

Universidad Nacional de San Luis

FPGA for the Acceleration of Machine Learning Algorithms

Romina Molina

Joint ICTP-IAEA School on FPGA-based SoC and its Applications for Nuclear and Related Instrumentation — (smr 3562)

January – February 2021

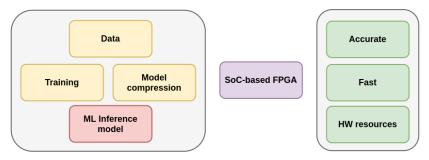
Outline

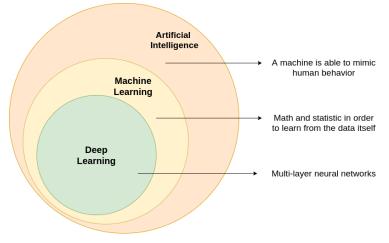
- Introduction
- Machine Learning (ML)
- SoC-based FPGA
- Acceleration of ML Inference
- High-Level Synthesis for ML (hls4ml)

Introduction

Introduction

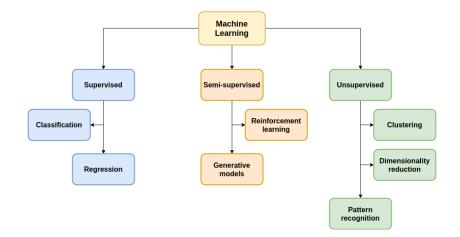
Machine learning and SoC





Artificial Intelligence, Machine Learning, Deep Learning

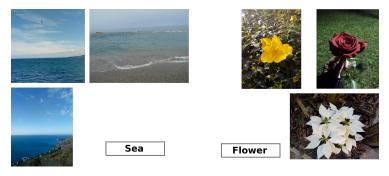
"Learning can be defined as the process of estimating associations between inputs, outputs, and parameters of a system using a limited number of observations" (Cherkassky et al. 2007)



Romina Molina

Supervised Learning

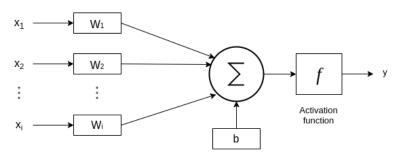
Unsupervised Learning



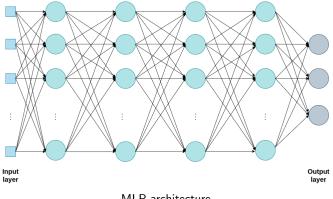
Unsupervised Learning

An artificial neural network (ANN) is composed of neuron (or node) interconnections arranged in different layers.

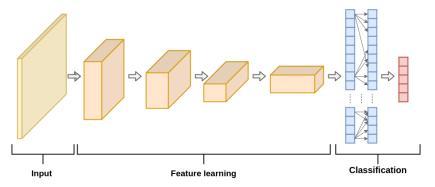
$$y = f(b + \sum w_i x_i) \tag{1}$$

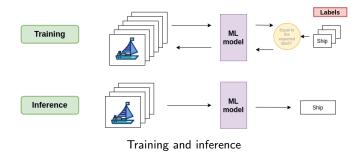


Multi-Layer Perceptron



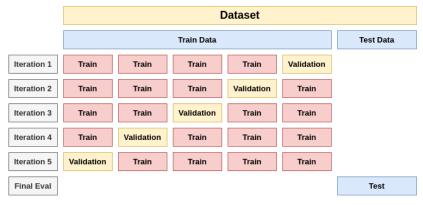
Convolutional Neural Networks (CNN)



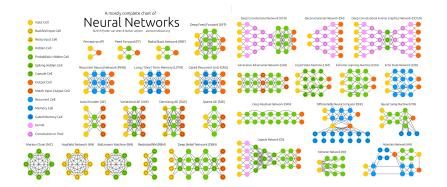


In a classifier, an input is mapped into a specific class.

Supervised training step to recognize patterns: the network compares its actual output with the desired output. The difference between these two values is adjusted with backpropagation.

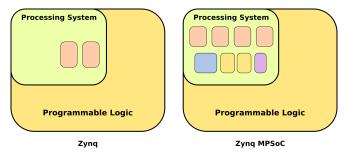


K-fold cross-validation



SoC-based FPGA

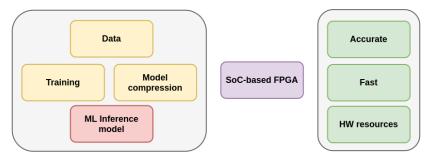
SoC-based FPGA

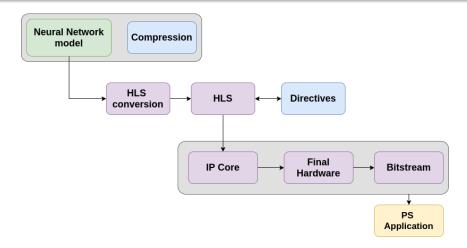


High level comparison of Zynq-7000 SoC and Zynq UltraScale+ MPSoC

SoC-based FPGA

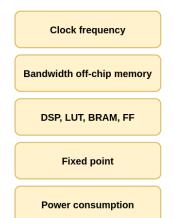
Machine learning and SoC





Romina Molina

Considerations to map inference into FPGAs

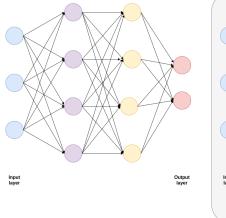


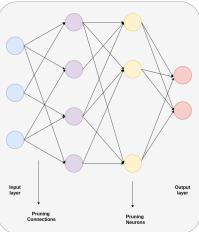
- Low-precision arithmetic to reduce power consumption and increase throughput.
- Reduce memory footprint NN model can be deployed into on-chip memory, avoiding DDR access and bottlenecks.
- Model compression techniques [1]

Model compression

- Quantization (Q) and pruning (P) (train from scratch and pre-trained model)
 - Q: Reduce number of bits to represent weights and bias
 - P: Remove connections and/or neurons
- Low-rank factorization (train from scratch and pre-trained model)
- Compact convolutional filters (train from scratch)
- Knowledge destillation (train from scratch)

Model compression: Pruning

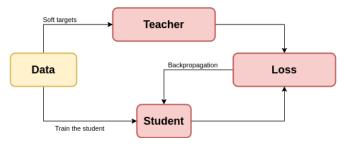




Left: Before pruning - Right: after pruning

Romina Molina	
ICTP smr3562 - FPGA for the Acceleration of ML Algorithms	27 / 57

Model compression: Knowledge distillation



High level diagram for knowledge distillation.

High-Level Synthesis

Hardware design - High-Level Synthesis

Vivado HLS:

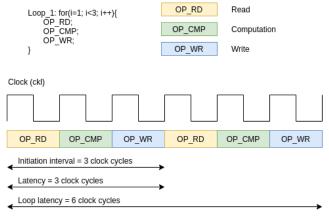
- It provides the facility to create RTL from a high level of abstraction.
- It allows the optimization of the input code using directives to:
 - Reduce latency
 - Improve performance and throughput
 - Reduce resource utilization

Without directives, Vivado HLS will look minimize latency and improve concurrency

Hardware design - High-Level Synthesis

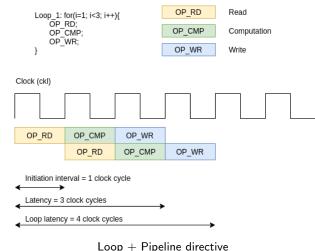
- Minimize latency: UNROLL, LOOP_FLATTEN, LOOP_MERGE.
- Minimize throughput: DATAFLOW, PIPELINE.
- Improve bottleneck: RESOURCE, ARRAY_PARTITION, ARRAY_RESHAPE.

Hardware design - High-Level Synthesis - Directives



Loop example

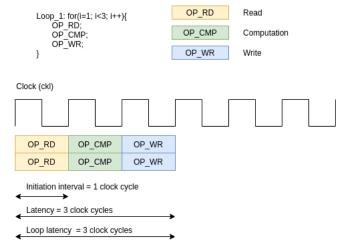
Hardware design - High-Level Synthesis - Directives



Romina Molina

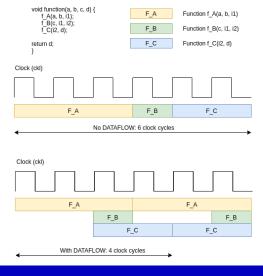
ICTP smr3562 - FPGA for the Acceleration of ML Algorithms

Hardware design - High-Level Synthesis - Directives



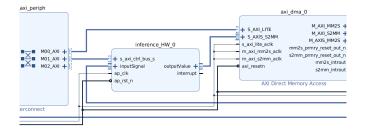
Loop + Unroll directive

Hardware design - High-Level Synthesis - Directives



Romina Molina

ICTP smr3562 - FPGA for the Acceleration of ML Algorithms

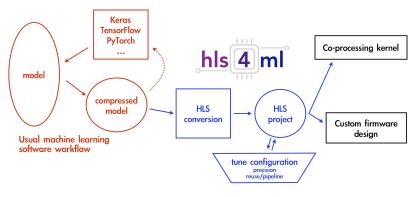


Inference IP core

High level synthesis for machine learning (hls4ml)

- Package for ML inference in FPGAs using HLS. (Duarte et. al)
- "Fast inference of deep neural networks (DNN) in FPGAs for particle physics" Duarte et al. [2]
- GitHub: https://github.com/fastmachinelearning/hls4ml-tutorial
- https://fastmachinelearning.org/hls4ml/

hls4ml



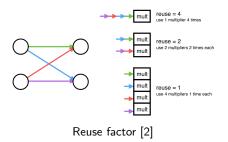
Design flow for hls4ml [2]

hls4ml

- HLS to create IP Core.
- Keras, TensorFlow, Pytorch.
- On-chip data structures.
- Quantization through ap_fixed in HLS.
- Trade-off between resoure utilization and latency/throughput.
- Integration with other tools.

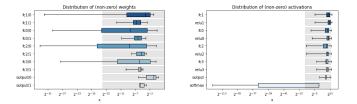
Pipelining to speed up the process by accepting new inputs after an initiation interval.

- Size/Compression
- Precision
- Dataflow/Resource Reuse
- Quantization Aware Training: Qkeras [3]



Profiling

Method: hls4ml.model.profiling.numerical



Profiling to adjust precision

How we start with the tool?

First, we have to download packages and dependencies. Then, we need to decide between:

- Using command line
- Using Jupyter Notebook

Using command line:

- Configuration file (.yml). In this case, the file has the name model-config.yml
- Files required: .json y .h5

```
# particles_keras_config.yml
```

```
# File json
KerasJson: ../model/model_architecture.json
```

```
# File h5
KerasH5: ../model/model_weights.h5
```

```
#InputData: ../model/modelInput.dat
#OutputPredictions: ../modelPredictions.dat
```

```
OutputDir: particleHW
ProjectName: particlesIdentification
XilinxPart: xc7z020-clg484-1
ClockPeriod: 10
Backend: Vivado
```

```
IOType: to_parallel # options: to_serial/io_parallel
HLSConfig:
Model:
    Precision: ap_fixed<16,8>
    ReuseFactor: 1
    # LayerType:
    # Dense:
    # ReuseFactor: 2
    # Strategy: Resource
```

```
# Compression: True
```

```
# xczu9eg-ffvb1156-2-e xc7z020clg484-1
```

Commands for terminal execution

- hls4ml convert -c model-config.yml
- hls4ml build -p ProjectName -a
- vivado_hls -f ProjectName.tcl "csim=1 synth=1 cosim=0 export=0"

Following the information in the previous image, **ProjectName** was replaced by **particlesIdentification**:

- hls4ml convert -c model-config.yml
- hls4ml build -p particlesIdentification -a
- vivado_hls -f particlesIdentification.tcl "csim=1 synth=1 cosim=0 export=0"

Using Jupyter Notebook:

```
1 from tensorflow.keras.models import load_model
2 from sklearn.metrics import accuracy_score
3 model = load_model('model_keras_MLP.h5')
```

```
4 model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
fc1 (Dense)	(None, 60)	3900
relu1 (Activation)	(None, 60)	0
fc0 (Dense)	(None, 40)	2440
relu0 (Activation)	(None, 40)	Θ
fc2 (Dense)	(None, 30)	1230
relu2 (Activation)	(None, 30)	Θ
fol (Danca)	(None 10)	210

Model summary

Using Jupyter Notebook:

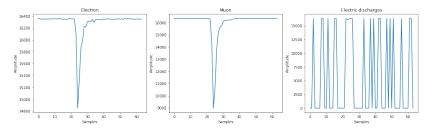
Generated code

63	
64	laver3 t laver3 out[N LAYER 3]:
65	<pre>#pragma HLS ARRAY PARTITION variable=layer3 out complete dim=0</pre>
66	nnet::dense latency <input2 config3="" laver3="" t,="">(input1, laver3 out, w3, b3);</input2>
67	······································
68	laver5 t laver5 out[N LAYER 3]:
69	#pradma HLS ARRAY PARTITION variable=layer5 out complete dim=0
70	nnet::relu <layer3 config5="" layer5="" relu="" t,="">(layer3 out, layer5 out);</layer3>
71	
72	layer6 t layer6 out[N LAYER 6];
73	#pragma HLS ARRAY PARTITION variable=laver6 out complete dim=0
74	nnet::dense latency <layer5 config6="" layer6="" t,="">(layer5 out, layer6 out, w6, b6);</layer5>
75	
76	laver8 t laver8 out[N LAYER 6]:
77	#pragma HLS ARRAY PARTITION variable=layer8 out complete dim=0
78	nnet::relu <layer6 config8="" layer8="" relu="" t,="">(layer6 out, layer8 out);</layer6>
79	······································
80	laver9 t laver9 out[N LAYER 9]:
81	#pragma HLS ARRAY PARTITION variable=layer9 out complete dim=0
82	nnet::dense latency <layer8 config9="" layer9="" t,="">(layer8 out, layer9 out, w9, b9);</layer8>
83	
84	layer11 t layer11 out[N LAYER 9];
85	#pragma HLS ARRAY PARTITION variable=laver11 out complete dim=0
86	<pre>nnet::relu<layer9 config11="" layer11="" relu="" t,="">(layer9 out, layer11 out);</layer9></pre>
87	
88	laver12 t laver12 out[N LAYER 12]:
89	<pre>#pragma HLS ARRAY PARTITION variable=layer12 out complete dim=0</pre>
90	nnet::dense latency <layer11 config12="" layer12="" t,="">(layer11 out, layer12 out, w12, b12);</layer11>
91	
92	layer14 t layer14 out[N LAYER 12];
93	<pre>#pragma HLS ARRAY PARTITION variable=layer14 out complete dim=0</pre>
94	nnet::relu <layer12 config14="" layer14="" relu="" t,="">(layer12 out, layer14 out);</layer12>
95	
96	layer15 t layer15 out[N LAYER 15];
97	<pre>#pragma HLS ARRAY PARTITION variable=layer15 out complete dim=0</pre>
98	nnet::dense latency <layer14 config15="" layer15="" t,="">(layer14 out, layer15 out, w15, b15);</layer14>
99	
100	nnet::softmax <layer15 config17="" result="" softmax="" t,="">(layer15 out, layer17 out);</layer15>
101	

Case of study: Muon–Electron Pulse Shape Discrimination for Water Cherenkov Detectors Case of study: Muon–Electron Pulse Shape Discrimination for Water Cherenkov Detectors [4]

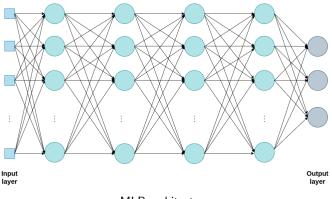
- Water Cherenkov detector (WCD) at the Escuela de Ciencias Físicas y Matemáticas in Universidad de San Carlos de Guatemala (ECFM-USAC).
- Signal: sampled at 125 MHz, 14-bit resolution.
- Feature extraction in the incoming signal to obtain signal classification.

Case of study: Muon–Electron Pulse Shape Discrimination for Water Cherenkov Detectors



Different types of signals: electron, muon and electric discharges

Case of study: Muon–Electron Pulse Shape Discrimination for Water Cherenkov Detectors



MLP architecture

ICTP	smr3562 -	EPGA for	the Acceleration	of ML Algorithms	

Romina Molina

Case of study: Muon–Electron Pulse Shape Discrimination for Water Cherenkov Detectors

Layer (type)	Output Shape	Param #
fcl (Dense)	(None, 60)	3900
relu1 (Activation)	(None, 60)	Θ
fc0 (Dense)	(None, 40)	2440
relu0 (Activation)	(None, 40)	0
fc2 (Dense)	(None, 30)	1230
relu2 (Activation)	(None, 30)	Θ
fc3 (Dense)	(None, 10)	310
relu3 (Activation)	(None, 10)	0
output (Dense)	(None, 3)	33
softmax (Activation)	(None, 3)	Θ

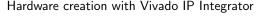
Model summary

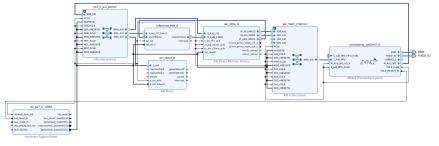
Case of study: Muon–Electron Pulse Shape Discrimination for Water Cherenkov Detectors

HLS reports comparison. Solutions 1 and 5 without directives. Solutions 2 and 6 with directives applied by hls4mland Softmax as activation function. Solutions 3 and 7 with directives applied by hls4ml, PIPELINE to improve the interval,without Softmax and with a reuse factor of 1 for all the layers. Solutions 4 and 8 with directives applied by hls4ml, PIPELINE to improve the interval, without Softmax and with a reuse factor of 8 for all the dense layers

Solution	Directives	Estimated	Clock	Inference	Interval	BRAM	DSP	FF	LUT
		Clock [ns]	Cycles	Clock Cycles					
ZU9EG									
1	No	4.653	36,917	36,848	36,917	23	2	2407	5732
2	Yes + Softmax	4.653	18,526	18,457	18,526	2	1245	26,192	180,066
3	Yes + NS + RF: 1	4.251	84	19	64	0	1235	27221	167,158
4	Yes + NS + RF: 8	4.993	115	50	64	0	155	38,571	141,443
XC7Z020									
5	No	6.508	91,777	91,707	91,777	23	2	4313	6952
6	Yes + Softmax	6.508	40,063	39,993	40,063	2	1245	188,626	171,599
7	Yes + NS + RF: 1	4.350	121	55	64	0	1235	189,059	159,351
8	Yes + NS + RF: 8	5.561	143	77	64	0	155	76,286	118,936

Case of study: Muon–Electron Pulse Shape Discrimination for Water Cherenkov Detectors





References

- 1 Duarte, J.; Han, S.; Harris, P.; Jindariani, S.; Kreinar, E.; Kreis, B.; Ngadiuba, J.; Pierini, M.; Rivera, R.; Tran, N.; et al. Fast inference of deep neural networks in FPGAs for particle physics. J. Instrum. 2018, 13, P07027, doi:10.1088/1748-0221/13/07/p07027.
- 2 Cheng, Y.; Wang, D.; Zhou, P.; Zhang, T. A Survey of Model Compression and Acceleration for Deep Neural Networks. arXiv 2017, arXiv:1710.09282
- 3 Coelho, J.; Kuusela, A.; Zhuang, H.; Aarrestad, T.; Loncar, V.; Ngadiuba, J.; Pierini, M.; Summers, S. Ultra Low-latency, Low-area Inference Accelerators using Heterogeneous Deep Quantization with QKeras and hls4ml. arXiv 2020, arXiv:2006.10159.
- 4 Garcia, L.G.; Molina, R.S.; Crespo, M.L.; Carrato, S.; Ramponi, G.; Cicuttin, A.; Morales, I.R.; Perez, H. Muon–Electron Pulse Shape Discrimination for Water Cherenkov Detectors Based on FPGA/SoC. Electronics 2021, 10, 224. https://doi.org/10.3390/electronics10030224
- 5 Vivado Design Suite User Guide High-Level Synthesis UG902 (v2019.1) July 12, 2019

Mg. Romina S. Molina

ICTP rmolina@ictp.it

Università degli Studi di Trieste rominasoledad.molina@phd.units.it

National University of San Luis: rsmolina@unsl.edu.ar

Thanks!

