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Introduction



Verification

● Verification: to check if a design works as expected.

● In-Circuit Debug:

– Performed in a test bench, with a Scope (simple design with a few signals), Logic 
Analyzer ($$$) or Embedded Logic Analyzer (modify your design).

● Functional verification:

– Stimulus are provided and the output compared with expected values, according to 
a specification.

– It implies a testbench (generally an HDL) and a simulator

● Formal verification:

– Generally speaking, you need to specify formal properties and a tool checks your 
design against formal methods (mathematical proof). Ex: SymbiYosys (FOSS).

https://github.com/YosysHQ/SymbiYosys
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Frameworks and methodologies

● UVM: Universal Verification Methodology

– Open Verification Methodology

– Functional verification using SystemVerilog

– Supported by a few very expensive simulators (and Vivado?)

● FOSS:

– OSVVM: Open Source VHDL Verification Methodology

– UVVM: Universal VHDL Verification Methodology

– VUnit: unit testing framework for VHDL/SystemVerilog

– SVUnit: unit testing framework for Verilog/SystemVerilog

– Cocotb: Python based testbenches

But we will learn how to
create a basic VHDL

testbench from scratch.



VHDL for simulation



Structure of a VHDL testbench

Libraries & Packages

Entity
(empty)

Architecture
Declarations

Begin
UUT instantiation

Generates stimulus
Checks results.

● The Entity is employed only 
to define the name of the 
testbench.

● Only one Architecture.



Clock and reset generation

architecture Simul of counter_tb is
    constant PERIOD : time := 20 ns; -- 50 MHz
    signal clk      : std_logic:='1';
    signal rst      : std_logic;
    ...
    signal stop     : boolean := FALSE;
begin

    do_clock: process
    begin
        while not stop loop
           wait for PERIOD/2;
           clk <= not clk;
        end loop;
        wait; -- Event Starvation
    end process do_clock;

    rst <= '1', '0' after 3*PERIOD;

● time is a pre-defined 
physical type. It allows 
you to specify fs, ps, ns, 
us, ms, sec, min and hr.

● You need to produce 
Event Starvation (no 
more events) to finish the 
simulation. It is achieved 
by a wait without 
options.



Wait

wait [on signals] [until condition] [for time];

-- wait on signals;
wait on s1, s2; -- wait for an event
-- wait until condition;
wait until clk_i = '1'; -- wait for an event
-- wait for time;
wait for 10 ns;
-- wait;
wait; -- wait forever (event starvation)

● Is a sequential statement.

● Used by processes  
without a sensitivity list.



Assert and Report

report <message_string> [severity <severity_level>];
assert <condition> [severity <severity_level>];
assert <condition> report <message_string> [severity <severity_level>];

● Report is a sequential statement (only inside of a process).

● The <severity_level> can be note (default for report), warning, error (default for assert) 
or failure.

● Assert can be either, a sequential or a concurrent statement.

● <condition> is a boolean value which must be TRUE to avoid the report.

● You can only report a string. The value of a signal or variable is not a string. You need to 
know the data type and use the image attribute:

report "unexpected value. i = " & integer'image(i);



Example - Component

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity counter is
    port (
        clk_i : in  std_logic;
        rst_i : in  std_logic;
        cnt_o : out std_logic_vector(3 downto 0)
    );
end entity counter;

architecture RTL of counter is
    constant MODULE : positive := 12;
    signal cnt      : unsigned(3 downto 0);
begin
    do_counter : process (clk_i)
    begin
        if rising_edge(clk_i) then
            if rst_i = '1' then
                cnt <= (others => '0');
            else
                if cnt < MODULE-1 then
                    cnt <= cnt + 1;
                else
                    cnt <= (others => '0');
                end if;
            end if;
        end if;
    end process do_counter;

    cnt_o <= std_logic_vector(cnt);
end architecture RTL;



Example – Testbench (part 1)

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library std; -- Standard library of VHDL
use std.textio.all; -- we will write to STDOUT
library COUNTER_LIB; -- Our LIBRARY
use COUNTER_LIB.COUNTER_PKG.all; -- Our PACKAGE

entity counter_tb is
end entity counter_tb;

architecture Simul of counter_tb is
    constant PERIOD : time := 20 ns; -- 50 MHz
    signal clk      : std_logic:='1';
    signal rst      : std_logic;
    signal cnt      : std_logic_vector(3 downto 0);
    signal stop     : boolean := FALSE;
begin

    do_clock: process
    begin
        while not stop loop
           wait for PERIOD/2;
           clk <= not clk;
        end loop;
        wait; -- Event Starvation
    end process do_clock;

    rst <= '1', '0' after 3*PERIOD;

    -- UUT instantiation
    uut : counter
    port map(
        clk_i => clk,
        rst_i => rst,
        cnt_o => cnt
    );



Example – Testbench (part 2)

    testing: process
        variable L : LINE; -- buffer
    begin
        -- Print to STDOUT
        write(L,NOW); -- Current simulation time
        write(L,STRING'(" --> Start of test"));
        writeline(output,L); -- Write to STDOUT
        -- Test of the initial value
        wait until rising_edge(clk);
        wait until rst='0';
        assert unsigned(cnt)=0
            report "Error! not 0"
                severity failure;
        -- Test of the intermediate values
        for I in 0 to 11 loop
            wait until rising_edge(clk);
            assert unsigned(cnt)=I
                report "Error! cnt = ("&integer'image(to_integer(unsigned(cnt)))&")"
                    severity failure;
        end loop;
        wait until rising_edge(clk);



Example – Testbench (part 3)

        -- Test cicle restart
        assert unsigned(cnt)=0
            report "Error! Mod-12 ("&integer'image(to_integer(unsigned(cnt)))&")"
                severity failure;
        -- Print to STDOUT
        write(L,NOW); -- Current simulation time
        write(l,string'("-> End of test"));
        writeline(output,L); -- Write to STDOUT
        -- Clock stop
        stop <= true;
        wait;
    end process testing;

end architecture Simul;



Files – std.textio

● Defines read and write procedures to work with FILES.

● The procedures supports the types bit, bit_vector, boolean, character 
(ex: ‘A’), string (ex: “ICTP”, defined from 1 to 4), integer, real and time.

procedure READLINE(file F: TEXT; L: out LINE);
procedure READ(L:inout LINE; VALUE: out <type>);
procedure READ(L:inout LINE; VALUE: out <type>; GOOD : out BOOLEAN);

procedure WRITE(
    L :inout LINE; VALUE : in <type>;
    JUSTIFIED: in SIDE := right;
    FIELD: in WIDTH := 0
);
procedure WRITELINE(file F : TEXT; L : inout LINE);



Files – read

stimulus: process
    file F        : TEXT open READ_MODE is "input.dat";
    variable L    : LINE;
    variable tag  : string(1 to 3);
    variable int  : integer;
    variable ok   : boolean;
begin 
    while not endfile(F) loop
        readline(F, L); -- F can be replaced by input (read from STDIN)
        read(L, tag, ok);
        assert ok report "Read ERROR!" severity failure;
        -- Do something with tag (the read value)
        read(L, int, ok);
        assert ok report "Read ERROR!" severity failure;
        -- Do something with int (the read value)
    end loop;
    wait; -- event starvation
end process stimulus;



Files – write

checks: process
    file F: TEXT open WRITE_MODE is "output.dat";
    variable L: LINE;
begin 
    ...
    WRITE(L, NOW);
    WRITE(L, STRING'("Your string")); -- This cast is needed for strings
    WRITELINE(F,L); -- F can be replaced by output (print to STDOUT)
    ...
    wait; -- event starvation
end process checks;

                          You can read from STDIN with a file called input and to write to STDOUT with a
                              file called output (these files are automatically opened when you include textio).



Simulators



How internally works a simulator?
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Waveforms interpretation

if rising_edge(clk_i) then
    flag_o <= '0';
    if ena_i = '1' then
        flag_o <= '1';
    end if;
end if;



Example

● counter.vhdl: entity/component

● counter_pkg.vhdl: package which contains the component

– The package name is COUNTER_PKG (name defined into the VHDL file)

● counter_tb.vhdl: testbench of the component

– The library name is COUNTER_LIB (name defined by the tool)



GHDL simulation

$ mkdir -p build
$ ghdl -a --workdir=build --work=COUNTER_LIB counter.vhdl counter_pkg.vhdl
$ ghdl -a --workdir=build -Pbuild counter_tb.vhdl
$ ghdl -e --workdir=build -Pbuild counter_tb
$ ghdl -r --workdir=build -Pbuild counter_tb --vcd=build/counter.vcd

● GHDL analyze (-a), elaborate (-e) and run (-r) our simulation.

● Use --workdir to specify where to put generated files (build directory).

● Use --work to specify the LIBRARY NAME (COUNTER_LIB).

● Use -P to specify where to find libraries (no space between P and the directory).

● Use --vcd or --wave (.ghw), which are runtime options, to specify where to 
dump waveforms.



GTKwave waveform viewer

$ gtkwave build/counter.vcd



Vivado simulation – Create Project



Vivado simulation – Add Sources



Vivado simulation – Launch simulation



Vivado simulation – See waveforms



Conclusions



Conclusions

● Do not perform a testbench can be only allowed for a very basic (a counter, a 
ROM) descriptions included in another simulated description. Professional 
advice.

● What we saw today is enough to develop a small testbench with stimulus 
and assertions.

● Also, you should be capable of read/write files.
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