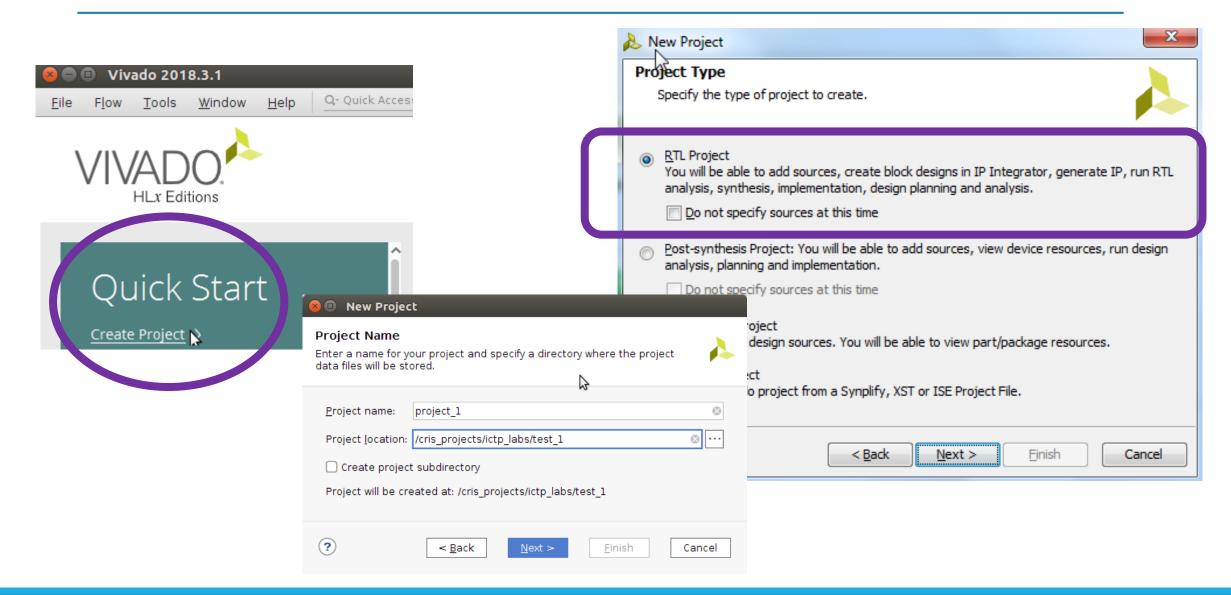
• Contains just the Tcl commands executed by the Vivado IDE


Log file (vivado.log)


 Contains all messages produced by the Vivado IDE, including Tcl commands and results, info, warning, error messages, etc.

Location

- Linux: directory where the Vivado IDE is invoked
- Windows via icon: %APPDATA%\Xilinx\Vivado or C:\Users\<user_name>\AppData\Roaming\Xilinx\Vivado


Embedded System Design – Vivado Flow

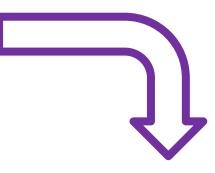
Vivado Flow Practical Steps

Creating a Project

Creating a Project

💼 New Project			
efault Part hoose a default Xilinx part or board for your project.			2
·····			
Parts Boards			
Reset VI Filters			
Vendor: All 🗸 Name: All			Board Rev
Search: Q· ·			
Display Name	Preview	Vendor	File Versic
Alpha-Data ADM-PCIE-7V3		alpha-data.com	1.1
ZedBoard Zyng Evaluation and Development Kit			
Add Daughter Card Connections		em.avnet.com	1.4
Add Daughter Card Connections		xilinx.com	14 ~
			>
?) < <u>B</u> a	ack <u>N</u> ext ≻	<u> </u>	Cancel

Workspace 🚳

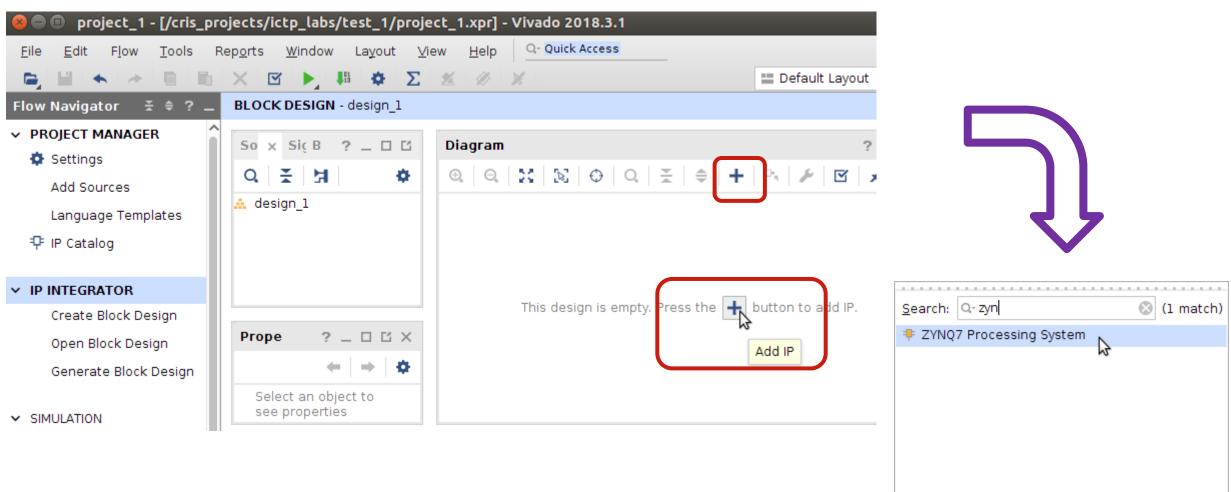

- - - × first_zynq_design - [C:/C_drive/Zynq_Boc ;/first_zynq_design/first_zynq_design.xpr] - Vivado 2014.1 File Edit Flow Tools Window Lavout View Help Q- Search commands - 🗶 🔖 🔭 🔍 🛛 🍪 🎉 🚬 📑 🛄 Default Layout Ready 🧶 📄 🚳 💷 🐘 🗶 🔕 Flow Navigato Project Manager - first_zynq_design 🔪 🔟 🖨 Sources ПĽХ – 🗆 🖻 🗡 **E** Project Summary X 王 😂 📄 💕 | Project Settings Edit 🖈 Project Manager Design Sources Project Settings Project name: first_zynq_design Constraints Product family: Zyng-7000 Simulation Sources add Sources - 📷 sim_1 Project part: xc7z020do484-1 : IP Catalog Top module name: Not defined Data IP Integrator Board \$ 🎊 Create Block Design ZedBoard Zyng Evaluation and Development Kit Display name: Window Open Block Design Board name: em.avnet.com:zyng:zed:d Generate Block Design URL: http://www.zedboard.org Board overview: 'ZedBoard is a complete development kit for designers interested in exploring designs using the Xiinx : Zynq-7000 All Simulation Programmable SoC. The board contains all the necessary intel faces and supporting functions to enable a wide range of Conception Settings applications. The expandability features of the board make it lead for rapid prototyping and proof-of-concept development." (II) Run Simulation HierarchyLibraries Cor 4 🕨 🖃 Synthesis ☆ Implementation \$ 🖧 Sources 🛛 🖓 Templates RTL Analysis Not started Status: Status: Not started Open Elaborated Design 10× Properties Messages: No errors or warnings Messages: No errors or warnings ← → 🔂 k Part: xc7z020clp484-1 xc7z020dg484-1 Part: Synthesis Strategy: <u>Vivado Synthesis Defaults</u> Strategy: Vivado Implementation Defaults 🚳 Synthe is Settings Incremental Compile: None 🔊 Run Sy thesis Summary Route Status B Open S nthesized Desi **DRC Violations** A Timing \$ Implementation 3 Implem Intation Settings DRC information is not available because it hasn't been run Timing information is not available because it hasn't been run Run Im lementation Open I plemented Des Utilization 2 Power 2 Program and Debug 👸 Bitstream Settings 🔚 Genera e Bitstream Design Runs – 🗆 🖻 × 📑 Open Hardware Manage Name Part Constraints Strategy Status Progress Launch MPACT ⊟·≕> synth_1 xc7z020clg484-1 constrs_1 Vivado Synthesis Defaults (Vivado Synthesis 2013) Not started 0% impl_1 xc7z020dg484-1 constrs_1 Vivado Implementation De aults (Vivado Implementation 2013) Not started 0% 🔲 Tel Console 🛛 🔾 N anes 🖾 Log 🕒 Deports 🖄 Design Duns Filter sources by missing files or instantiations Status Flow Navigator 📕 Results Window Area

Main Components of the Project Navigator

- 1. Menu Bar: Vivado IDE commands
- 2. Main Toolbar: Access to the most commonly used Vivado IDE commands
- **3.** Workspace: area for schematic panel, device panel, package panel, text editor panel.
- 4. Project Status Bar: displays the status of the currently active design
- **5.** Flow Navigator: provide easy access to the tools and commands necessary to guide the design from start to finish.
- **6. Data Window Pane**: by default displays information that relates to design data and sources, such as Property Window, Netlist Window, and Source Window
- 7. Status Bar: displays information about menu bar and toolbar commands; task progresses
- 8. Results Window Area: there are a set of windows, such as Messages, showing message for each process, Tcl Console, Tcl commands of each activity, Reports, reports generated throughout the design flow, Desing Runs, display the different run for the current project

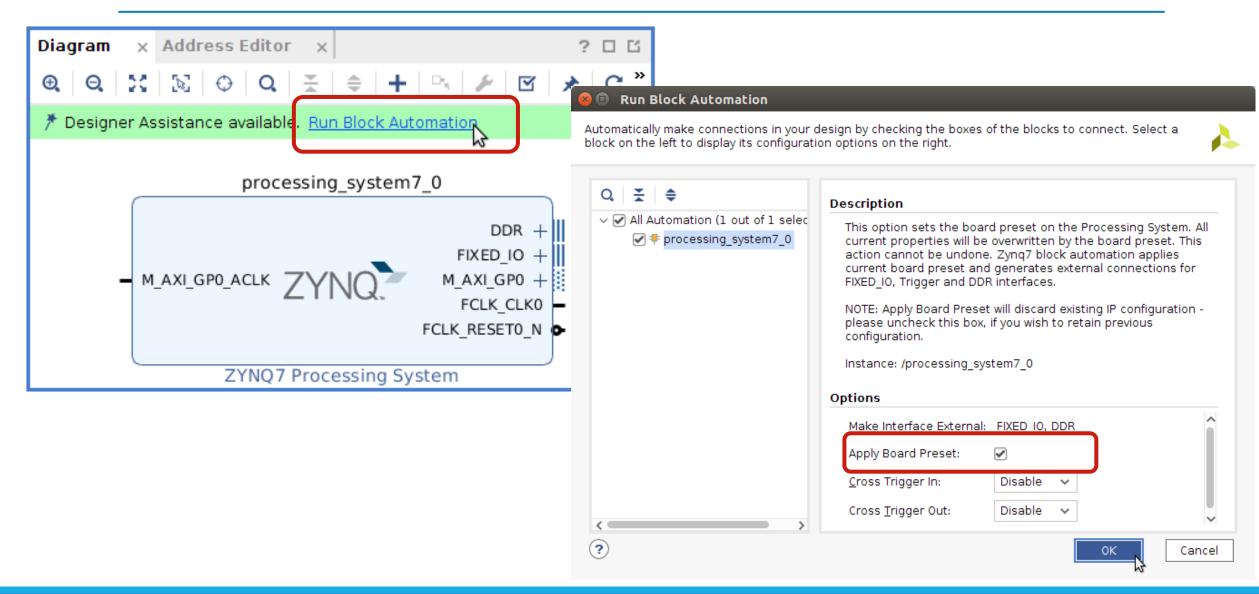
Create a Block design

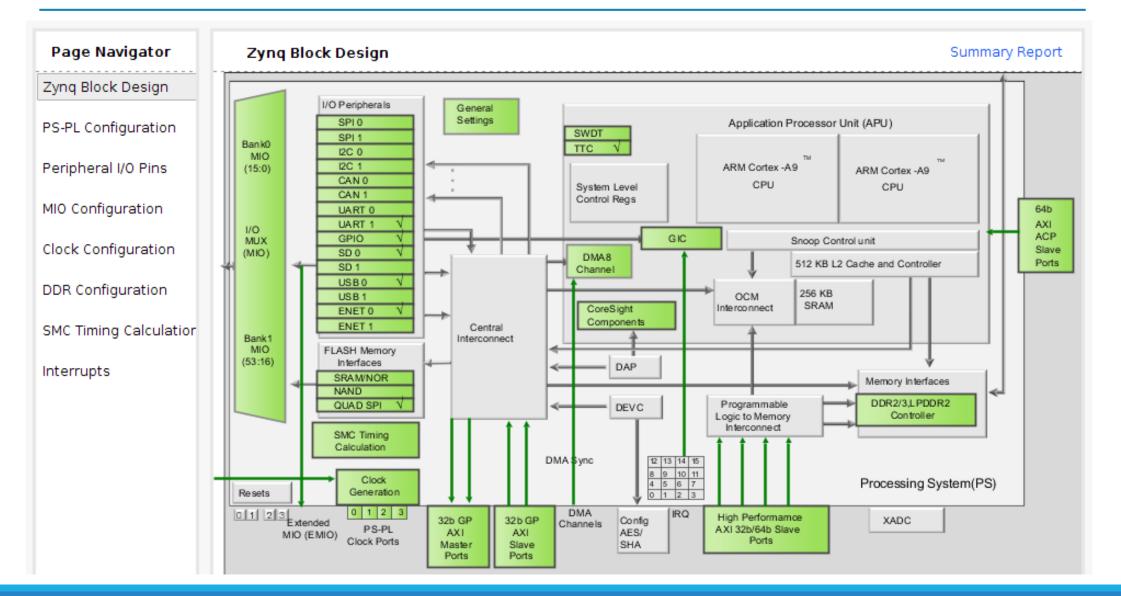
<u>F</u> ile <u>E</u> dit F <u>l</u> ow <u>T</u> ools R	ep <u>o</u> rts <u>W</u> indow La <u>y</u> out <u>V</u> iew <u>F</u>	elp Q- Quick Access	Ready
	▶ 👫 ✿ ∑ 🖄 Ø 💥		📰 Default Layout 🗸 🗸
Flow Navigator	PROJECT MANAGER - project_1		?
✓ PROJECT MANAGER	Sources ? _ D 🖸 :	Project Summary	2 C C X
💠 Settings			
Add Sources		Overview Dashboard	3
Language Templates	Design Sources Constraints	Settings Edit	
👎 IP Catalog	✓ Simulation Sources	Project name:	project 1
	🗅 sim_1	Project location:	project_1 /cris_projects/ictp_labs/test_1
V IP INTEGRATOR	> 🚍 Utility Sources	Product family:	Zynq-7000
Create Block Design		Project part:	ZedBoard Zynq Evaluation and Develo
Open Block Design		Top module name:	Not defined
Generate Block Design		Target language: Simulator language:	VHDL Mixed
	Hierarchy Libraries Com V		MIXEd
V SIMULATION	Properties ? _ D 🖸 :	Board Part	
Run Simulation	+ + 4		
		Display name:	ZedBoard Zynq Evaluation and Developn
 RTL ANALYSIS 			em.avnet.com:zed:part0:1.4 No connections
> Open Elaborated Design			/opt/Xilinx/Vivado/2018.3/data/boards/boa
	Select an object to see properties	1 21	http://www.zedboard.org
✓ SYNTHESIS		Board overview:	ZedBoard Zynq Evaluation and Developn
Run Synthesis		Changes	
> Open Synthesized Desigr		<	>
✓ IMPLEMENTATION			
Run Implementation	Tcl Console Messages Log	Reports Design Runs	× ?_□Ľ
	$ Q \stackrel{\times}{\times} \Leftrightarrow I \ll \blacktriangleright \gg$	+ %	
> Open Implemented Desig	Name Constraints Statu	WNS TNS WHS	THS TPWS Total Power Failed Rout
✓ PROGRAM AND DEBUG	∨ ▷ synth_1 constrs_1 Not si ▷ impl_1 constrs_1 Not si		


😕 🗉 🛛 Create Block Design

Please specify name of block design.

<u>D</u> esign name:	design_1	8
D <u>i</u> rectory:	ፍ <local project="" to=""></local>	~
Specify source set:	🗅 Design Sources	~
?	ОК	Cancel

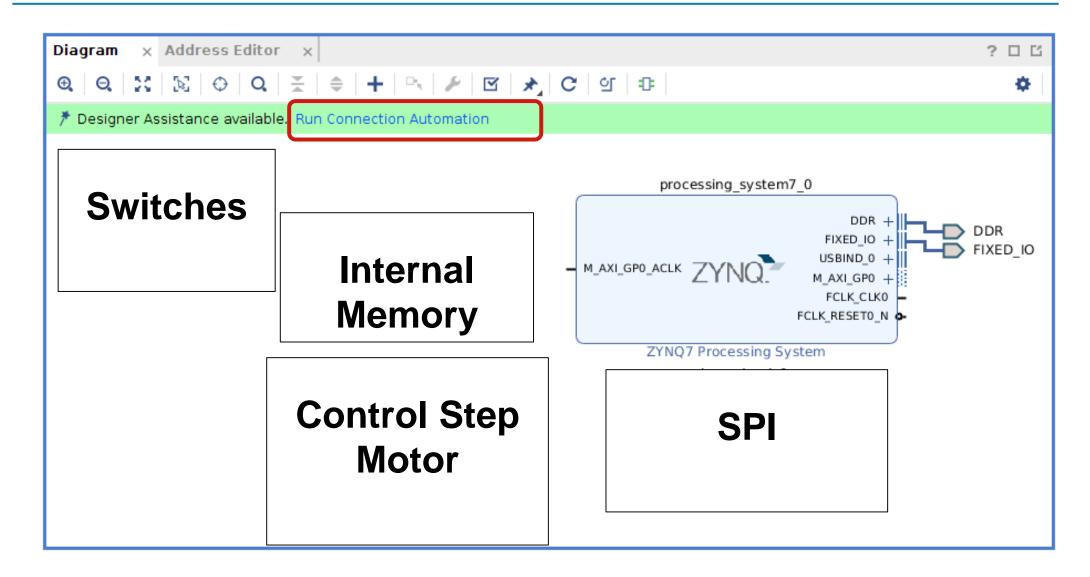

Adding IP Modules to the Design Canvas


To add multiple IP to the Block Design, you can highlight the additional desired IP (**Ctrl+Click**) and press the **Enter** key.

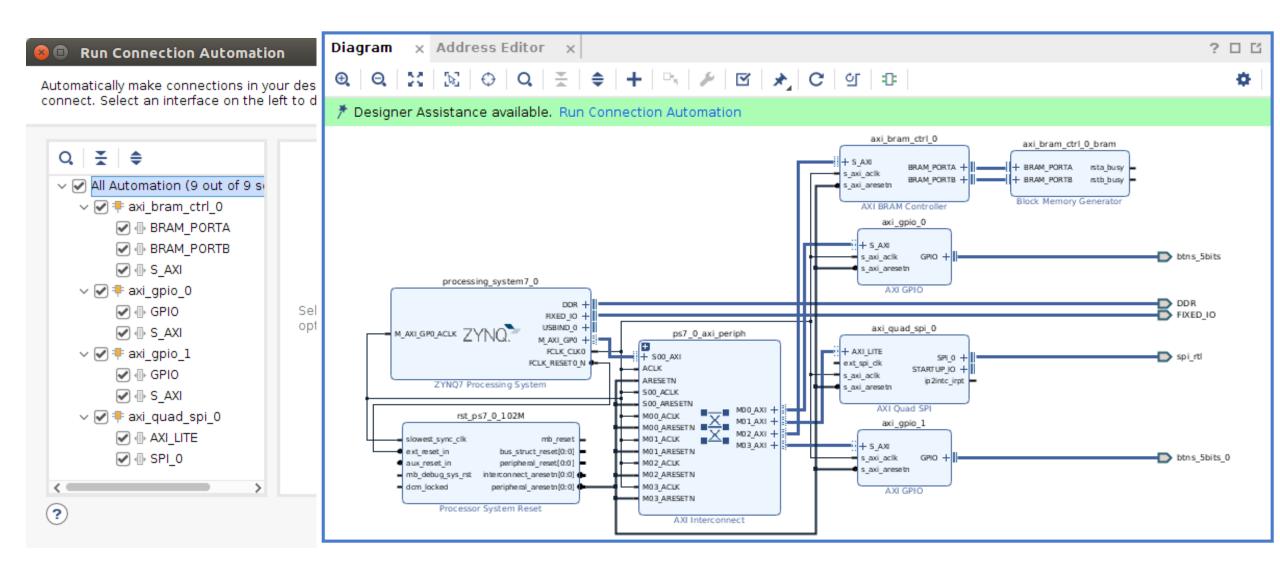
ENTER to select, ESC to cancel, Ctrl+Q for IP details

Processing System (PS)

Configuring the PS

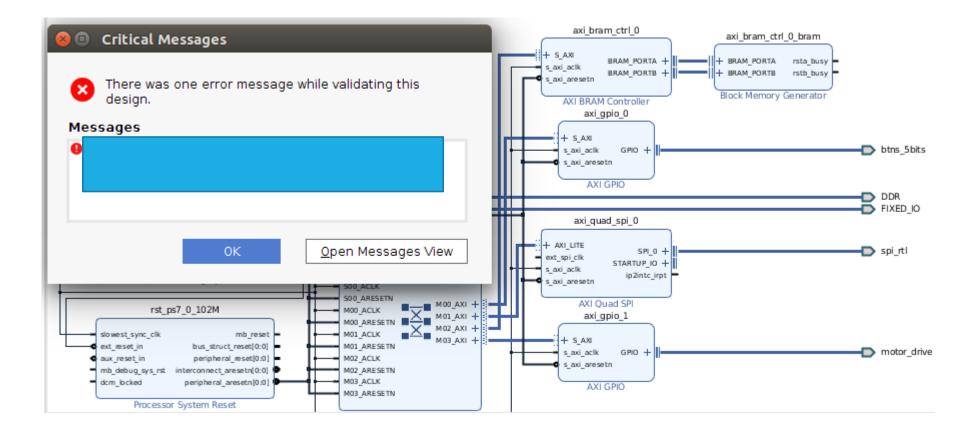


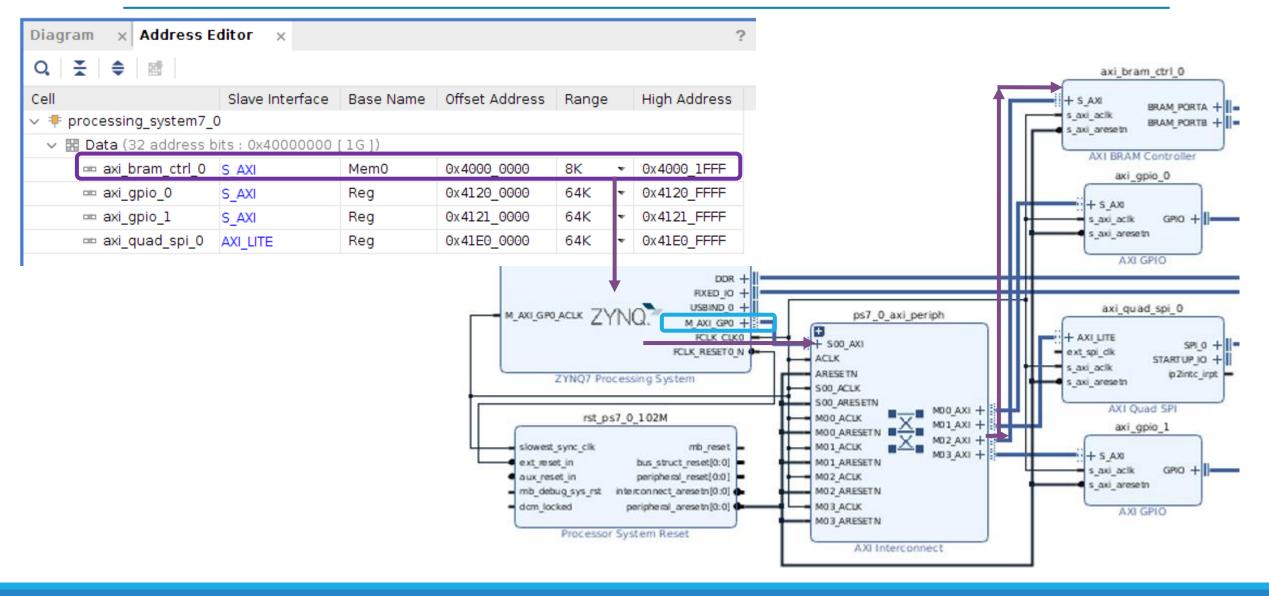
Configuring the PS


😣 🗉 Re-customize I	P															
ZYNQ7 Processing	System (5.5)				4											
🚯 Documentation 🔅 P	resets 🖻 IP Location 🔅 Import Xi	PS Settings	[😣 🗊 Re-customize I	Р	1										
Page Navigator	PS-PL Configuration			ZYNQ7 Processing	System (5.5	5)										<u> </u>
Zynq Block Design	← Q <u>×</u> ≑			🚯 Documentation 🔅 P	Presets 📄 IP Lo	ocation	n 🌣 Im	port XP	6 Setting	IS						
PS-PL Configuration	Search: Q-			Page Navigator	Peripher	al I/O	Pins								Summar	y Report
Peripheral I/O Pins	Name > General	Select	Description	Zynq Block Design	+ Q ¥	€ ♦	9									
MIO Configuration	> AXI Non Secure Enablement	0 🗸	Enable AXI Non Secure	PS-PL Configuration	Search: Q-											
Clack Configuration	✓ GP Slave AXI Interface			Peripheral I/O Pins												
Clock Configuration	S AXI GP0 interface	\checkmark	Enables General purpo		Peripherals	31	32 33	34 35	36 37	38 39	40 41	42 43	44 45	46 47	48 49	50 51
DDR Configuration	S AXI GP1 interface		Enables General purpo	MIO Configuration	> 🗌 SPI 1			SPI	L					SPI		1
SMC Timing Calculatic	✓ HP Slave AXI Interface			Clock Configuration	> 🗌 UART 0	то		UARTO		UARTO		UARTO		UARTO		UARTO
SMC TIMING Calculation	> S AXI HP0 interface		Enables AXI high perfor	DDR Configuration	> VART 1		UART1	_	UART1		UART1		UART1		UART1	
Interrupts	> S AXI HP1 interface		Enables AXI high perfor	DDR conliguration	✓ I2C 0		UARTI		UARTI		UARTI		UARTI		UARTI	
	> S AXI HP2 interface		Enables AXI high perfor	SMC Timing Calculati		:0		12C0		1200		1200		1200		12C0
	> S AXI HP3 interface		Enables AXI high perfor	Interrupts	□ I2C 1		1201		1201		1201		12C1		1201	
	> ACP Slave AXI Interface			incorrupto	> 🗹 CAN 0	40		CAN0		CAN0		CAN0		CAN0		CANO
	> DMA Controller				> 🗌 CAN 1		CAN1		CAN1		CAN1		CAN1		CAN1	
	> PS-PL Cross Trigger interface		Enables PL cross trigge		🗆 ттсо	1						-			_	

OK Cancel

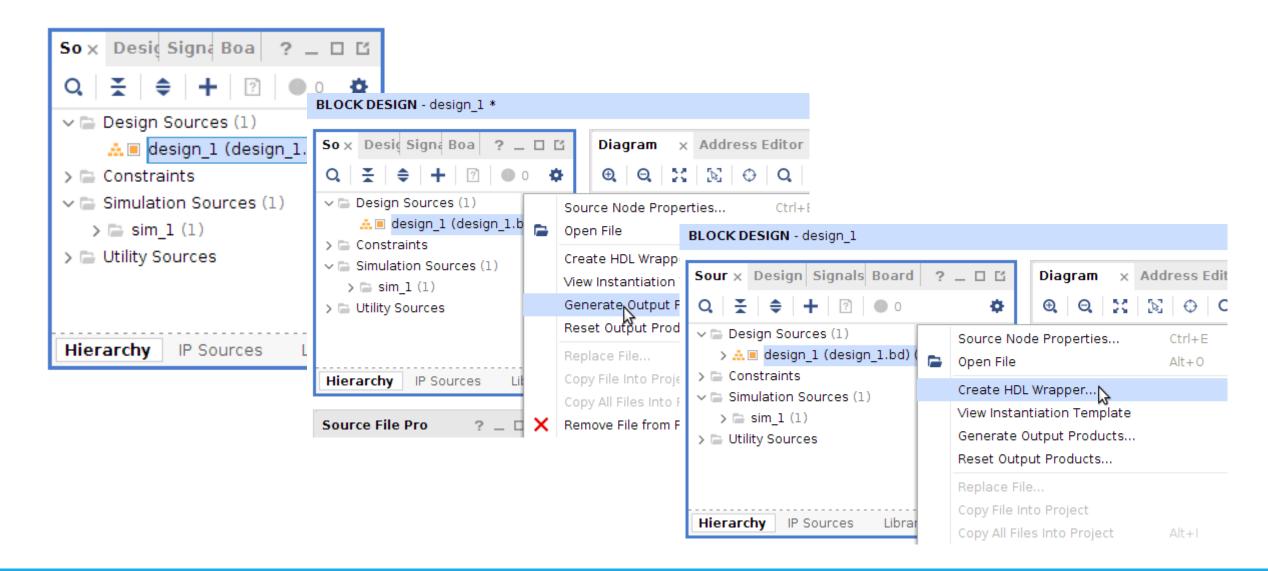
Making Up the System


Running Connection Automation


Custom GPIO

Documentation 🛛 📄 IP Locat	ion		
) Show disabled ports	Component Name axi_gpic	0_1	
	Board IP Configuratio		
	IP Interface	Board Interface	
	GPIO	btns 5bits	-
	GPI02	Custom	
		btns 5bits 🐼	
	Clear Board Parameter		
		sws 8bits	

DRC (Desing Rule Check) Design Validation


Memory Map

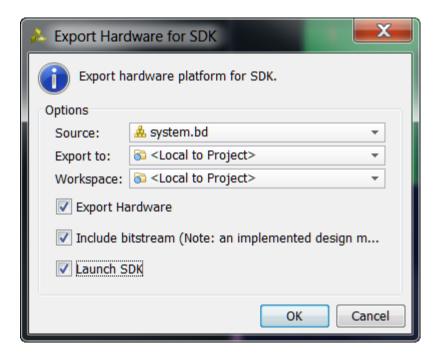
System Level Address Map

OCMOCMOCMAddress not filtered by SCU and OCM is mapped low0000_0000 to 0003_FFFF(2)DDROCMAddress filtered by SCU and OCM is mapped lowDDRDDRCMAddress filtered by SCU and OCM is on mapped low0004_0000 to 0007_FFFDDRImapped low0004_0000 to 0007_FFFFDDRImapped low0004_0000 to 0007_FFFFDDRImapped low0008_0000 to 0007_FFFFDDRImapped low0008_0000 to 0007_FFFFDDRDDRAddress not filtered by SCU0008_0000 to 0007_FFFFDDRDDRAddress not filtered by SCU0008_0000 to 0007_FFFFPDRDDRAddress not filtered by SCU(3)0010_0000 to 3EFF_FFFFDDRDDRAddress not filtered by SCU(3)0010_0000 to 3FFF_FFFFPLPLGeneral Purpose Port #0 to the PL, M_AXI_GP00000_0000 to BFFF_FFFFPLIDPAccessible to all interconnect masters0000_0000 to ESFF_FFFFSMCImapped Imapped	Address Range	CPUs and ACP	AXI_HP	Other Bus Masters ⁽¹⁾	Notes
DORDORDORDORDORDDRDDRImapped lowAddress filtered by SCU and OCM is not mapped lowDDRDDRAddress not filtered by SCU and OCM is not mapped low0004_0000 to 0007_FFFFDDRAddress not filtered by SCU0008_0000 to 0007_FFFFDDRDDRAddress not filtered by SCU0008_0000 to 0007_FFFFDDRDDRAddress not filtered by SCU0008_0000 to 0007_FFFFDDRDDRDDR0000_0000 to 3EFF_FFFFDDRDDRDDR0000_0000 to 7FFF_FFFFPLPLGeneral Purpose Port #0 to the PL, M_AXI_GP00000_0000 to 5EFF_FFFFPLPLGeneral Purpose Port #1 to the PL, M_AXI_GP10000_0000 to ESFF_FFFFSMCSMCSMC Memories, see Table 4-5E000_0000 to F800_0BFFSLCRSLCRSLCR registers, see Table 4-3F800_1000 to F800_2FFFPSPSPS System registers, see Table 4-4F000_0000 to FFF_FFFFQuad-SPIQuad-SPI linear address for linear modeFFFC 0000 to FFFF FFFFQCMOCMOCMOCM is mapped high		ОСМ	ОСМ	ОСМ	-
DDRDDRAddress filtered by SCU and OCM is not mapped low0004_0000 to 0007_FFFFDDRAddress not filtered by SCU not mapped low0004_0000 to 0007_FFFFDDRAddress not filtered by SCU0008_0000 to 0007_FFFFDDRDDRAddress not filtered by SCU0008_0000 to 000F_FFFFDDRDDRAddress not filtered by SCU0008_0000 to 000F_FFFFDDRDDRAddress not filtered by SCU0008_0000 to 000F_FFFFDDRDDRDDR0000_0000 to 3FFF_FFFFDDRDDRAddress not filtered by SCU(3)0000_0000 to 7FFF_FFFFPLPLGeneral Purpose Port #0 to the PL, M_AXI_GP00000_0000 to BFFF_FFFFPLPLGeneral Purpose Port #1 to the PL, M_AXI_GP18000_0000 to E3FF_FFFFSMCSMCSMC Memories, see Table 4-5F800_0000 to F800_0BFFSLCRSLCRSLCR registers, see Table 4-3F800_1000 to F800_2FFFPSPSPS System registers, see Table 4-7F890_0000 to F8F0_2FFFCPUCPU Private registers, see Table 4-7F890_0000 to F8F0_2FFFCPUQuad-SPIQuad-SPI linear address for linear modeFFFC 0000 to FFF FFFF(2)OCMOCMOCMOCM is mapped high		DDR	ОСМ	ОСМ	
Image: constraint of the section of	0000_0000100003_FFF	DDR			
0004_0000 to 0007_FFFFImage: Section of the section of t					-
Address not filtered by SCU0008_0000 to 000F_FFFFDDRDDRDDRAddress not filtered by SCU0008_0000 to 000F_FFFFFFDDRDDRDDRAddress not filtered by SCU(3)0010_0000 to 3FFF_FFFFDDRDDRDDRAccessible to all interconnect masters4000_0000 to 7FFF_FFFFPLDDRDDRAccessible to all interconnect masters8000_0000 to 8FFF_FFFFPLPLGeneral Purpose Port #0 to the PL, M_AXI_GP08000_0000 to E02F_FFFFIOPPLGeneral Purpose Port #1 to the PL, M_AXI_GP1E000_0000 to E5FF_FFFFSMCIOPI/O Peripheral registers, see Table 4-6E100_0000 to F800_0BFFSLCRSLCRSLCR registers, see Table 4-3F800_1000 to F880_FFFFPSPSPS System registers, see Table 4-7F890_0000 to F0FF_FFFF(4)Quad-SPIQuad-SPIQuad-SPI linear address for linear modeFFFC_0000 to FFFF FFFF(2)OCMOCMOCM is mapped high	0004 0000 to 0007 REPR	DDR			Address filtered by SCU
0008_0000 to 000F_FFFFImage: Constraint of the second of the	0004_0000100007_FFFF				Address not filtered by SCU
Image: Constraint of the constra		DDR	DDR	DDR	Address filtered by SCU
Image: constraint of the second sec	0008_0000 10 0001. LELE		DDR	DDR	Address not filtered by SCU ⁽³⁾
4000_0000 to 7FFF_FFFPLPLM_AXI_GPO8000_0000 to BFFF_FFFFPLPLGeneral Purpose Port #1 to the PL, M_AXI_GP1E000_0000 to E02F_FFFFIOPIOPI/O Peripheral registers, see Table 4-6E100_0000 to E5FF_FFFFSMCSMCSMC Memories, see Table 4-5F800_0000 to F800_0BFFSLCRSLCRSLCR registers, see Table 4-3F800_1000 to F880_FFFFPSPSPSF800_0000 to F8F0_2FFFCPUCPU Private registers, see Table 4-7F890_0000 to F8F0_2FFFCPUQuad-SPIFR00_0000 to F8F0_2FFFQuad-SPIQuad-SPI linear address for linear modeFFFC_0000 to FFFF_FFFF(2)OCMOCMOCMOCM is mapped high	0010_0000 to 3FFF_FFFF	DDR	DDR	DDR	Accessible to all interconnect masters
8000_0000 to BFFF_FFFFPLPLM_AXI_GP1E000_0000 to E02F_FFFFIOPIOPI/O Peripheral registers, see Table 4-6E100_0000 to E5FF_FFFSMCSMCSMC Memories, see Table 4-5F800_0000 to F800_0BFFSLCRSLCRSLCR registers, see Table 4-3F800_1000 to F880_FFFFPSPSPSF890_0000 to F8F0_2FFFCPUCPU Private registers, see Table 4-7F890_0000 to F0FF_FFFF(4)Quad-SPIQuad-SPIFFFC_0000 to FFFF_FFFF(2)OCMOCMOCMFFFC_0000 to FFFF_FFFF(2)OCMOCMOCM					Conserved Deserved Deserve #0 to the DI
E100_0000 to E5FF_FFFSMCSMCSMCSMC Memories, see Table 4-5F800_0000 to F800_0BFFSLCRSLCRSLCR registers, see Table 4-3F800_1000 to F880_FFFFPSPSPSPS System registers, see Table 4-7F890_0000 to F8F0_2FFFCPUCPU Private registers, see Table 4-4FC00_0000 to FDFF_FFFF(4)Quad-SPIQuad-SPIQuad-SPI linear address for linear modeFFFC_0000 to FFFF_FFFF(2)OCMOCMOCMOCM is mapped high	4000_0000 to 7FFF_FFFF	PL		PL	
F800_0000 to F800_0BFF SLCR SLCR SLCR SLCR registers, see Table 4-3 F800_1000 to F880_FFFF PS PS PS PS system registers, see Table 4-7 F890_0000 to F8F0_2FFF CPU CPU Private registers, see Table 4-4 FC00_0000 to FDFF_FFFF(4) Quad-SPI Quad-SPI Quad-SPI linear address for linear mode FFFC_0000 to FFFF_FFFF(2) OCM OCM OCM OCM is mapped high					M_AXI_GP0 General Purpose Port #1 to the PL,
F800_1000 to F880_FFFF PS PS PS System registers, see Table 4-7 F800_0000 to F8F0_2FFF CPU CPU Private registers, see Table 4-4 FC00_0000 to FDFF_FFFF(4) Quad-SPI Quad-SPI PFFC_0000 to FFFF_FFFF(2) OCM OCM OCM	8000_0000 to BFFF_FFFF	PL		PL	M_AXI_GP0 General Purpose Port #1 to the PL, M_AXI_GP1
F890_0000 to F8F0_2FFF CPU CPU CPU Private registers, see Table 4-4 FC00_0000 to FDFF_FFFF(4) Quad-SPI Quad-SPI Quad-SPI linear address for linear mode FFFC_0000 to FFFF_FFFF(2) OCM OCM OCM OCM is mapped high	8000_0000 to BFFF_FFF E000_0000 to E02F_FFFF	PL		PL IOP	M_AXI_GP0 General Purpose Port #1 to the PL, M_AXI_GP1 I/O Peripheral registers, see Table 4-6
FC00_0000 to FDFF_FFF ⁽⁴⁾ Quad-SPI Quad-SPI Quad-SPI linear address for linear mode FFFC_0000 to FFFF_FFF ⁽²⁾ OCM OCM OCM OCM is mapped high	8000_0000 to BFFF_FFFF E000_0000 to E02F_FFFF E100_0000 to E5FF_FFFF	PL IOP SMC		PL IOP SMC	M_AXI_GP0 General Purpose Port #1 to the PL, M_AXI_GP1 I/O Peripheral registers, see Table 4-6 SMC Memories, see Table 4-5
FFFC 0000 to FFFF FFFF ⁽²⁾ OCM OCM OCM OCM is mapped high	8000_0000 to BFFF_FFF 8000_0000 to E02F_FFFF E000_0000 to E5FF_FFFF E100_0000 to E5FF_FFFF F800_0000 to F800_0BFF	PL IOP SMC SLCR		PL IOP SMC SLCR	M_AXI_GP0 General Purpose Port #1 to the PL, M_AXI_GP1 I/O Peripheral registers, see Table 4-6 SMC Memories, see Table 4-5 SLCR registers, see Table 4-3
FFFC 0000 to FFFF FFFF ⁽²⁾	8000_0000 to BFFF_FFF 8000_0000 to E02F_FFFF E000_0000 to E5FF_FFFF E100_0000 to F800_0BFF F800_0000 to F880_FFFF	PL IOP SMC SLCR PS		PL IOP SMC SLCR	M_AXI_GP0 General Purpose Port #1 to the PL, M_AXI_GP1 I/O Peripheral registers, see Table 4-6 SMC Memories, see Table 4-5 SLCR registers, see Table 4-3 PS System registers, see Table 4-7
OCM is not mapped high	8000_0000 to BFFF_FFF 8000_0000 to E02F_FFFF E100_0000 to E5FF_FFFF F800_0000 to F800_0BFF F800_1000 to F880_FFFF F890_0000 to F8F0_2FFF	PL IOP SMC SLCR PS CPU		PL IOP SMC SLCR PS	M_AXI_GP0 General Purpose Port #1 to the PL, M_AXI_GP1 I/O Peripheral registers, see Table 4-6 SMC Memories, see Table 4-5 SLCR registers, see Table 4-3 PS System registers, see Table 4-7 CPU Private registers, see Table 4-4
	2 2 8000_0000 to BFFF_FFF E000_0000 to E02F_FFFF E100_0000 to E5FF_FFFF F800_0000 to F800_0BFF F800_1000 to F880_FFFF F890_0000 to F8F0_2FFF FC00_0000 to FDFF_FFFF ⁽⁴⁾	PL IOP SMC SLCR PS CPU Quad-SPI	OCM	PL IOP SMC SLCR PS Quad-SPI	M_AXI_GP0 General Purpose Port #1 to the PL, M_AXI_GP1 I/O Peripheral registers, see Table 4-6 SMC Memories, see Table 4-5 SLCR registers, see Table 4-3 PS System registers, see Table 4-7 CPU Private registers, see Table 4-4 Quad-SPI linear address for linear mode

Getting the System Ready to be Implemented

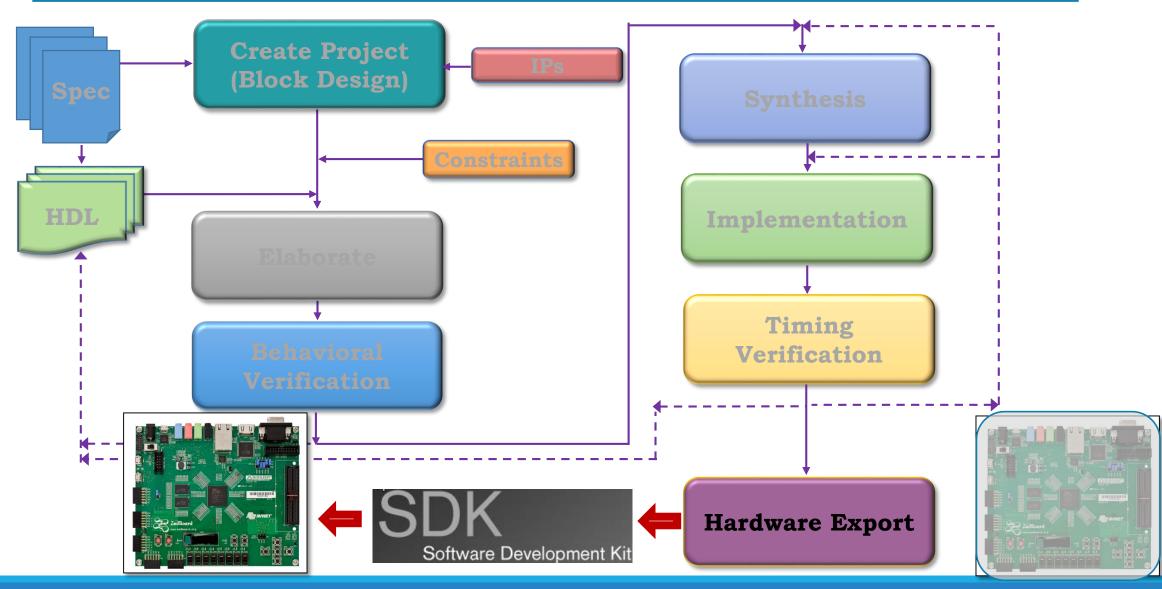
Export Hardware Design to SDK

Software development is performed with the Xilinx Software Development Kit tool (SDK)

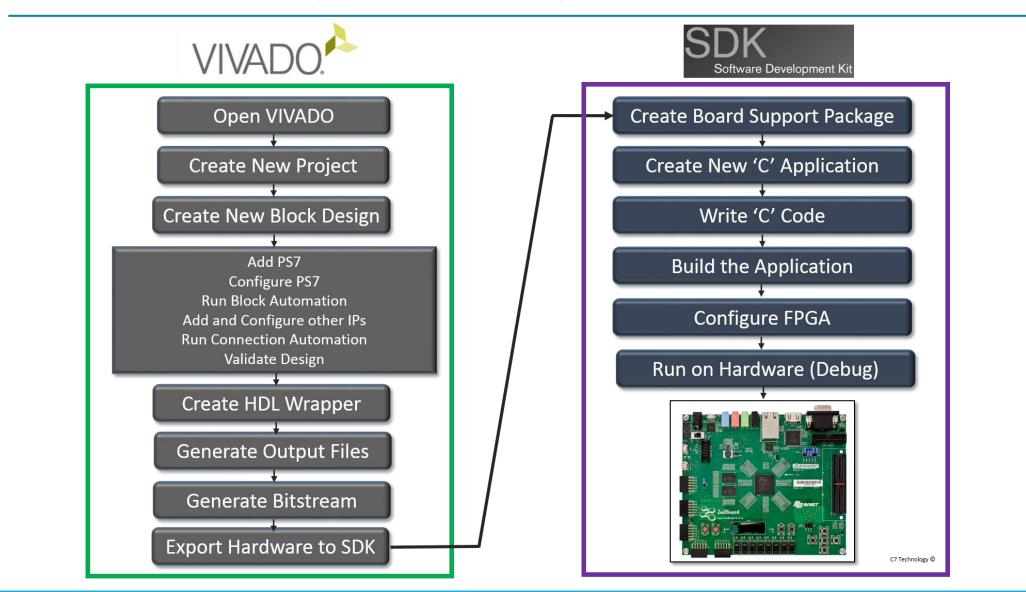

The design must be opened if a bitstream of the design is generated

The Block design must be open before the design can be exported

An XML description of the hardware is imported in the SDK tool


- The hardware platform is built on this description
- Only one hardware platform for an SDK project

The SDK tool will then associate user software projects to hardware



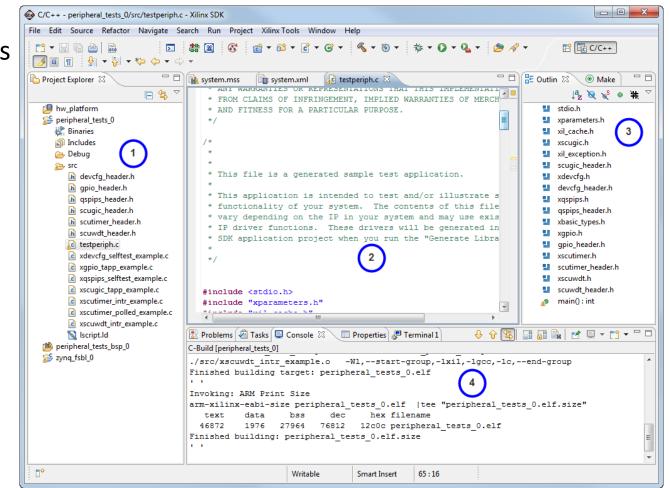
Software Development Kit (SDK)

Embedded System Design – Vivado-SDK Flow

Embedded System Design – Vivado-SDK Flow

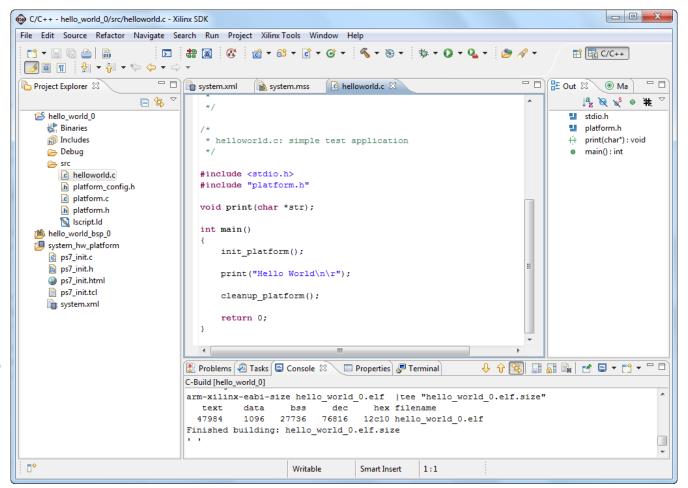
Embedded System Tools: Software

Eclipse IDE-based Software Development Kit (SDK)

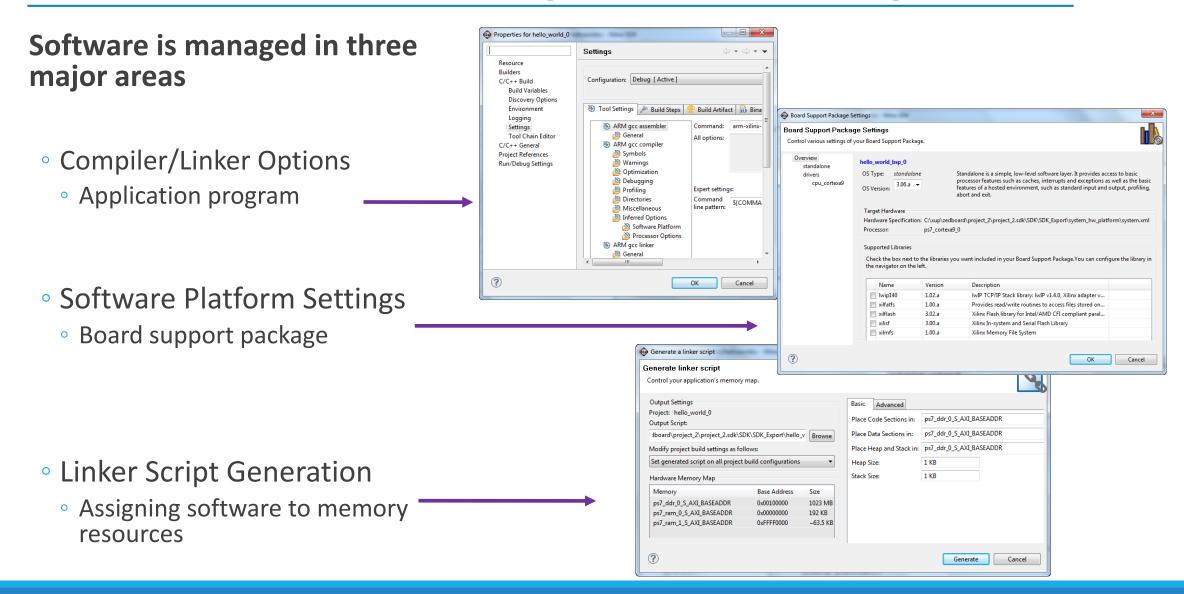

- Board support package creation : LibGen
- GNU software development tools
- C/C++ compiler for the ARM Cortex-A9 processor (gcc)
- Debugger for the ARM Cortex-A9 processor (gdb)

Board support packages (BSPs)

- Stand-alone BSP
 - Free basic device drivers and utilities from Xilinx
 - NOT an RTOS


SDK Workbench Views

- ① C/C++ project outline displays the elements of a project with file decorators (icons) for easy identification
- OCC++ editor for integrated software creation
- Code outline displays elements of the software file under development with file decorators (icons) for easy identification
- ④ Problems, Console, Properties views list output information associated with the software development flow



Build Software Application in SDK

- Create software platform
 - System software, board support package
 - LibGen program
- Create software application
- Optionally, create linker script
- Build project
 - Compile, assemble, link output file <app_project>.elf

Software Management Settings

Integrated Xilinx Tools in the SDK

Xilinx additions to the Eclipse IDE

- BSP Settings
- Software Repositories
- Generate Linker Script
- Program the programmable logic
 - Bitstream must be available
- Create Zynq Boot Image
- Program Flash Memory
- Launch XMD Console
- Launch Shell
- Configure JTAG Settings
- SysGen Co-Debug Settings

Xili	nx Tools Window Help
	Generate linker script
۱۱	Board Support Package Settings
0	Repositories
*	Program FPGA
	Program Flash
X	XMD Console
>	Launch Shell
12	Configure JTAG Settings
8	System Generator Co-Debug Settings
	Create Zynq Boot Image

Basics of TCL in Vivado

Tool Command Language

TCL , is *an interpreted programming language* with variables,

procedures , and control structures, to interface to *a variety of design*

tools and to the design data

It has been an industry standard language since early 90s'

Xilinx adopted TCL for the Vivado Design Suite

Tool Command Language (cont)

TCL in Vivado enables the designer to:

- Create a project
- Target a SoPC device/board
- Create a block design
- Include IP Cores
- Configure PS, IP Cores, etc.

- Run synthesis
- Run implementation
- Modify P&R options
- Customize reports
- Program SoPC

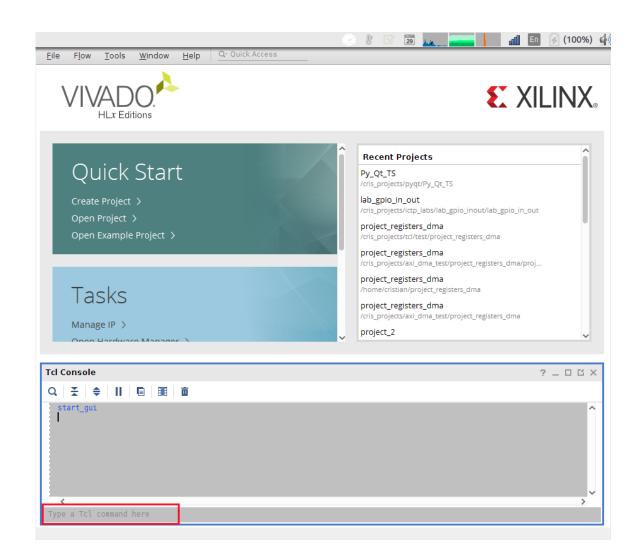
Tool Command Language (cont)

The **Vivado** tools write a journal file called <u>vivado.jou</u> into the directory from which **Vivado** was launched. The journal is a record of the Tcl commands run during the session.

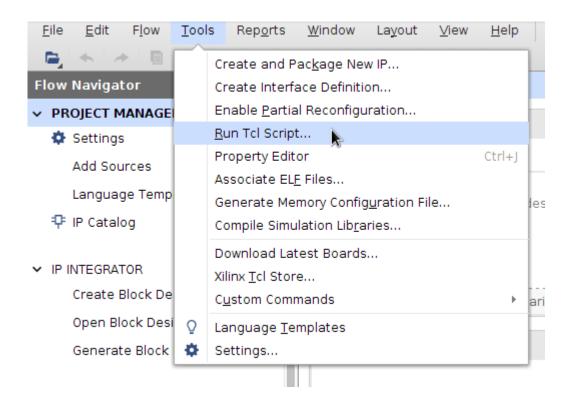
Thus, they can be used as a starting point to create a new Tcl script

Tool Command Language (cont)

```
# Vivado v2018.3.1 (64-bit)
# SW Build 2489853 on Tue Mar 26 04:18:30 MDT 2019
# IP Build 2486929 on Tue Mar 26 06:44:21 MDT 2019
# Start of session at: Wed May 22 20:07:21 2019
# Process ID: 19219
# Current directory: /cris projects
# Command line: vivado
# Log file: /cris projects/vivado.log
# Journal file: /cris projects/vivado.jou
start gui
create project project 1 /cris projects/ZedBoard/borrar/hw -part
xc7z020clq484-1
set property board part em.avnet.com:zed:part0:1.4
[current project]
set property target language VHDL [current project]
create bd design "design 1"
update compile order -fileset sources 1
startgroup
create bd cell -type ip -vlnv
xilinx.com:ip:processing system7:5.5 processing system7 0
endgroup
apply bd automation -rule
xilinx.com:bd rule:processing system7 -config {make external
"FIXED IO, DDR" apply board preset "1" Master "Disable" Slave
"Disable" } [get bd cells processing system7 0]
generate target all [get files
/cris projects/ZedBoard/borrar/hw/project 1.srcs/sources
1/bd/design 1/design 1.bd]
startgroup
```


How to run a provided .tcl script

- Methot 1: Through Vivado TCL console
- Method 2: Through Command Line


Method 1: Run .tcl in Vivado TCL Console

- 1. Start *Vivado Design Suite*. You can see a tcl console on the left bottom of *Vivado Design Suite*
- 2. Click on the title 'type a tcl command here' (button left of the screen)
- 3. Go to the folder location where the tcl script resides (use 'cd', 'pwd')
- 4. Once the directory has been changed, you can use the '*ls*' command to list the files in the current directory. Check that the .tcl is in there.
- 5. Run the .tcl script by using the following command: *source <filename>.tcl*
- 6. The processes defined in the .tcl file will be executed. It could take some times to execute a .tcl file (depending on the defined processes)

Vivado TCL Console

Vivado TCL Option in the GUI

Method 2: Run .tcl through Command Line

- In W10 you can start the Vivado TCL Shell by doing Start-> All apps->Vivado 2019.1 Tcl Shell.
- 2. A small command line window should come up
- 3. Go to the folder location where the tcl script resides (use 'cd', 'pwd')
- 4. Once the directory has been changed, you can use the 'dir' command to list the files in the current directory. Check that the .tcl is in there.
- 5. Run the .tcl script by using the following command: *source <filename>.tcl*
- 6. The processes defined in the .tcl file will be executed. It could take some times to execute a .tcl file (depending on the defined processes)

Run .tcl in Linux

- **1**. Make sure TCL interpreter is installed:
 - \$whereis tclsh
 - tclsh: /usr/bin/tclsh /usr/bin/tclsh8.4 /usr/share/man/man1/tclsh.1.gz
- 2. In case you don't have the tcl interpreter installed, do the following:
 - \$ sudo apt-get install tcl8.4
 - Note: if you have installed Vivado, the Tcl interpreter should be installed
- 3. Execute TCL script: You can either execute using "tclsh helloworld.tcl" or "./helloworld.tcl".
 - \$ tclsh helloworld.tcl
 - Hello World!

(or)

- \$ chmod u+x helloworld.tcl
- \$./helloworld.tcl
- Hello World!l.

Is there any Need to Learn TCL?

It is purely based on your objectives.

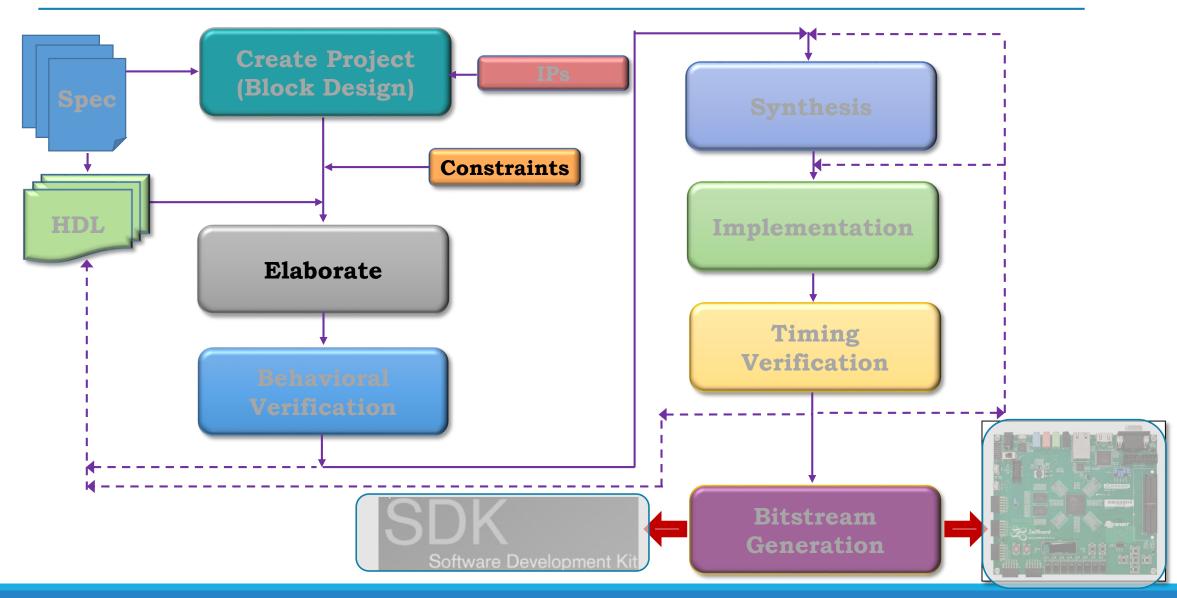
If you want to automate some basic processes in creating design,

it is the best choice

as we can export a tcl script to another computer <u>and create an exact replica</u> <u>of the project</u> with same configurations, ip integrations in single execution

TCL Docs

Vivado Design Suite TCL Command Reference Guide


Vivado Design Suite User Guide - Using TCL Scripting

TCL Tutorial (up to Chapter 14 for Vivado appl

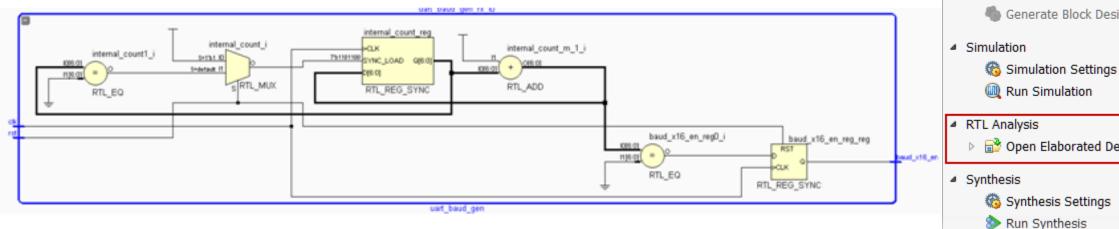
Apendix

Vivado Design Suite Elaboration Process

Embedded System Design – Vivado Flow

Elaboration

• Elaboration is the RTL optimization to an FPGA technology


- Vivado IDE allows designers to import and manage RTL sources
 Verilog, System Verilog, VHDL, NGC, or testbenches
- Create and modify sources with the RTL Editor
 - Cross-selection between all the views
- Sources view
 - Hierarchy view: Display the modules in the design by hierarchy
 - Libraries view: Display sources by category

Elaborated Design

Accessed through the Flow Navigator by selecting Open Elaborated Design

Representation of the design before synthesis

- Interconnected netlist of hierarchical and generic technology cells
 - Instances of modules/entities
 - Generic technology representations of hardware components
 - AND, OR, buffer, multiplexers, adders, comparators, etc...

Flow Navigator

Project Manager

Project Settings

Add Sources IP Catalog

🔍 🔀 🚖

Object Names in Elaborated Design

Object names are extracted from RTL

- Instance and pin names of hierarchical objects
- Inferred flip-flops from underlying reg/signal/logic

meta_harden_meta_harden_rst_i0

(CIK_IX),

(1'b0)

(ist_i),

(rst clk rx)

.clk_dst

.rst dst

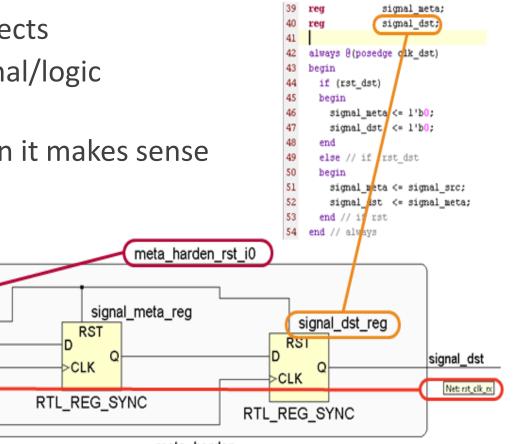
signal src

.signal dst

96

97

98


99

100

101);

• Suffix _reg is added

• Nets from underlying reg/signal/logic when it makes sense

clk dst

rst_dst

signal_src

Elaboration and Analysis

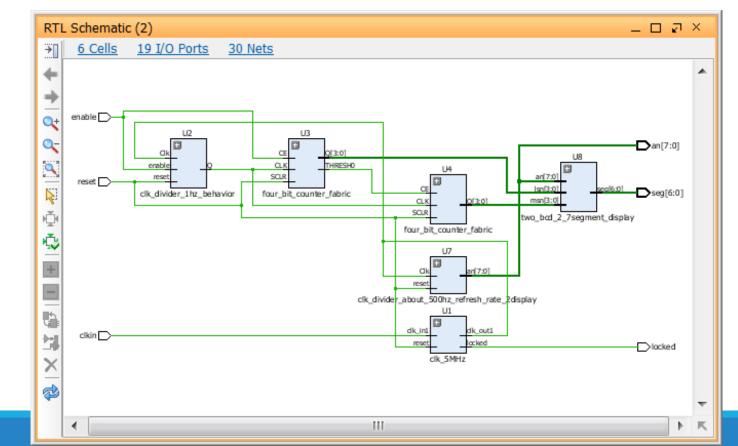
In a RTL based design, elaboration is the first step

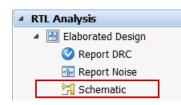
Click on the Open Elaborated Design under RTL Analysis to

• Compile the RTL source files and load the RTL netlist for interactive analysis

You can check RTL structure, syntax, and logic definitions

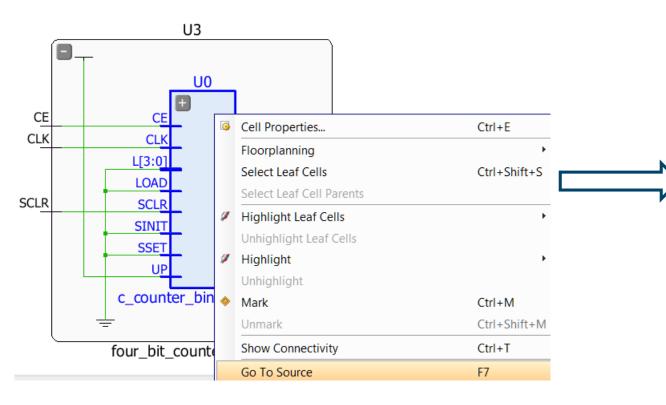
Analysis and reporting capabilities include:


- RTL compilation validation and syntax checking
- Netlist and schematic exploration
- Design rule checks
- Early I/O pin planning using an RTL port list
- Ability to select an object in one view and cross probe to the object in other views, including instantiations and logic definitions within the RTL source files


⊿	RTL Analysis
	Open Elaborated Design

Schematic View of an Elaborated Design

When Schematic is clicked under the Elaborated Design, the schematic is opened showing the hierarchical blocks


• Note that no IO buffers are inferred at this stage

Cross Probing

Select an object in the schematic, right-click, and select Go To Source to view where the object is defined in the source file



114 BEGIN

L15	<pre>J0 : c_counter_binary_v12_0</pre>
116	GENERIC MAP (
117	C_IMPLEMENTATION => 0,
118	C_VERBOSITY => 0,
L19	<pre>C_XDEVICEFAMILY => "artix7",</pre>
L20	C_WIDTH => 4,
121	C_HAS_CE => 1,
122	C_HAS_SCLR => 1,
L23	C_RESTRICT_COUNT => 1,
L24	C_COUNT_TO => "1001",
L25	C_COUNT_BY => "1",
L26	C_COUNT_MODE => 0,
127	C_THRESHO_VALUE => "1001",
128	C_CE_OVERRIDES_SYNC => 0,
L29	C_HAS_THRESH0 => 1,
L30	C_HAS_LOAD => 0,
131	C_LOAD_LOW => 0,
132	C_LATENCY => 1,
L33	C_FB_LATENCY => 0,
134	C_AINIT_VAL => "0",
L35	C_SINIT_VAL => "0",
L36	C_SCLR_OVERRIDES_SSET => 1,
L37	C_HAS_SSET => 0,
138	C_HAS_SINIT => 0
L39)

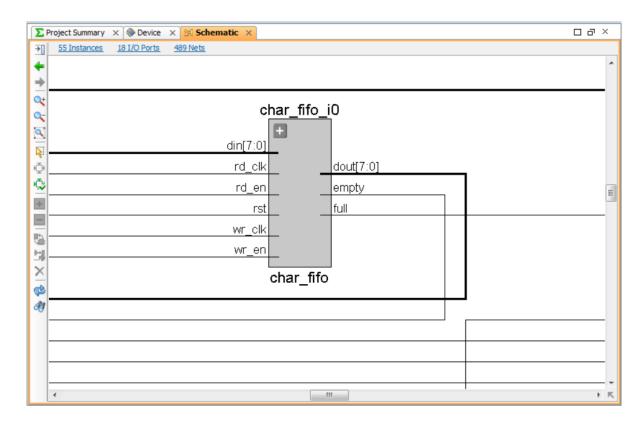
Vivado Design Suite Synthesis Process

Embedded System Design – Vivado Flow

Vivado IDE Synthesis

• Applicable only for RTL (HDL) design flows

• EDIF is black boxed and linked after synthesis


• Synthesis tool uses XDC constraints to drive synthesis optimization

- o Design must first be synthesized without timing constraints for constraints editor usage
- XDC file must exist

Synthesis settings provide access to additional options

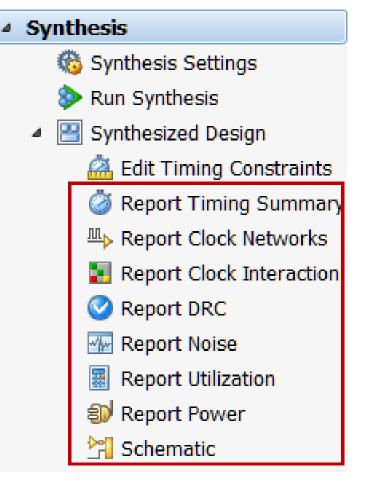
Logic Optimization and Mapping to Device Primitives

Synthesis of an RTL design not only optimizes the gate-level design but also maps the netlist to Xilinx primitives (sometimes called technology mapping)

Synthesized Design

Accessed through the Flow Navigator by selecting Open Synthesized Design

Representation of the design after synthesis


- Interconnected netlist of hierarchical and basic elements (BELs)
 - Instances of modules/entities
 - Basic elements
 - LUTs, flip-flops, carry chain elements, wide MUXes
 - Block RAMs, DSP cells
 - Clocking elements (BUFG, BUFR, MMCM, ...)
 - I/O elements (IBUF, OBUF, I/O flip-flops)

Object names are the same as names in the elaborated netlist when possible

Commands Available After Synthesis

Flow Navigator is optimized to provide quick access to the options most frequently used after synthesis

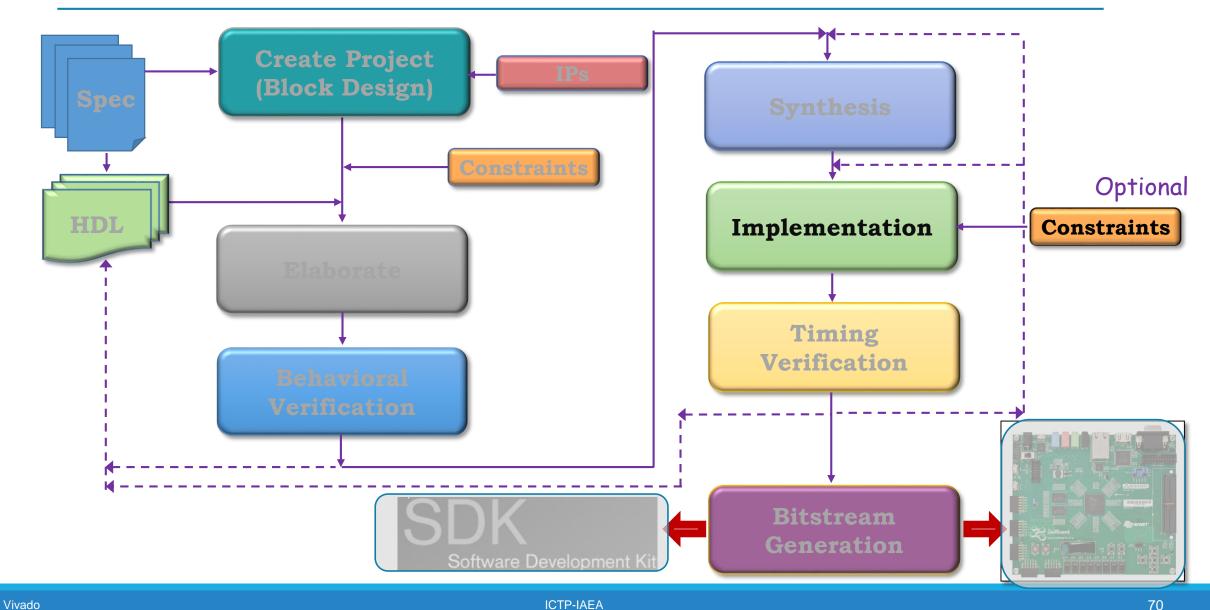
- Report Timing Summary: Generate a default timing report
- Report Clock Networks: Generates a clock tree for the design
- Report Clock Interaction: Verifies constraint coverage on paths between clock domains
- Report DRC: Performs design rule check on the entire design
- Report Noise: Performs an SSO analysis of output and bidirectional pins in the design
- Report Utilization: Generates a graphical version of the Utilization Report
- Report Power: Detailed power analysis reports that can be customized for the power supply and application environment
- Schematic: Opens the Schematic viewer

Synthesis Reports

While the Flow Navigator points to the most important reports, the Reports tab contains several other useful reports

- Vivado Synthesis Report shows
 - HDL files synthesized, synthesis progress, timing constraints read, and RTL primitives from the RTL design
 - Timing optimization goals, technology mapping, removed pins/ports, and final cell usage (technology-mapped cell usage)
- Utilization Report shows
 - Technology-mapped cell usage in an easy-to-read tabular format

Modified 7/15/13 1:13 PM	Size 34.0 KB
7/1E/10 1.10 DM	
7/15/13 1:13 PM	6.0 KB
	🔒 Reports 📑 De


Synthesis Utilization Report

Reports slice logic, memory, DSP slice, IO, clocking, and other resources used by the design

3 Tool Version : Vivado v.2013.2		ild 272601 Sat Jun 15	93	+	+	+	+		+	+					
4 Date : Mon Jul 15 13:13:54 2013 5 Host : running 64-bit Service Pack 1 (build 7601) 6 Command : report_utilization -file two_digits_counter_on_:				Site Ty	ype Us	d Lo	Loced	Available +		+					
				+	+	+	+								
				BUFGCTR	L I	2	0								
7 Design : two_digits_coun	er_on_2_7s	egment_display	98	BUFIO	1	0	0	24	1 0.00						
8 Device : xc7a100t				MMCME2_1		1	0	6			74. IO and GTX Specific				
9 Design State : Synthesized				PLLE2_A		0	0 1								
0			101			0 1	0 1		0.00						
1			102			01	0 1				+				
12 Utilization Design Information						-								Available	
3	261	. Slice Logic	1104								+ Bonded IOB	++ 19			
4 Table of Contents	27 -										Bonded 105 Bonded IPADs	1 10 1	0		9.04 0.00
5	28										IBUFGDS	1 01	-	. –	0.00
61. Slice Logic	29 +	+	++	+-		-+	+				IDELAYCTRL		-		1 0.00
72. Memory	30	Site Type	Used	Loced	Availabl	e Uti	1%				IN FIFO	i 0 i	_		0.0
8 3. DSP											OUT_FIFO	1 0 1	0	24	1 0.00
94. IO and GTX Specific		Slice LUTs*	73	0) 0.				79	PHASER_REF	1 0 1	0	1 6	0.00
	33		73) 0.				80	PHY_CONTROL	I 0 I	0	I 6	1 0.00
05. Clocking	34		0 50) 0.) 0.				81	PHASER_OUT/PHASER_OUT_PHY	I 0 I	0	24	1 0.00
16. Specific Feature	36	-	I 50 I) 0.				82	PHASER_IN/PHASER_IN_PHY	1 0 1			
27. Primitives	37		I 0 I		12680					83	IDELAYE2/IDELAYE2_FINEDELAY	1 0 1	-		1 0.00
38. Black Boxes		F7 Muxes	1 4 I	-	3170					84	ODELAYE2/ODELAYE2_FINEDELAY	1 01	-		
4 9. Instantiated Netlists		F8 Muxes	0		1585					85	IBUFDS_GTE2	1 01			
5										20	ILOGIC	1 0 1	0	210	0.0

Vivado Design Suite Implementacion Process

Embedded System Design – Vivado Flow

Vivado Implementation Sub-Processes

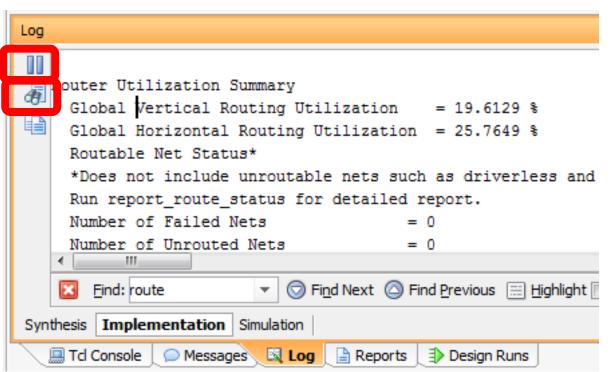
Vivado Design Suite Implementation process transform a logical netlist (generated by the synthesis tool) into a placed and routed design ready for bitstream generation

- Opt design
 - Optimizes the logical design to make it easier to fit onto the target FPGA
- Place design
 - Places the design onto the FPGA's logic cells
- Route design
 - Routing of connections between the FPGA's cells

Using Design Constraints for Guiding Implementation

There are two types of design constraints, *physical constraints* and *timing constraints*.

Physical Constraints: define a relationship between logic design objects and device resources


- Package pin placement
- Absolute or relative placement of cells:
 - Block RAM
 - DSP
 - LUTs
 - Filp-Flops
- Floorplanning constraints that assign cells to general regions of an FPGA

Timing Constraints: define the frequency requirements for the design. Without timing constraints, Vivado Design Suite optimizes the design solely for wire length and routing congestion and makes no effort to asses or improve design performance

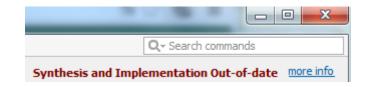
Implementation Log Messages

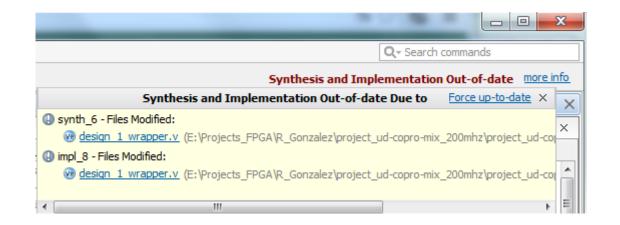
Viewing the Log in the Log Window

The Log window opens in the Vivado IDE after you launch a run. It shows the standard output messages. It also displays details about the progress of each individual implementation process, such as *place_design* and *route_design*.

After Implementation

- Sources and Netlist tabs do not change
- Now as each resources is selected, it will show the exact placement of the resource on the die
- Timing results have to be generated with the Report Timing Summary
- As each path is selected, the placement of the logic and its connections is shown in the Device view
- This is the cross-probing feature that helps with static timing analysis


Implementation


- 🚳 Implementation Settings
- Run Implementation
- Implemented Design
 - Edit Timing Constraints
 - Report Timing Summary
 - ➡ Report Clock Networks
 - 🛃 Report Clock Interaction
 - 📀 Report DRC
 - 🜆 Report Noise
 - 📓 Report Utilization
 - 🗊 Report Power

After Completing Implementation

Implementation Completed
Project 'cpu_synth1' Implementation successfully completed.
Next
Open Implemented Design
─ Generate Bitstream
O View Reports
Don't show this dialog again
OK Cancel

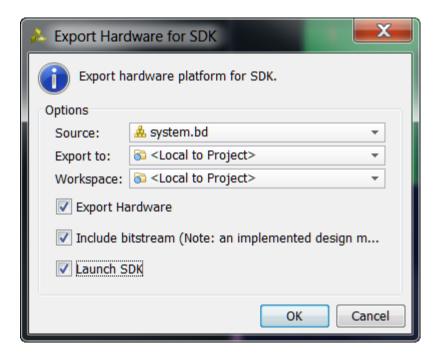
Implementation Out-of-Date Message

Exporting a Hardware Description

🚴 test_course_1 - [E:/Projects_ZedBoard/test_course_1/test_course_1.xpr] - Viva								
File	Edit Flow Tools Window	v La <u>y</u> out	t <u>V</u> iew <u>H</u> elp					
æ	New Project		🔈 🕨 📸 🚳 💥 🔼 🚳 😬					
	Open Project		Block Design - design_1 *					
	Open <u>R</u> ecent Project	•						
	Open Example Project		Sources					
	Save Project As		State 1					
	Write Project Tcl		Design Sources (1) Design design					
Q	Archive Project		🖮 🏯 design_1_i - design_1 (de:					
	Close Project		⊡					
	Save Block Design	Ctrl+S						
	Close Block Design							
	Open Checkpoint							
	Open Recent Checkpoint	Þ	Hierarchy IP Sources Libraries Co					
	Write Checkpoint		Sources B Design Sign					
	New IP Location		Source File Properties					
	Open IP Location		← → 🔯 ƙ					
	Open Recent IP Location	►	& design_1.bd					
	Ne <u>w</u> File		Location: E:/Projects_ZedBoard/test					
	Open File	Ctrl+O	Type: Block Designs					
	Open Recent <u>Fi</u> le	•	Part: xc7z020dg484-1					
	Open IP-XACT File		Size: 75.8 KB					
	Save All Files		Modified: Today at 08:40:56 AM					
8	Add Sources	Alt+A	Copied to: E:/Projects_ZedBoard/test					
	Open Source File	Ctrl+N	Road only: No. ∢					
	Export	•	Export Hardware					
	L L COV		- 12					

Export Hardware Design to SDK

Software development is performed with the Xilinx Software Development Kit tool (SDK)


The design must be opened if a bitstream of the design is generated

The Block design must be open before the design can be exported

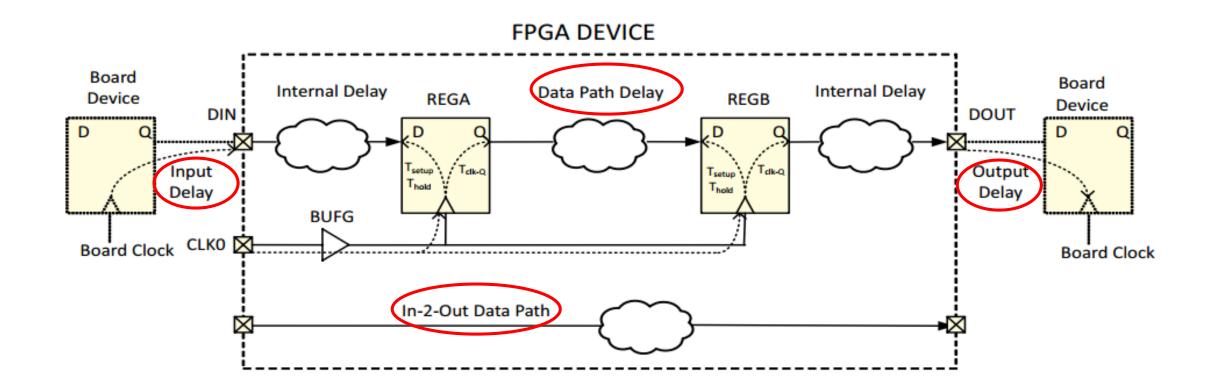
An XML description of the hardware is imported in the SDK tool

- The hardware platform is built on this description
- Only one hardware platform for an SDK project

The SDK tool will then associate user software projects to hardware

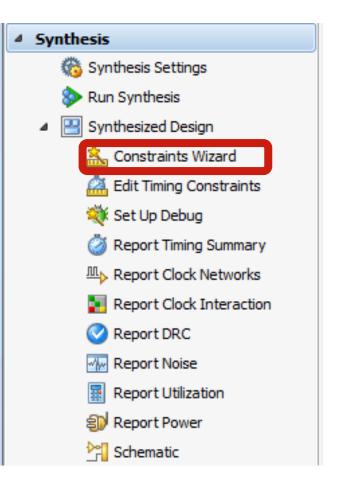
Exporting IP Integrator Design to SDK – Main Files

File	Description
system.xml	This file opens by default when you launch SDK and displays the address map of your system
ps7_init.c s7_init.h	The ps7_init.c and ps7_init.h files contain the initialization code for the Zynq Processing System and initialization settings for DDR, clocks, PLLs and MIOs. SDK uses these settings when initializing the PS so applications can run on top of the PS.
ps7_init.tcl	This is the Tcl version of the <i>init</i> file
ps7_init.html	This <i>init</i> file describes the initialization data.


Vivado Design Suite Basic Static Timing Constraints

Basic Timing Constraints

There are three basic timing constraints applicable to a sequential machine


- Period
 - Paths between synchronous elements clocked by the reference clock net
 - Synchronous elements include flip-flops, latches, synchronous RAM, and DSP slices
 - Use create clock to create the constraint
- Input Delay
 - Paths between input pin and synchronous elements
 - Use set_input_delay to create the constraint
- Output delay
 - Paths between synchronous elements and output pin
 - Use set_output_delay to create the constraint

Timing Paths Example

Creating Basic Timing Constraints in Vivado IDE

- **1**. Run Synthesis
- 2. Open the synthesized design
- 3. Invoke constraints editor

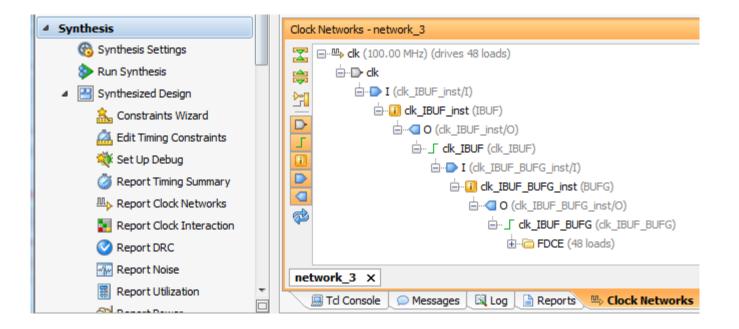
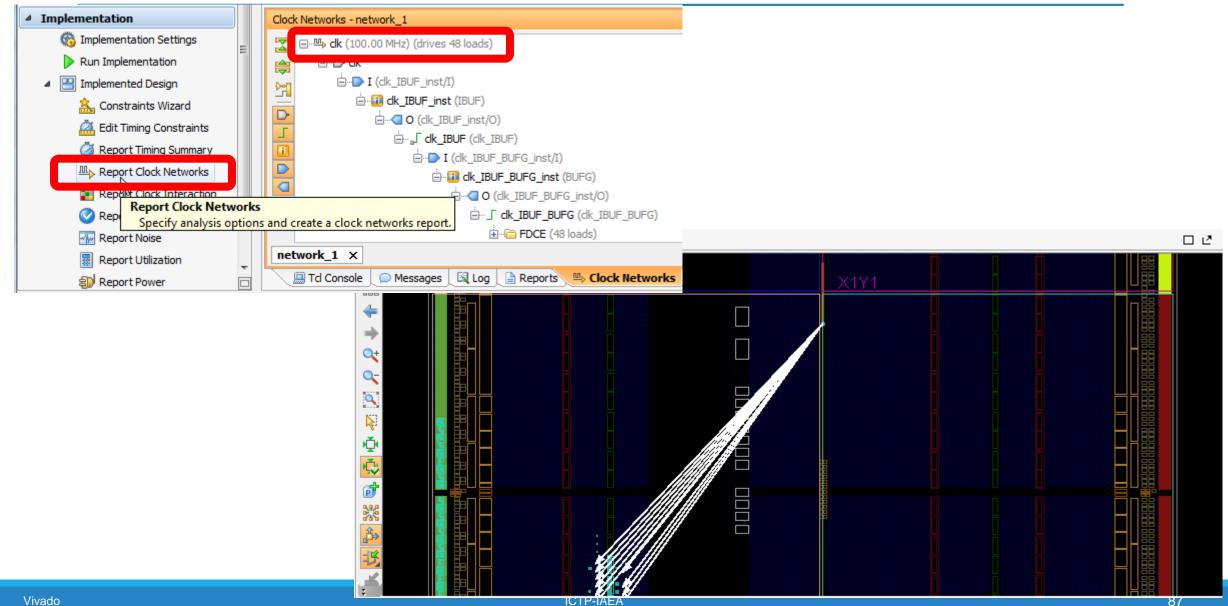
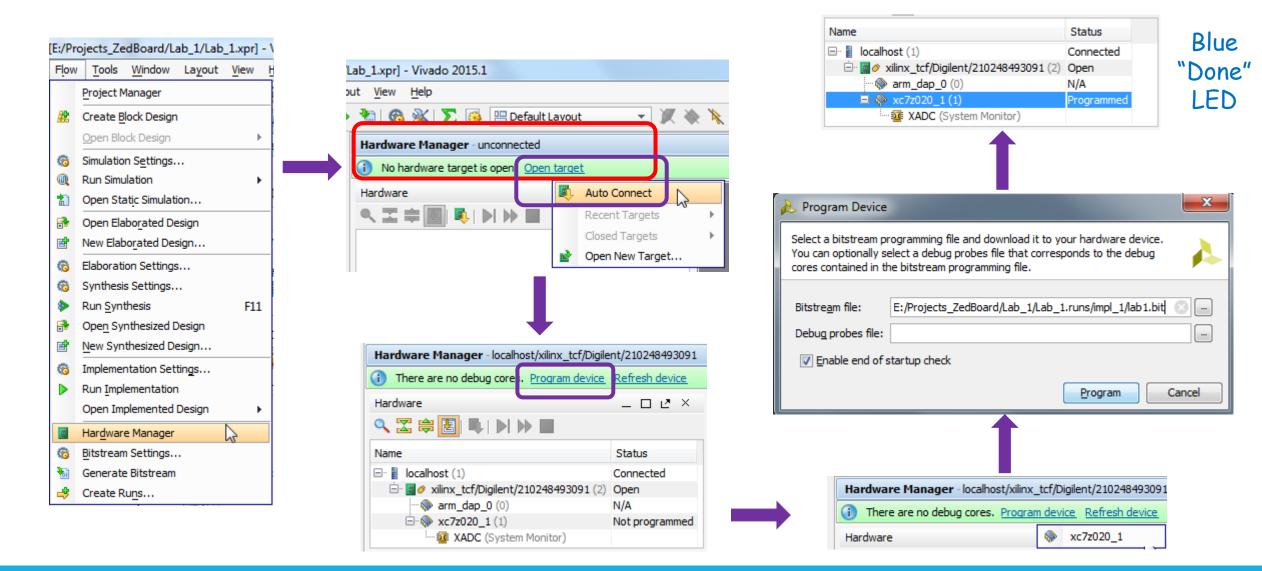

Clock Constraint Setting

Image: Second Preview (1) I	Primary Clocks Primary clocks usually enter the design though input ports. Specify the period and optionally a name and waveform (rising and falling edge times) to describe the duty cycle if not 50%. More info	🚴 Timing Constraints Wizard
	Object Name Frequency (MHz) Period (ns) Rise At (ns) Fall At (ns) Jitter (ns) Image: Constraints for Pulse Width Check Only Image: Constraints for Pulse Width Check Only Object Name Frequency (MHz) Period Image: Constraints for Pulse Width Check Only Image: Constraints for Pulse Width Check Only Image: Constraints for Pulse Width Check	Primary docks usually enter the design though input ports. Specify the period and optionally a name and waveform (rising and falling edge times) to describe the duty cycle if not 50%. More info


Clock Constraint Setting

			ľ
liming Constraints W	lizard	×	
rimary Clocks			
	enter the design though input ports. Specify the period and optionally a name and		
waveform (rising and	falling edge times) to describe the duty cycle if not 50%. <u>More info</u>		
ecommended Constraint	S		
🔍 🔽 Object	Name Frequency (MHz) Period (ns) Rise At (ns) Fall At (ns)	Jitter (ns)	
k ☑ ∭ ck	dk 100.000 10.000 0.000 5.00		
 nn.			
onstraints for Pulse Widt			
🔍 📄 Object	Name Frequency (M	Hz) Period (ns)	
L.			
: .			
🛃 Tcl Command	Preview (1) 🦾 Existing Create Clock Constraints (0)		
🔍 🝰 create_dock -pe	riod 10.000 -name dk -waveform {0.000 5.000} [get_ports {dk}]		
			tive)
			Project Summary 🗙 🛞 Device 🗙 🕍 Schematic 🗙 🕍 Schematic (2) 🗙 🕍 Schematic (
<u>R</u> eference	< Back Next > Skip to Finish >>	Cancel	E:/Projects_FPGA/Proyecto_Clevis/Controlador_X/project_1/project_1.srcs/constrs_1/new/t.xdc
			1 create_clock -period 10.000 -name clk -waveform {0.000 5.000} [get
	Constraints (1)	or - Behavio	2
	$\square \square $		
		ger	
	⊞ imit in Sources	150	
	<		

Clock Network Report



Clock Network Report and Visualization

Vivado Design Suite Generate Bit Stream Process Configuring FPGA Process

Steps to Configure only the PL

ICTP-IAEA

Clocking Resources: MMCM and PLL

Up to 24 CMTs per device

One MMCM and one PLL per CMT

Two software primitives (instantiation)

• *_BASE has only the basic ports

*_ADV provides access to all ports

PLL is primarily intended for use with the I/O phas for high-speed memory controllers

The MMCM is the primary clock resource for user

Inference

Clock networks are represented by nets in your RTL design

- The mapping of an RTL net to a clock network is managed by using the appropriate clock buffer to generate that net
- Certain resources can be inferred
- A primary input net (with or without an IBUF instantiated) will be mapped to a global clock if it drives the clock inputs of clocked resources
 - The BUFG will be inferred
- BUFH drivers will be inferred whenever a global clock (driven by a BUFG) is required in a clock region
 - BUFHs for each region required will be inferred

BUFIO, BUFR, and BUFMR cannot be inferred

 Instantiating these buffers tells the tools that you want to use the corresponding clock networks

PLLs and MMCMs cannot be inferred

Instantiation

All clocking resources can be directly instantiated in your RTL code

- Simulation models exist for all resources
- Refer to the Library Guide for HDL Designs
- Use the Language Templates (
) tab

PLLs and MMCMs have many inputs and outputs, as well as many attributes

- Optimal dividers for obtaining the desired characteristics may be hard to derive
- The Clocking Wizard via the IP Catalog
 - Only *_ADV available

Invoking Clocking Wizard

Click on the IP Catalog

Expand FPGA Features and Design > Clocking

Double-click on Clocking Wizard

The Clocking Wizard walks you through the generation of complete clocking subsystems

ト									
3	Name 1		AXI4	Status	License				
	🕀 🗁 Automotive & Industrial								
🕀 🗁 AXI Infrastructure									
	🖶 🗁 BaseIP								
	🖶 🗁 Basic Elements								
	🗄 🗁 Communication & Networkin	ng							
	🖶 🗁 Debug & Verification								
	🖶 🗁 Digital Signal Processing								
	🗄 🗁 Embedded Processing								
	🗐 🗁 FPGA Features and Design								
	🖨 🗁 Clocking								
	Clocking Wizard			Production	Included				
ľ	🖽 🗁 IO Intertaces								
	🕀 🗁 Soft Error Mitigation								
	🗄 🗁 XADC								
	🗄 🗁 Math Functions								
	🗄 🗁 Memories & Storage Elemer	nts							
	🗄 🗁 Standard Bus Interfaces								
	🗄 🗁 Video & Image Processing 🗌								

The Clocking Wizard: Clocking Options

Select Primitives to be used

- MMCME2_ADV
- PLLE2_ADV
- Specify the primary input frequency and source type
- Optionally, select and specify secondary input

Select clocking features

- Frequency synthesis
- Phase alignment
- Dynamic phase shift

pon	ent Name clk_wiz	z_0									
Ck	cking Options	Output Clocks	MMCM Settings	Port Renaming	Summary						
Prim	itive										
0	MMCME2 ADV	O PLLE2 ADV									
Cloc	king Features			Jitter Optin	nization						
v	Frequency Synth	esis 📃 Sprea	d Spectrum	Balar	Balanced						
J	Phase Alignment	Minim	ize Power		Minimize Output Jitter						
					Maximize Input Jitter filtering						
	Dynamic Phase S	Shift 📃 Dynan	nic Reconfigurati	on							
	Safe Clock Start	qu									
inpu	t Clock Informatio	n									
	Input Clock	Input Freque	ency(MHz)		Jitter Options	Input Jitter	Source				
	Primary	100.000	8	10.000 - 800.000	UI 👻	0.010	Single ended clock capable pin				
	Secondary	100.000		50.000 - 200.000		0.010	Single ended clock capable pin				

•

The Clocking Wizard: Output Clocks

- Select the desired number of output clocks
- Set the desired output frequencies
- Select optional ports

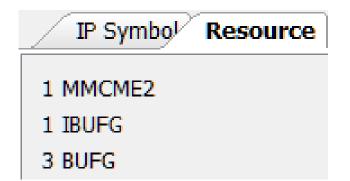
g Wizard (5.0) entation 🗀 IP Location 🗔 Switch t	o Defaults									
Symbol Resource	Component Name	clk_core								
w disabled ports	Clocking Optio	ons Output Clock	s MMCM Settings Port R	enaming Summary						
•	The phase is calo	culated relative to th	e active input clock.							
	Output Clock	Output Freq (M		Phase (degrees		Duty Cycle (%		Drives	Us	
	· · · · · · · · · · · · · · · · · · ·	Requested	Actual	Requested	Actual	Requested	Actual			e PS
	clk_out1	100.000	◎ 100.000	0.000	0.000	50.000	S0.0	BUFG	•	
	Clk_out2	100.000	◎ 100.000	0.000	0.000	50.000	◎ 50.0	BUFG	•	
	clk_out3	100.000	N/A	0.000	N/A	50.000	N/A	BUFG	-	
	clk_out4	100.000	N/A	0.000	N/A	50.000	N/A	BUFG	-	
	clk_out5	100.000	N/A	0.000	N/A	50.000	N/A	BUFG	-	
	clk_out6	100.000	N/A	0.000	N/A	50.000	N/A	BUFG	-	
	clk_out7	100.000	N/A	0.000	N/A	50.000	N/A	BUFG	-	
set clk_out2	Output Clock clk_out1 clk_out2 clk_out3 clk_out4 clk_out5	1 1 1 1 1 1	Auto O Auto O User	matic Control On-Chij matic Control Off-Chij -Controlled On-Chip -Controlled Off-Chip						
	▼ reset	1 1 Inputs / Outputs power_down clkfbstopped	input_clk_stopped	Reset Type Active High Active Low						

The Clocking Wizard: Port Renaming

Change input/output port names

Change optional port names

clk_out1 clk_out1 100.000 0.000 50.0 clk_out2 clk_out2 100.000 0.000 50.0	Clocking Options Output Clocks MMCM Settings Port Renaming Summary									
Primary clk_in1 100.000 0.010 Output Clock VCO Freq = 1000.000 MHz VCO Freq = 1000.000 MHz Dutput Clock Port Name Output Freq (MHz) Phase (degrees) Duty Cycle (clk_out1) clk_out1 clk_out1 100.000 0.000 50.0 clk_out2 clk_out2 100.000 0.000 50.0	Input Clock									
Output Clock VCO Freq = 1000.000 MHz Output Clock Port Name Output Freq (MHz) Phase (degrees) Duty Cycle (degrees) clk_out1 clk_out1 100.000 0.000 50.0 clk_out2 clk_out2 100.000 0.000 50.0			put Jitter (VI)	req (MHz)	ort Name	Input Clock P				
VCO Freq = 1000.000 MHz Output Clock Port Name Output Freq (MHz) Phase (degrees) Duty Cycle (clk_out1 clk_out1 100.000 0.000 50.0 clk_out2 clk_out2 100.000 0.000 50.0)10	100.000	clk_in1	Primary (
clk_out1 clk_out1 100.000 0.000 50.0 clk_out2 clk_out2 100.000 0.000 50.0	•									
clk_out2 clk_out2 100.000 0.000 50.0	(%)	s) Duty Cycle (%)	Iz) Phase (deg	Output Freq (Port Name	Output Clock				
		50.0	0.000	100.000	clk_out1	clk_out1				
Ontional Port Names		50.0	0.000	100.000	clk_out2	clk_out2				
optional Forentianeo	Optional Port Names									
Other Pins Port Name					ort Name	Other Pins Po				
reset reset					eset	reset re				
locked locked					cked	locked lo				


The Clocking Wizard: Summary

Shows the input, output frequencies

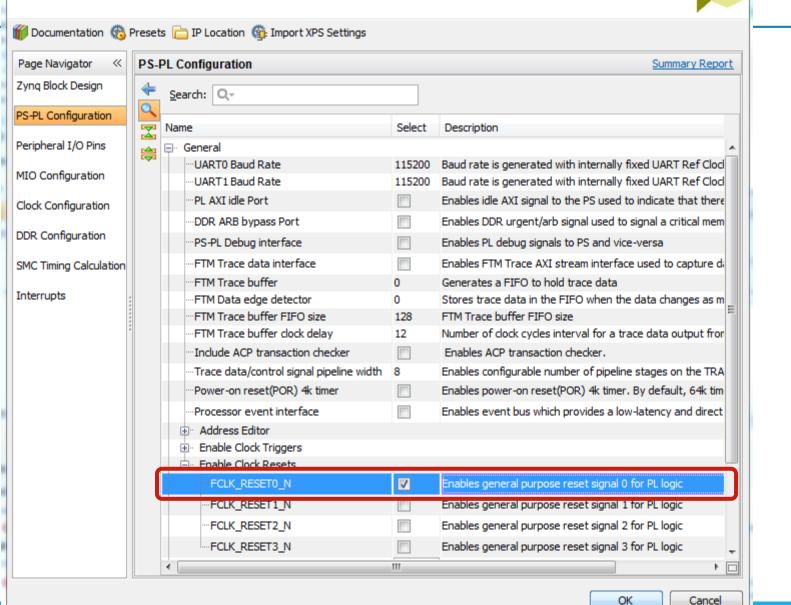
Other attributes depending on the selections made

Clocking Options Output Clocks	MMCM Settings Port Renaming Summary
Attribute	Value
Input Clock (MHz)	100.000
Phase Shift	None
Divide Counter	1
Mult Counter	10.000
CLKOUT0 Divider	10.000
CLKOUT1 Divider	10
CLKOUT2 Divider	OFF
CLKOUT3 Divider	OFF
CLKOUT4 Divider	OFF
CLKOUT5 Divider	OFF
CLKOUT6 Divider	OFF

The Resource tab on the left provides summary of type and number of resources used

Reset and Clock Topology

Enabling Clock for PL



	Sing	System (5.5)					
🛯 Documentation 🏀	Prese	ts 📋 IP Location 🍈 Import XPS	Settings				
Page Navigator 🛛 ≪	Cloc	k Configuration					Summary Re
Zynq Block Design		Basic Clocking Advanced Clockir	ng				
PS-PL Configuration	4	Input Frequency (MHz) 33.33333	3 🚫	CPU Clo	ock Ratio 6:2:1	Ŧ	
Peripheral I/O Pins	2	Search: Q.					
MIO Configuration	\$	Component	Clock Source	e	Requested Frequen	Actual Frequency(M	Range(MHz)
Clock Configuration	E.	Processor/Memory Clocks IO Peripheral Clocks					
DDR Configuration		PL Fabric Clocks					
SMC Timing Calculatio		FCLK_CLK0	IO PLL		50 🛞	50.00000	0.100000 : 250.000000
		FCLK_CLK1	IO PLL		50	50.000000	0.100000:250.000000
Interrupts		FCLK_CLK2	IO PLL		50	50.000000	0.100000:250.000000
		FCLK_CLK3	IO PLL		50	50.000000	0.100000:250.000000

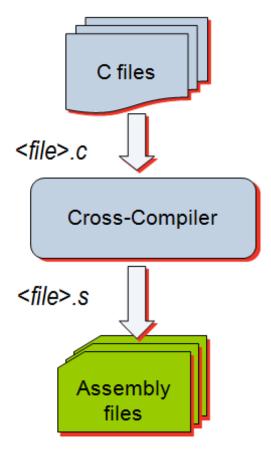
52

ZYNQ7 Processing System (5.5)

5

SDK Compilers

GNU Tools: GCC


GCC translates C source code into assembly language

GCC also functions as the user interface, passing options to GNU assembler and to the GNU linker, calling the assembler and the linker with the appropriate parameters

Supported cross-compilers

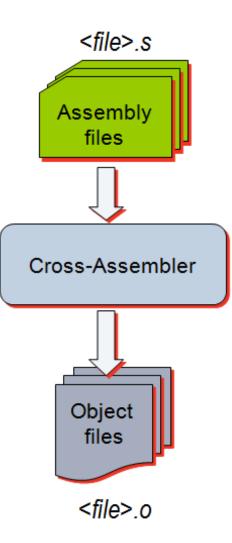
ARM processor compiler

- GNU GCC (arm-xilinx-eabi-gcc)
- GNU Linux GCC (arm-xilinx-linux-eabi-gcc)

GNU Tools: AS

Input: assembly language files

• File extension: .s

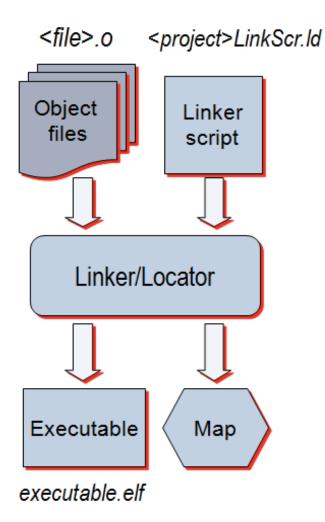

Output: object code

• File extension: .o

Contains

- Assembled piece of code
- Constant data
- External references
- Debugging information

Typically, the compiler automatically calls the assembler Use the -Wa switch if the source files are assembly only and use gcc


GNU Tools: Linker (LD)

Inputs

- Several object files
- Archived object files (library)
- Linker script (*.Id)

Outputs

- Executable image (ELF)
- Map file

Timing Reports

Report Timing Summary

Synthesis Settings Run Synthesis Synthesized Design Edit Timing Constraints Report Timing Summary Report Clock Networks

Synthesis

Tcl command: report_timing_summary

report_timing_summary -delay_type max -report_unconstrained -check_timing_verbose -max_paths 10 -input_pins -name timing_1

Vivado IDE

Options tab

• Maximum number of paths

Advanced tab • Write to a file

Timer Settings

- Interconnect delay can be igno
- Flight delays can be disabled

~		A
_	Options Advanced Timer Settings	
	ns] Show input pins in path	
-il	e Output Write results to file:	F
Mi	iscellaneous	-
_		
	Suspend message limits during command execution	
	Options Advanced Timer Settings	
	Interconnect: estimated •	
	Speed grade: -1 (default) 🔻	
	Multi-Corner Configuration	
)	Corner name Delay type	
	Slow min_max 🔻	
	Fast min_max 🔻	
	Disable flight delays	

	A Report Timing Summary
	Generate a timing summary to understand if the design met timing.
	Results name: timing_1
	Options Advanced Timer Settings
	Path delay type: max
	Report unconstrained paths
-	Report datasheet
	Path Limits
	Maximum number of paths per clock or path group: 10
	Maximum number of worst paths per endpoint:
	Path Display
	Display paths with slack less than: Use default (1e+30)
	Significant digits: 3

Report Timing Summary

Design Timing Summary

 WNS, TNS, total number of endpoints are of interest

Clock Summary

• Primary and derived clocks

Check Timing

 Number of unconstrained internal endpoints

<u>ال</u>	Timer Settings Design Timing Summary Clock Summary (3) Check Timing (45) Intra-Clock Paths
	Inter-Clock Paths Path Groups
	User Ignored Paths
	Timer Settings Design Timing Summary Clock Summary (3) Check Timing (45) Intra-Clock Paths Inter-Clock Paths Path Groups User Ignored Paths
	Timer Settings Design Timing Summary Clock Summary (3) Check Timing (45) Intra-Clock Paths Inter-Clock Paths Path Groups User Ignored Paths

Design Timing Summary

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	1.826 ns	Worst Hold Slack (WHS):	NA	Worst Pulse Width Slack (WPWS):	<u>3.000 ns</u>
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	NA	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	NA	Number of Failing Endpoints:	0
Total Number of Endpoints:	102	Total Number of Endpoints:	NA	Total Number of Endpoints:	45
Clock Summary					

Name Waveform Period (ns) Frequency (MHz) - clkin {0.000 5.000} 10.000 100.000 - clk_out1_clk_5MHz {0.000 100.000} 200.000 5.000 - clkfbout_clk_5MHz {0.000 25.000} 50.000 20.000

Check Timing

Timing Check	Count
unconstrained_internal_endpoints	26
no_clock	10
no_output_delay	9
no_input_delay	0
multiple_clock	0
generated_clocks	0
loops	0
partial_input_delay	0
partial_output_delay	0