
Vivado Design Flow for SoC
Crist ian Sisterna

Universidad Nacional de San Juan

Argent ina

Vivado ICTP-IAEA 1

Larger FPGAs lead to more difficult design issues
◦ Users integrating more functionality into the FPGA

◦ Use of multiple hard logic objects (block RAMs, GTs, DSP slices, and microprocessors, for
example)

◦ I/O and clock planning critical to FPGA performance

◦ Higher routing and utilization density

◦ Complex timing constraints with designs that have multiple clock domains

ICTP-IAEA 2

Why Vivado Design Suite?

Vivado

Vivado Design Suite provides solution to all of the above

FPGA designs are now looking like ASIC platform designs
◦ Assembled from IP cores—commercial or developed in-house

◦ Maintaining place and route solutions is very important (this is resolved with the use of
partitions)

◦ Bottom-up design methodology

◦ Team design flows becoming a necessity

Interactive design and analysis
o Timing analysis, connectivity, resource

utilization, timing constraint analysis

RTL development and analysis
o Elaboration of HDL
o Hierarchical exploration
o Schematic generation

XSIM simulator integration
o Synthesis, implementation and simulation in one

package

I/O pin planning
o Interactive rule-based I/O assignment

ICTP-IAEA 3

Vivado IDE Solution

Hierarchical Design Analysis and
Implementation Environment

Vivado

Visualize and debug a design at any flow stage

◦ Cross-probing between netlist/schematic/RTL

ICTP-IAEA 4

Vivado Visualization Features

Vivado

o Analyze multiple implementation results
o Highlight failing timing paths from post-route timing

analysis
o Quickly identify and constrain critical logic path

ICTP-IAEA 5

Gain Faster Timing Closure

Vivado

oHierarchical floorplanning
o Guide place & route toward better results

oUtilization estimates
o All resource types shown for each Pblock
o Clocks or carry chains

oConnectivity display
o I/Os, net bundles, clock domains

 Tcl Console enables the designer to actively query the design netlist

 Full Tcl scripting support in two design flows
 Project-based design flow provides easy project management by the Vivado IDE

 Non-project batch design flow enables entire flow to be executed in memory

 Journal and log files can be used for script construction

ICTP-IAEA 6

Tool Command Line (.tcl) Features

Vivado

Vivado Design Suite
Introduction

ICTP-IAEA 7Vivado

 Interactive IP plug-n-play environment
AXI4, IP_XACT

 Common constraint language (XDC)
throughout flow
Apply constraints at any stage

 Reporting at any stage
Robust Tcl API

 Common data model throughout the
flow
“In memory” model improves speed
Generate reports at all stages

 Save checkpoint designs at any stage
Netlist, constraints, place and route results

ICTP-IAEA 8

Typical vs Vivado Design Flow

Vivado

All project data is stored in a project_name directory containing the
following directories

◦ project_name.xpr file: Object that is selected to open a project (Vivado IDE
project file)

ICTP-IAEA 9

Project Data and Directories

Vivado

◦ project_name.runs directory: Contains all run data (synthesis, implementation)

◦ project_name.srcs directory: Contains all imported local HDL source files,
netlists, and XDC files

◦ project_name.data directory: Stores floorplan and netlist data

Journal file (vivado.jou)
◦ Contains just the Tcl commands executed by the Vivado IDE

Log file (vivado.log)
◦ Contains all messages produced by the Vivado IDE, including Tcl commands and

results, info, warning, error messages, etc.

Location
◦ Linux: directory where the Vivado IDE is invoked

◦ Windows via icon: %APPDATA%\Xilinx\Vivado or
C:\Users\<user_name>\AppData\Roaming\Xilinx\Vivado

ICTP-IAEA 10

Journal and Log Files

Vivado

ICTP-IAEA 11

Embedded System Design – Vivado Flow

Spec

HDL

Elaborate

Behavioral

Verification

Synthesis

Implementation

Timing

Verification

Create Project

(Block Design)

Constraints

IPs

Bitstream

Generation /

Hardware Export

Vivado

Optional

Optional

Constraints

Constraints

Optional

Vivado ICTP-IAEA 12

Requirements

Specifications

System Design

Software/Hardware
Partitioning

Hardware
Development &

Simulation

Software
Development &

Simulation

System Integration
and

Debug

IP Cores

Placement &Timing
Constraints

Software
Modules

Operating
Systems

Vivado IP
Integrator

Software Development
KIT (SDK)

Vivado Flow
Practical Steps

ICTP-IAEA 13Vivado

ICTP-IAEA 14

Creating a Project

Vivado

Vivado ICTP-IAEA 15

Creating a Project

Vivado ICTP-IAEA 16

Menu Bar Main Toolbar Workspace Status Bar

Data
Window

Flow Navigator Status Bar Results Window Area

ICTP-IAEA 17

Main Components of the Project Navigator

1. Menu Bar: Vivado IDE commands

2. Main Toolbar: Access to the most commonly used Vivado IDE commands

3. Workspace: area for schematic panel, device panel, package panel, text editor
panel.

4. Project Status Bar: displays the status of the currently active design

5. Flow Navigator: provide easy access to the tools and commands necessary to
guide the design from start to finish.

6. Data Window Pane: by default displays information that relates to design data and
sources, such as Property Window, Netlist Window, and Source Window

7. Status Bar: displays information about menu bar and toolbar commands; task
progresses

8. Results Window Area: there are a set of windows, such as Messages, showing
message for each process, Tcl Console, Tcl commands of each activity, Reports,
reports generated throughout the design flow, Desing Runs, display the different
run for the current project

Vivado

ICTP-IAEA 18

Create a Block design

Vivado

ICTP-IAEA 19

Adding IP Modules to the Design Canvas

Vivado

To add multiple IP to the Block Design, you can highlight the additional
desired IP (Ctrl+Click) and press the Enter key.

Vivado ICTP-IAEA 20

Processing System (PS)

Vivado ICTP-IAEA 21

Configuring the PS

Vivado ICTP-IAEA 22

Configuring the PS

Vivado ICTP-IAEA 23

Making Up the System

SPIControl Step

Motor

Switches

Internal

Memory

Vivado ICTP-IAEA 24

Running Connection Automation

Vivado ICTP-IAEA 25

Custom GPIO

Vivado ICTP-IAEA 26

DRC (Desing Rule Check) Design Validation

Vivado ICTP-IAEA 27

Memory Map

Vivado ICTP-IAEA 28

System Level Address Map

Vivado ICTP-IAEA 29

Getting the System Ready to be Implemented

Export Hardware Design to SDK

Software development is performed with the Xilinx
Software Development Kit tool (SDK)

The design must be opened if a bitstream of the
design is generated

The Block design must be open before the design can
be exported

An XML description of the hardware is imported in
the SDK tool
◦ The hardware platform is built on this description

◦ Only one hardware platform for an SDK project

The SDK tool will then associate user software projects to
hardware

ICTP-IAEA 30Vivado

Software Development
Kit (SDK)

ICTP-IAEA 31Vivado

ICTP-IAEA 32

Embedded System Design – Vivado-SDK Flow

Spec

HDL

Elaborate

Behavioral

Verification

Synthesis

Implementation

Timing

Verification

Create Project

(Block Design)

Constraints

IPs

Hardware Export

Vivado

Vivado ICTP-IAEA 33

Embedded System Design – Vivado-SDK Flow

Eclipse IDE-based Software Development Kit (SDK)
◦ Board support package creation : LibGen

◦ GNU software development tools

◦ C/C++ compiler for the ARM Cortex-A9 processor (gcc)

◦ Debugger for the ARM Cortex-A9 processor (gdb)

Board support packages (BSPs)
◦ Stand-alone BSP

◦ Free basic device drivers and utilities from Xilinx

◦ NOT an RTOS

ICTP-IAEA 34

Embedded System Tools: Software

Vivado

SDK Workbench Views

C/C++ project outline displays the elements
of a project with file decorators (icons) for
easy identification

C/C++ editor for integrated software
creation

Code outline displays elements of the
software file under development with file
decorators (icons) for easy identification

Problems, Console, Properties views list
output information associated with the
software development flow

ICTP-IAEA 35

1

2

3

4

Vivado

Build Software Application in SDK

Create software platform
 System software, board support

package

 LibGen program

Create software application

Optionally, create linker script

Build project
 Compile, assemble, link output file

<app_project>.elf

ICTP-IAEA 36Vivado

Software Management Settings
Software is managed in three
major areas

◦ Compiler/Linker Options
◦ Application program

◦ Software Platform Settings
◦ Board support package

◦ Linker Script Generation
◦ Assigning software to memory

resources

ICTP-IAEA 37Vivado

Xilinx additions to the Eclipse IDE
◦ BSP Settings
◦ Software Repositories
◦ Generate Linker Script
◦ Program the programmable logic

◦ Bitstream must be available

◦ Create Zynq Boot Image
◦ Program Flash Memory
◦ Launch XMD Console
◦ Launch Shell
◦ Configure JTAG Settings
◦ SysGen Co-Debug Settings

ICTP-IAEA 38

Integrated Xilinx Tools in the SDK

Vivado

Basics of TCL in Vivado

ICTP-IAEA 39Vivado

TCL , is an interpreted programming language with variables,

procedures , and control structures, to interface to a variety of design

tools and to the design data

ICTP-IAEA 40

Tool Command Language

Vivado

It has been an industry standard language since early 90s’

Xilinx adopted TCL for the Vivado Design Suite

TCL in Vivado enables the designer to:

ICTP-IAEA 41

Tool Command Language (cont)

Vivado

 Create a project

 Target a SoPC device/board

 Create a block design

 Include IP Cores

 Configure PS, IP Cores, etc.

 Run synthesis

 Run implementation

Modify P&R options

 Customize reports

 Program SoPC

The Vivado tools write a journal file called vivado.jou into the

directory from which Vivado was launched. The journal is a record of

the Tcl commands run during the session.

Thus, they can be used as a starting point to create a new Tcl script

ICTP-IAEA 42

Tool Command Language (cont)

Vivado

ICTP-IAEA 43

Tool Command Language (cont)

Vivado

ICTP-IAEA 44

How to run a provided .tcl script

Vivado

Methot 1: Through Vivado TCL console

Method 2: Through Command Line

ICTP-IAEA 45

Method 1: Run .tcl in Vivado TCL Console

Vivado

1. Start Vivado Design Suite. You can see a tcl console on the left bottom of
Vivado Design Suite

2. Click on the title 'type a tcl command here‘ (button left of the screen)

3. Go to the folder location where the tcl script resides (use ‘cd’, ‘pwd’)

4. Once the directory has been changed, you can use the ‘ls’ command to list
the files in the current directory. Check that the .tcl is in there.

5. Run the .tcl script by using the following command: source <filename>.tcl

6. The processes defined in the .tcl file will be executed. It could take some
times to execute a .tcl file (depending on the defined processes)

ICTP-IAEA 46

Vivado TCL Console

Vivado

ICTP-IAEA 47

Vivado TCL Option in the GUI

Vivado

ICTP-IAEA 48

Method 2: Run .tcl through Command Line

Vivado

1. In W10 you can start the Vivado TCL Shell by doing Start-> All apps->Vivado
2019.1 Tcl Shell.

2. A small command line window should come up

3. Go to the folder location where the tcl script resides (use ‘cd’, ‘pwd’)

4. Once the directory has been changed, you can use the ‘dir’ command to list
the files in the current directory. Check that the .tcl is in there.

5. Run the .tcl script by using the following command: source <filename>.tcl

6. The processes defined in the .tcl file will be executed. It could take some
times to execute a .tcl file (depending on the defined processes)

ICTP-IAEA 49

Run .tcl in Linux

Vivado

1. Make sure TCL interpreter is installed:
◦ $whereis tclsh
◦ tclsh: /usr/bin/tclsh /usr/bin/tclsh8.4 /usr/share/man/man1/tclsh.1.gz

2. In case you don’t have the tcl interpreter installed, do the following:
◦ $ sudo apt-get install tcl8.4
◦ Note: if you have installed Vivado, the Tcl interpreter should be installed

3. Execute TCL script: You can either execute using “tclsh helloworld.tcl” or
“./helloworld.tcl”.

◦ $ tclsh helloworld.tcl
◦ Hello World!
(or)
◦ $ chmod u+x helloworld.tcl
◦ $./helloworld.tcl
◦ Hello World!l.

ICTP-IAEA 50

Is there any Need to Learn TCL ?

Vivado

It is purely based on your objectives.

If you want to automate some basic processes in creating design ,

it is the best choice

as we can export a tcl script to another computer and create an exact replica
of the project with same configurations, ip integrations in single execution

Vivado Design Suite TCL Command Reference Guide

Vivado Design Suite User Guide - Using TCL Scripting

TCL Tutorial (up to Chapter 14 for Vivado appl

Vivado ICTP-IAEA 51

TCL Docs

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug894-vivado-tcl-scripting.pdf
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

Apendix

ICTP-IAEA 52Vivado

Vivado Design Suite
Elaboration Process

ICTP-IAEA 53Vivado

ICTP-IAEA 54

Embedded System Design – Vivado Flow

Spec

HDL

Elaborate

Behavioral

Verification

Synthesis

Implementation

Timing

Verification

Create Project

(Block Design)

Constraints

IPs

Bitstream

Generation

Vivado

o Elaboration is the RTL optimization to an FPGA technology

o Vivado IDE allows designers to import and manage RTL sources
o Verilog, System Verilog, VHDL, NGC, or testbenches

o Create and modify sources with the RTL Editor
o Cross-selection between all the views

o Sources view
o Hierarchy view: Display the modules in the design by hierarchy

o Libraries view: Display sources by category

ICTP-IAEA 55

Elaboration

Vivado

Accessed through the Flow Navigator by selecting Open Elaborated Design

Representation of the design before synthesis
◦ Interconnected netlist of hierarchical and generic technology cells

◦ Instances of modules/entities

◦ Generic technology representations of hardware components

◦ AND, OR, buffer, multiplexers, adders, comparators, etc…

ICTP-IAEA 56

Elaborated Design

Vivado

Object names are extracted from RTL
◦ Instance and pin names of hierarchical objects

◦ Inferred flip-flops from underlying reg/signal/logic
◦ Suffix _reg is added

◦ Nets from underlying reg/signal/logic when it makes sense

ICTP-IAEA 57

Object Names in Elaborated Design

Vivado

In a RTL based design, elaboration is the first step

Click on the Open Elaborated Design under RTL Analysis to
◦ Compile the RTL source files and load the RTL netlist for interactive analysis

You can check RTL structure, syntax, and logic definitions

Analysis and reporting capabilities include:
◦ RTL compilation validation and syntax checking
◦ Netlist and schematic exploration
◦ Design rule checks
◦ Early I/O pin planning using an RTL port list
◦ Ability to select an object in one view and cross probe to the object in other

views, including instantiations and logic definitions within the RTL source files

ICTP-IAEA 58

Elaboration and Analysis

Vivado

When Schematic is clicked under the Elaborated Design, the schematic is
opened showing the hierarchical blocks
◦ Note that no IO buffers are inferred at this stage

ICTP-IAEA
Synthesis and

Reports 13-59

Schematic View of an Elaborated Design

Vivado

Select an object in the schematic, right-click,
and select Go To Source to view where the
object is defined in the source file

ICTP-IAEA 60

Cross Probing

Vivado

Vivado Design Suite
Synthesis Process

ICTP-IAEA 61Vivado

ICTP-IAEA 62

Embedded System Design – Vivado Flow

Spec

HDL

Elaborate

Behavioral

Verification

Synthesis

Implementation

Timing

Verification

Create Project

(Block Design)

Constraints

IPs

Bitstream

Generation

Vivado

Constraints

Optional

o Applicable only for RTL (HDL) design flows

oEDIF is black boxed and linked after synthesis

o Synthesis tool uses XDC constraints to drive synthesis optimization

oDesign must first be synthesized without timing constraints for constraints editor usage

oXDC file must exist

o Synthesis settings provide access to additional options

ICTP-IAEA 63

Vivado IDE Synthesis

Vivado

Synthesis of an RTL design not only optimizes the gate-level design
but also maps the netlist to Xilinx primitives (sometimes called

technology mapping)

ICTP-IAEA 64

Logic Optimization and Mapping to Device Primitives

Vivado

Accessed through the Flow Navigator by selecting Open Synthesized Design

Representation of the design after synthesis
◦ Interconnected netlist of hierarchical and basic elements (BELs)

◦ Instances of modules/entities

◦ Basic elements

◦ LUTs, flip-flops, carry chain elements, wide MUXes

◦ Block RAMs, DSP cells

◦ Clocking elements (BUFG, BUFR, MMCM, …)

◦ I/O elements (IBUF, OBUF, I/O flip-flops)

Object names are the same as names in the elaborated netlist when possible

ICTP-IAEA 65

Synthesized Design

Vivado

Flow Navigator is optimized to provide quick access to the
options most frequently used after synthesis
◦ Report Timing Summary: Generate a default timing report
◦ Report Clock Networks: Generates a clock tree for the design
◦ Report Clock Interaction: Verifies constraint coverage on paths

between clock domains
◦ Report DRC: Performs design rule check on the entire design
◦ Report Noise: Performs an SSO analysis of output and

bidirectional pins in the design
◦ Report Utilization: Generates a graphical version of the Utilization

Report
◦ Report Power: Detailed power analysis reports that can be

customized for the power supply and application environment
◦ Schematic: Opens the Schematic viewer

ICTP-IAEA 66

Commands Available After Synthesis

Vivado

While the Flow Navigator points to the most important reports, the
Reports tab contains several other useful reports
◦ Vivado Synthesis Report shows

◦ HDL files synthesized, synthesis progress, timing constraints read, and RTL primitives from the
RTL design

◦ Timing optimization goals, technology mapping, removed pins/ports, and final cell usage
(technology-mapped cell usage)

◦ Utilization Report shows
◦ Technology-mapped cell usage in an easy-to-read tabular format

ICTP-IAEA 67

Synthesis Reports

Vivado

Reports slice logic, memory, DSP slice, IO, clocking, and other resources
used by the design

ICTP-IAEA 68

Synthesis Utilization Report

Vivado

Vivado Design Suite
Implementacion Process

ICTP-IAEA 69Vivado

ICTP-IAEA 70

Embedded System Design – Vivado Flow

Spec

HDL

Elaborate

Behavioral

Verification

Synthesis

Implementation

Timing

Verification

Create Project

(Block Design)

Constraints

IPs

Bitstream

Generation

Vivado

Constraints

Optional

Vivado Design Suite Implementation process transform a logical netlist
(generated by the synthesis tool) into a placed and routed design ready for

bitstream generation

ICTP-IAEA 71

Vivado Implementation Sub-Processes

• Opt design

• Optimizes the logical design to make it easier to fit onto the target FPGA

• Place design

• Places the design onto the FPGA’s logic cells

• Route design

• Routing of connections between the FPGA’s cells

Vivado

There are two types of design constraints, physical constraints and
timing constraints.

ICTP-IAEA 72

Using Design Constraints for Guiding Implementation

Physical Constraints: define a relationship between logic design objects and device resources
• Package pin placement
• Absolute or relative placement of cells:

• Block RAM
• DSP
• LUTs
• Filp-Flops

• Floorplanning constraints that assign cells to general regions of an FPGA

Timing Constraints: define the frequency requirements for the design. Without timing
constraints, Vivado Design Suite optimizes the design solely for wire length and routing
congestion and makes no effort to asses or improve design performance

Vivado

Viewing the Log in the Log Window

The Log window opens in the Vivado
IDE after you launch a run. It shows the
standard output messages. It also
displays details about the progress of
each individual implementation
process, such as place_design and
route_design.

ICTP-IAEA 73

Implementation Log Messages

Vivado

o Sources and Netlist tabs do not change

o Now as each resources is selected, it will show
the exact placement of the resource on the die

o Timing results have to be generated with the
Report Timing Summary

o As each path is selected, the placement of the
logic and its connections is shown in the Device
view

o This is the cross-probing feature that helps
with static timing analysis

ICTP-IAEA 74

After Implementation

Vivado

ICTP-IAEA 75

After Completing Implementation

Vivado

ICTP-IAEA 76

Implementation Out-of-Date Message

Vivado

ICTP-IAEA 77

Exporting a Hardware Description

Vivado

Export Hardware Design to SDK

Software development is performed with the Xilinx
Software Development Kit tool (SDK)

The design must be opened if a bitstream of the
design is generated

The Block design must be open before the design can
be exported

An XML description of the hardware is imported in
the SDK tool
◦ The hardware platform is built on this description

◦ Only one hardware platform for an SDK project

The SDK tool will then associate user software projects to
hardware

ICTP-IAEA 78Vivado

File Description

system.xml
This file opens by default when you launch SDK and displays the address map of
your system

ps7_init.c
s7_init.h

The ps7_init.c and ps7_init.h files contain the initialization code for the Zynq
Processing System and initialization settings for DDR, clocks, PLLs and MIOs. SDK
uses these settings when initializing the PS so applications can run on top of the PS.

ps7_init.tcl This is the Tcl version of the init file

ps7_init.html This init file describes the initialization data.

ICTP-IAEA 79

Exporting IP Integrator Design to SDK – Main Files

Vivado

Vivado Design Suite
Basic Static Timing Constraints

ICTP-IAEA 80Vivado

There are three basic timing constraints applicable to a sequential
machine
◦ Period

◦ Paths between synchronous elements clocked by the reference clock net

◦ Synchronous elements include flip-flops, latches, synchronous RAM, and DSP slices

◦ Use create_clock to create the constraint

◦ Input Delay

◦ Paths between input pin and synchronous elements

◦ Use set_input_delay to create the constraint

◦ Output delay

◦ Paths between synchronous elements and output pin

◦ Use set_output_delay to create the constraint

ICTP-IAEA 81

Basic Timing Constraints

Vivado

ICTP-IAEA 82

Timing Paths Example

Vivado

1. Run Synthesis

2. Open the synthesized design

3. Invoke constraints editor

ICTP-IAEA -83

Creating Basic Timing Constraints in Vivado IDE

Vivado

ICTP-IAEA 84

Clock Constraint Setting

Vivado

ICTP-IAEA 85

Clock Constraint Setting

Vivado

ICTP-IAEA 86

Clock Network Report

Vivado

Vivado ICTP-IAEA 87

Clock Network Report and Visualization

Vivado Design Suite
Generate Bit Stream Process

Configuring FPGA Process

ICTP-IAEA 88Vivado

ICTP-IAEA 89

Steps to Configure only the PL

Blue
“Done”

LED

Vivado

Up to 24 CMTs per device

One MMCM and one PLL per CMT

Two software primitives (instantiation)
◦ *_BASE has only the basic ports

◦ *_ADV provides access to all ports

PLL is primarily intended for use with the I/O phaser
for high-speed memory controllers

The MMCM is the primary clock resource for user clocks

ICTP-IAEA 90

Clocking Resources: MMCM and PLL

Vivado

Clock networks are represented by nets in your RTL design
◦ The mapping of an RTL net to a clock network is managed by using the appropriate clock

buffer to generate that net

Certain resources can be inferred
◦ A primary input net (with or without an IBUF instantiated) will be mapped to a global clock

if it drives the clock inputs of clocked resources
◦ The BUFG will be inferred

◦ BUFH drivers will be inferred whenever a global clock (driven by a BUFG) is required in a
clock region
◦ BUFHs for each region required will be inferred

BUFIO, BUFR, and BUFMR cannot be inferred
◦ Instantiating these buffers tells the tools that you want to use the corresponding clock

networks

PLLs and MMCMs cannot be inferred

ICTP-IAEA 91

Inference

Vivado

All clocking resources can be directly instantiated in your RTL code
◦ Simulation models exist for all resources

◦ Refer to the Library Guide for HDL Designs

◦ Use the Language Templates () tab

PLLs and MMCMs have many inputs and outputs, as well as many attributes
◦ Optimal dividers for obtaining the desired characteristics may be hard to derive

◦ The Clocking Wizard via the IP Catalog
◦ Only *_ADV available

ICTP-IAEA 92

Instantiation

Vivado

Click on the IP Catalog

Expand FPGA Features and Design > Clocking

Double-click on Clocking Wizard

The Clocking Wizard walks you
through the generation of
complete clocking subsystems

ICTP-IAEA 93

Invoking Clocking Wizard

Vivado

Select Primitives to be used

◦ MMCME2_ADV

◦ PLLE2_ADV

Specify the primary input frequency and
source type

◦ Optionally, select and specify secondary input clock

Select clocking features

◦ Frequency synthesis

◦ Phase alignment

◦ Dynamic phase shift
◦ …

ICTP-IAEA 94

The Clocking Wizard: Clocking Options

Vivado

• Select the desired number of
output clocks

• Set the desired output
frequencies

• Select optional ports

ICTP-IAEA 95

The Clocking Wizard: Output Clocks

Vivado

Change input/output port names

Change optional port names

ICTP-IAEA 96

The Clocking Wizard: Port Renaming

Vivado

Shows the input, output frequencies

Other attributes depending on
the selections made

The Resource tab on the left provides
summary of type and number of
resources used

ICTP-IAEA 97

The Clocking Wizard: Summary

Vivado

Reset and Clock Topology

ICTP-IAEA

Embedded System Design Review 11-98

Vivado

ICTP-IAEA 99

Enabling Clock for PL

Vivado

ICTP-IAEA 100Vivado

SDK Compilers

ICTP-IAEA

Embedded System Design Review 11-101

Vivado

GCC translates C source code into assembly language

GCC also functions as the user interface, passing options to the
GNU assembler and to the GNU linker, calling the assembler
and the linker with the appropriate parameters

Supported cross-compilers

ARM processor compiler
◦ GNU GCC (arm-xilinx-eabi-gcc)

◦ GNU Linux GCC (arm-xilinx-linux-eabi-gcc)

ICTP-IAEA 102

GNU Tools: GCC

Vivado

Input: assembly language files
◦ File extension: .s

Output: object code
◦ File extension: .o

Contains
◦ Assembled piece of code
◦ Constant data
◦ External references
◦ Debugging information

Typically, the compiler automatically calls the assembler

Use the -Wa switch if the source files are assembly only and
use gcc

ICTP-IAEA -103

GNU Tools: AS

Vivado

Inputs
◦ Several object files

◦ Archived object files (library)

◦ Linker script (*.ld)

Outputs
◦ Executable image (ELF)

◦ Map file

ICTP-IAEA -104

GNU Tools: Linker (LD)

Vivado

Timing Reports

ICTP-IAEA

Embedded System Design Review 11-105

Vivado

Tcl command: report_timing_summary
report_timing_summary -delay_type max -report_unconstrained -check_timing_verbose -max_paths 10 -input_pins -name timing_1

Vivado IDE

Options tab
◦ Maximum number of paths

Advanced tab
◦ Write to a file

Timer Settings
◦ Interconnect delay can be ignored

◦ Flight delays can be disabled

ICTP-IAEA 106

Report Timing Summary

Vivado

Design Timing Summary
◦ WNS, TNS, total number

of endpoints are of
interest

Clock Summary
◦ Primary and derived clocks

Check Timing
◦ Number of unconstrained

internal endpoints

ICTP-IAEA 107

Report Timing Summary

Vivado

