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Machine Learning

Artificial Intelligence, Machine Learning, Deep Learning
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Machine Learning

”Learning can be defined as the process of estimating associations
between inputs, outputs, and parameters of a system using a limited
number of observations” (Cherkassky et al. 2007)
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Machine Learning

Supervised Learning
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Machine Learning

Unsupervised Learning
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Machine Learning

Unsupervised Learning
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Machine Learning

An artificial neural network (ANN) is composed of neuron (or node)
interconnections arranged in different layers.

y = f (b +
∑

wixi ) (1)
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Machine Learning

Multi-Layer Perceptron

MLP architecture
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Machine Learning

Convolutional Neural Networks (CNN)
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Machine Learning

Training and inference

In a classifier, an input is mapped into a specific class.

Supervised training step to recognize patterns: the network compares its actual

output with the desired output. The difference between these two values is

adjusted with backpropagation.
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Machine Learning

K-fold cross-validation
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Machine Learning
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SoC-based FPGA
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SoC-based FPGA

High level comparison of Zynq-7000 SoC and Zynq UltraScale+ MPSoC
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SoC-based FPGA

Machine learning and SoC
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Acceleration of Machine
Learning Inference
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Acceleration of Machine Learning Inference

Considerations to map inference into FPGAs
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Acceleration of Machine Learning Inference

Low-precision arithmetic to reduce power consumption and increase
throughput.

Reduce memory footprint – NN model can be deployed into on-chip
memory, avoiding DDR access and bottlenecks.

Model compression techniques [1]
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Acceleration of Machine Learning Inference

Model compression

Quantization (Q) and pruning (P) (train from scratch and
pre-trained model)

Q: Reduce number of bits to represent weights and bias
P: Remove connections and/or neurons

Low-rank factorization (train from scratch and pre-trained model)

Compact convolutional filters (train from scratch)

Knowledge destillation (train from scratch)
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Acceleration of Machine Learning Inference

Model compression: Pruning

Left: Before pruning - Right: after pruning
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Acceleration of Machine Learning Inference

Model compression: Knowledge distillation

High level diagram for knowledge distillation.
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Acceleration of Machine Learning Inference

High-Level Synthesis
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Acceleration of Machine Learning Inference

Hardware design - High-Level Synthesis

Vivado HLS:

It provides the facility to create RTL from a high level of abstraction.

It allows the optimization of the input code using directives to:

Reduce latency
Improve performance and throughput
Reduce resource utilization

Without directives, Vivado HLS will look minimize latency and improve
concurrency
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Acceleration of Machine Learning Inference

Hardware design - High-Level Synthesis

Minimize latency: UNROLL, LOOP FLATTEN, LOOP MERGE.

Minimize throughput: DATAFLOW, PIPELINE.

Improve bottleneck: RESOURCE, ARRAY PARTITION,
ARRAY RESHAPE.
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Acceleration of Machine Learning Inference

Hardware design - High-Level Synthesis - Directives

Loop example
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Acceleration of Machine Learning Inference

Hardware design - High-Level Synthesis - Directives

Loop + Pipeline directive
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Acceleration of Machine Learning Inference

Hardware design - High-Level Synthesis - Directives

Loop + Unroll directive
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Acceleration of Machine Learning Inference

Hardware design - High-Level Synthesis - Directives

Loop + Dataflow directive
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Acceleration of Machine Learning Inference

Inference IP core
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High-Level Synthesis for ML
(hls4ml)
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High level synthesis for machine learning (hls4ml)

Package for ML inference in FPGAs using HLS. (Duarte et. al)

”Fast inference of deep neural networks (DNN) in FPGAs for
particle physics” Duarte et al. [2]

GitHub: https://github.com/fastmachinelearning/hls4ml-tutorial

https://fastmachinelearning.org/hls4ml/
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High-Level Synthesis for ML (hls4ml)

hls4ml

Design flow for hls4ml [2]
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High-Level Synthesis for ML (hls4ml)

hls4ml

HLS to create IP Core.

Keras, TensorFlow, Pytorch.

On-chip data structures.

Quantization through ap fixed in HLS.

Trade-off between resoure utilization and latency/throughput.

Integration with other tools.
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High-Level Synthesis for ML (hls4ml)

Pipelining to speed up the process by accepting new inputs after an
initiation interval.

Size/Compression
Precision
Dataflow/Resource Reuse
Quantization Aware Training: Qkeras [3]

Reuse factor [2]
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High-Level Synthesis for ML (hls4ml)

Profiling

Method: hls4ml.model.profiling.numerical

Profiling to adjust precision
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High-Level Synthesis for ML (hls4ml)

How we start with the tool?
First, we have to download packages and dependencies. Then, we need
to decide between:

Using command line

Using Jupyter Notebook
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High-Level Synthesis for ML (hls4ml)

Using command line:
Configuration file (.yml). In this case, the file has the name
model-config.yml
Files required: .json y .h5

Contenido del archivo .yml
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High-Level Synthesis for ML (hls4ml)

Commands for terminal execution

hls4ml convert -c model-config.yml

hls4ml build -p ProjectName -a

vivado hls -f ProjectName.tcl ”csim=1 synth=1 cosim=0 export=0”

Following the information in the previous image, ProjectName was replaced by
particlesIdentification:

hls4ml convert -c model-config.yml

hls4ml build -p particlesIdentification -a

vivado hls -f particlesIdentification.tcl ”csim=1 synth=1 cosim=0
export=0”
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High-Level Synthesis for ML (hls4ml)

Using Jupyter Notebook:

Model summary
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High-Level Synthesis for ML (hls4ml)

Using Jupyter Notebook:
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High-Level Synthesis for ML (hls4ml)

Generated code
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High-Level Synthesis for ML
(hls4ml)

Case of study: Muon–Electron Pulse Shape
Discrimination for Water Cherenkov Detectors
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High-Level Synthesis for ML (hls4ml)

Case of study: Muon–Electron Pulse Shape Discrimination for
Water Cherenkov Detectors [4]

Water Cherenkov detector (WCD) at the Escuela de Ciencias F́ısicas
y Matemáticas in Universidad de San Carlos de Guatemala
(ECFM-USAC).

Signal: sampled at 125 MHz, 14-bit resolution.

Feature extraction in the incoming signal to obtain signal
classification.
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High-Level Synthesis for ML (hls4ml)

Case of study: Muon–Electron Pulse Shape Discrimination for
Water Cherenkov Detectors

Different types of signals: electron, muon and electric discharges
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High-Level Synthesis for ML (hls4ml)

Case of study: Muon–Electron Pulse Shape Discrimination for
Water Cherenkov Detectors

MLP architecture
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High-Level Synthesis for ML (hls4ml)

Case of study: Muon–Electron Pulse Shape Discrimination for
Water Cherenkov Detectors

Model summary
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High-Level Synthesis for ML (hls4ml)

Case of study: Muon–Electron Pulse Shape Discrimination for
Water Cherenkov Detectors

HLS reports comparison. Solutions 1 and 5 without directives. Solutions 2 and 6 with directives applied by hls4mland Softmax as
activation function. Solutions 3 and 7 with directives applied by hls4ml, PIPELINE to improve the interval,without Softmax and with a
reuse factor of 1 for all the layers. Solutions 4 and 8 with directives applied by hls4ml, PIPELINEto improve the interval, without Softmax
and with a reuse factor of 8 for all the dense layers
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High-Level Synthesis for ML (hls4ml)

Case of study: Muon–Electron Pulse Shape Discrimination for
Water Cherenkov Detectors

Hardware creation with Vivado IP Integrator
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