
VHDL for FPGA
Simulation

Virtual | Feb | 2021

Rodrigo A. Melo

Joint ICTP-IAEA School on FPGA-based
SoC and its Applications for Nuclear and

Related Instrumentation | (smr 3562)

Outline

Introduction1

VHDL for simulation2

Simulators3

Conclusions4

Introduction

Verification

● Verification: to check if a design works as expected.

● In-Circuit Debug:

– Performed in a test bench, with a Scope (simple design with a few signals), Logic
Analyzer ($$$) or Embedded Logic Analyzer (modify your design).

● Functional verification:

– Stimulus are provided and the output compared with expected values, according to
a specification.

– It implies a testbench (generally an HDL) and a simulator

● Formal verification:

– Generally speaking, you need to specify formal properties and a tool checks your
design against formal methods (mathematical proof). Ex: SymbiYosys (FOSS).

https://github.com/YosysHQ/SymbiYosys

Testbench

UUT

VHDL or
Verilog

Unit/Device
Under
Test

Testbench

Testbench

UUT

VHDL, Verilog or
Python (cocotb)

Testbench

Testbench

UUTStimulus

Testbench

Testbench

AssertionsUUTStimulus

Testbench

Testbench

UUT

A FILE or
STREAM
(STDIN)

A FILE or STREAM
(STDOUT/STDERR)

Testbench

Testbench

UUT Assertions

Golden
Model

Stimulus

COMP5

COMP4

To be clear

COMP3

COMP2

COMP1

It needs a
testbench

It needs a
testbench

It needs a
testbench

It needs a
testbench

It needs a
testbench

Frameworks and methodologies

● UVM: Universal Verification Methodology

– Open Verification Methodology

– Functional verification using SystemVerilog

– Supported by a few very expensive simulators (and Vivado?)

● FOSS:

– OSVVM: Open Source VHDL Verification Methodology

– UVVM: Universal VHDL Verification Methodology

– VUnit: unit testing framework for VHDL/SystemVerilog

– SVUnit: unit testing framework for Verilog/SystemVerilog

– Cocotb: Python based testbenches

But we will learn how to
create a basic VHDL

testbench from scratch.

VHDL for simulation

Structure of a VHDL testbench

Libraries & Packages

Entity
(empty)

Architecture
Declarations

Begin
UUT instantiation

Generates stimulus
Checks results.

● The Entity is employed only
to define the name of the
testbench.

● Only one Architecture.

Clock and reset generation

architecture Simul of counter_tb is
 constant PERIOD : time := 20 ns; -- 50 MHz
 signal clk : std_logic:='1';
 signal rst : std_logic;
 ...
 signal stop : boolean := FALSE;
begin

 do_clock: process
 begin
 while not stop loop
 wait for PERIOD/2;
 clk <= not clk;
 end loop;
 wait; -- Event Starvation
 end process do_clock;

 rst <= '1', '0' after 3*PERIOD;

● time is a pre-defined
physical type. It allows
you to specify fs, ps, ns,
us, ms, sec, min and hr.

● You need to produce
Event Starvation (no
more events) to finish the
simulation. It is achieved
by a wait without
options.

Wait

wait [on signals] [until condition] [for time];

-- wait on signals;
wait on s1, s2; -- wait for an event
-- wait until condition;
wait until clk_i = '1'; -- wait for an event
-- wait for time;
wait for 10 ns;
-- wait;
wait; -- wait forever (event starvation)

● Is a sequential statement.

● Used by processes
without a sensitivity list.

Assert and Report

report <message_string> [severity <severity_level>];
assert <condition> [severity <severity_level>];
assert <condition> report <message_string> [severity <severity_level>];

● Report is a sequential statement (only inside of a process).

● The <severity_level> can be note (default for report), warning, error (default for assert)
or failure.

● Assert can be either, a sequential or a concurrent statement.

● <condition> is a boolean value which must be TRUE to avoid the report.

● You can only report a string. The value of a signal or variable is not a string. You need to
know the data type and use the image attribute:

report "unexpected value. i = " & integer'image(i);

Example - Component

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity counter is
 port (
 clk_i : in std_logic;
 rst_i : in std_logic;
 cnt_o : out std_logic_vector(3 downto 0)
);
end entity counter;

architecture RTL of counter is
 constant MODULE : positive := 12;
 signal cnt : unsigned(3 downto 0);
begin
 do_counter : process (clk_i)
 begin
 if rising_edge(clk_i) then
 if rst_i = '1' then
 cnt <= (others => '0');
 else
 if cnt < MODULE-1 then
 cnt <= cnt + 1;
 else
 cnt <= (others => '0');
 end if;
 end if;
 end if;
 end process do_counter;

 cnt_o <= std_logic_vector(cnt);
end architecture RTL;

Example – Testbench (part 1)

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library std; -- Standard library of VHDL
use std.textio.all; -- we will write to STDOUT
library COUNTER_LIB; -- Our LIBRARY
use COUNTER_LIB.COUNTER_PKG.all; -- Our PACKAGE

entity counter_tb is
end entity counter_tb;

architecture Simul of counter_tb is
 constant PERIOD : time := 20 ns; -- 50 MHz
 signal clk : std_logic:='1';
 signal rst : std_logic;
 signal cnt : std_logic_vector(3 downto 0);
 signal stop : boolean := FALSE;
begin

 do_clock: process
 begin
 while not stop loop
 wait for PERIOD/2;
 clk <= not clk;
 end loop;
 wait; -- Event Starvation
 end process do_clock;

 rst <= '1', '0' after 3*PERIOD;

 -- UUT instantiation
 uut : counter
 port map(
 clk_i => clk,
 rst_i => rst,
 cnt_o => cnt
);

Example – Testbench (part 2)

 testing: process
 variable L : LINE; -- buffer
 begin
 -- Print to STDOUT
 write(L,NOW); -- Current simulation time
 write(L,STRING'(" --> Start of test"));
 writeline(output,L); -- Write to STDOUT
 -- Test of the initial value
 wait until rising_edge(clk);
 wait until rst='0';
 assert unsigned(cnt)=0
 report "Error! not 0"
 severity failure;
 -- Test of the intermediate values
 for I in 0 to 11 loop
 wait until rising_edge(clk);
 assert unsigned(cnt)=I
 report "Error! cnt = ("&integer'image(to_integer(unsigned(cnt)))&")"
 severity failure;
 end loop;
 wait until rising_edge(clk);

Example – Testbench (part 3)

 -- Test cicle restart
 assert unsigned(cnt)=0
 report "Error! Mod-12 ("&integer'image(to_integer(unsigned(cnt)))&")"
 severity failure;
 -- Print to STDOUT
 write(L,NOW); -- Current simulation time
 write(l,string'("-> End of test"));
 writeline(output,L); -- Write to STDOUT
 -- Clock stop
 stop <= true;
 wait;
 end process testing;

end architecture Simul;

Files – std.textio

● Defines read and write procedures to work with FILES.

● The procedures supports the types bit, bit_vector, boolean, character
(ex: ‘A’), string (ex: “ICTP”, defined from 1 to 4), integer, real and time.

procedure READLINE(file F: TEXT; L: out LINE);
procedure READ(L:inout LINE; VALUE: out <type>);
procedure READ(L:inout LINE; VALUE: out <type>; GOOD : out BOOLEAN);

procedure WRITE(
 L :inout LINE; VALUE : in <type>;
 JUSTIFIED: in SIDE := right;
 FIELD: in WIDTH := 0
);
procedure WRITELINE(file F : TEXT; L : inout LINE);

Files – read

stimulus: process
 file F : TEXT open READ_MODE is "input.dat";
 variable L : LINE;
 variable tag : string(1 to 3);
 variable int : integer;
 variable ok : boolean;
begin
 while not endfile(F) loop
 readline(F, L); -- F can be replaced by input (read from STDIN)
 read(L, tag, ok);
 assert ok report "Read ERROR!" severity failure;
 -- Do something with tag (the read value)
 read(L, int, ok);
 assert ok report "Read ERROR!" severity failure;
 -- Do something with int (the read value)
 end loop;
 wait; -- event starvation
end process stimulus;

Files – write

checks: process
 file F: TEXT open WRITE_MODE is "output.dat";
 variable L: LINE;
begin
 ...
 WRITE(L, NOW);
 WRITE(L, STRING'("Your string")); -- This cast is needed for strings
 WRITELINE(F,L); -- F can be replaced by output (print to STDOUT)
 ...
 wait; -- event starvation
end process checks;

 You can read from STDIN with a file called input and to write to STDOUT with a
 file called output (these files are automatically opened when you include textio).

Simulators

How internally works a simulator?

B

D
12ns 13ns

C

B

A
D

int2
int1

11ns

architecture rtl of example is
 signal int1, int2 : std_logic;
begin
 int1 <= not A;
 int2 <= int1 and B;
 D <= int2 or C;
end architecture rtl;

A

How internally works a simulator?

B

A

D
12ns 13ns

C

B

A
D

int2
int1

11ns

int1

+d

architecture rtl of example is
 signal int1, int2 : std_logic;
begin
 int1 <= not A;
 int2 <= int1 and B;
 D <= int2 or C;
end architecture rtl;

How internally works a simulator?

B

A

D
12ns 13ns

C

B

A
D

int2
int1

11ns

int1

d

int2

2d

architecture rtl of example is
 signal int1, int2 : std_logic;
begin
 int1 <= not A;
 int2 <= int1 and B;
 D <= int2 or C;
end architecture rtl;

How internally works a simulator?

B

D
12ns 13ns

C

B

A
D

int2
int1

11ns

d 2d 3d

12ns

architecture rtl of example is
 signal int1, int2 : std_logic;
begin
 int1 <= not A;
 int2 <= int1 and B;
 D <= int2 or C;
end architecture rtl;

A

int1

int2

Waveforms interpretation

if rising_edge(clk_i) then
 flag_o <= '0';
 if ena_i = '1' then
 flag_o <= '1';
 end if;
end if;

Example

● counter.vhdl: entity/component

● counter_pkg.vhdl: package which contains the component

– The package name is COUNTER_PKG (name defined into the VHDL file)

● counter_tb.vhdl: testbench of the component

– The library name is COUNTER_LIB (name defined by the tool)

GHDL simulation

$ mkdir -p build
$ ghdl -a --workdir=build --work=COUNTER_LIB counter.vhdl counter_pkg.vhdl
$ ghdl -a --workdir=build -Pbuild counter_tb.vhdl
$ ghdl -e --workdir=build -Pbuild counter_tb
$ ghdl -r --workdir=build -Pbuild counter_tb --vcd=build/counter.vcd

● GHDL analyze (-a), elaborate (-e) and run (-r) our simulation.

● Use --workdir to specify where to put generated files (build directory).

● Use --work to specify the LIBRARY NAME (COUNTER_LIB).

● Use -P to specify where to find libraries (no space between P and the directory).

● Use --vcd or --wave (.ghw), which are runtime options, to specify where to
dump waveforms.

GTKwave waveform viewer

$ gtkwave build/counter.vcd

Vivado simulation – Create Project

Vivado simulation – Add Sources

Vivado simulation – Launch simulation

Vivado simulation – See waveforms

Conclusions

Conclusions

● Do not perform a testbench can be only allowed for a very basic (a counter, a
ROM) descriptions included in another simulated description. Professional
advice.

● What we saw today is enough to develop a small testbench with stimulus
and assertions.

● Also, you should be capable of read/write files.

rmelo@inti.gob.ar

rodrigoalejandromelo

@rodrigomelo9ok

rodrigomelo9

rodrigomelo9

mailto:rmelo@inti.gob.ar
https://www.linkedin.com/in/rodrigoalejandromelo/
https://twitter.com/rodrigomelo9ok
https://github.com/rodrigomelo9
https://gitlab.com/rodrigomelo9

Thank you www.inti.gob.ar

consulta@inti.gob.ar

0800 444 4004

INTIArg

@INTIargentina

INTI

@intiargentina

canalinti

If you want to know more about
INTI, we wait for you at

Joint ICTP-IAEA School on FPGA-based
SoC and its Applications for Nuclear and

Related Instrumentation | (smr 3562)

This work is licensed under CC BY 4.0

https://creativecommons.org/licenses/by/4.0

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41

