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Machine Learning

Artificial
Intelligence

A machine is able to mimic
i human behavior
Machine

Learning

Math and statistic in order
to learn from the data itself

Deep
Learning

Multi-layer neural networks

Artificial Intelligence, Machine Learning, Deep Learning
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Machine Learning

"Learning can be defined as the process of estimating associations
between inputs, outputs, and parameters of a system using a limited
number of observations” (Cherkassky et al. 2007)
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Machine Learning

Input C—>| MLModel |C— >  Prediction

c—>| MLModel |C— > Flower
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Machine Learning

Machine
Learning
Supervised Semi-supervised Unsupervised
Classification |«— > Remior:_ement —> Clustering
learning

Dimensionality

Generative reduction

Regression
i models

Pattern
recognition
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Machine Learning
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Machine Learning




Machine Learning

Unsupervised Learning




Machine Learning

An artificial neural network (ANN) is composed of neuron (or node)
interconnections arranged in different layers.

y=Ff(b+> wix) (1)

f i

Activation
function
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Machine Learning

Multi-Layer Perceptron
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Machine Learning

Convolutional Neural Networks (CNN)
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Machine Learning

o _— — ﬂ
Training m’::l;el o e

ML
Inference £ " |model| —>

Training and inference

In a classifier, an input is mapped into a specific class.
Supervised training step to recognize patterns: the network compares its actual
output with the desired output. The difference between these two values is

adjusted with backpropagation.
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Machine Learning

Dataset
Train Data Test Data
| Iteration 1 | | Train | | Train | | Train | | Train | Validation
| Iteration 2 | | Train | | Train | | Train | Validation
| Iteration 3 | | Train | | Train | Validation | Train | | Train |
| Iteration 4 | | Train | Validation | Train | | Train | | Train |
Validation | Train | | Train | | Train | | Train |

Test

K-fold cross-validation

Rol ol
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Machine Learning

A mostly complete chart of
Neural Networks
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SoC-based FPGA
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SoC-based FPGA

Processing System

0000
@008

Processing System

Programmable Logic

Programmable Logic

Zynq Zynq MPSoC

High level comparison of Zyng-7000 SoC and Zynq UltraScale+ MPSoC
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SoC-based FPGA

Machine learning and SoC
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Acceleration of Machine
Learning Inference
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Acceleration of Machine Learning Inference

Neural Network
model

Compression

4>{ HLS H HLS }<—» Directives
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Acceleration of Machine Learning Inference

Considerations to map inference into FPGAs

Clock frequency

Bandwidth off-chip memory

DSP, LUT, BRAM, FF

Fixed point

Power consumption

FPGA for the Acceleration of ML Algorithms



Acceleration of Machine Learning Inference

m Low-precision arithmetic to reduce power consumption and increase
throughput.

m Reduce memory footprint — NN model can be deployed into on-chip
memory, avoiding DDR access and bottlenecks.

m Model compression techniques [1]
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Acceleration of Machine Learning Inference

Model compression

m Quantization (Q) and pruning (P) (train from scratch and
pre-trained model)

m Q: Reduce number of bits to represent weights and bias
m P: Remove connections and/or neurons

m Low-rank factorization (train from scratch and pre-trained model)
m Compact convolutional filters (train from scratch)

m Knowledge destillation (train from scratch)
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Acceleration of Machine Learning Inference

Model compression: Pruning

Input Output Input Output
layer layer layer layer

Pruning

Connections Pruning

Neurons

Left: Before pruning - Right: after pruning
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Acceleration of Machine Learning Inference

Model compression: Knowledge distillation

54” forgets Teacher '7

h

Data Backpropagation LOSS }

k.

Student
Train the student

High level diagram for knowledge distillation.
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Acceleration of Machine Learning Inference

High-Level Synthesis
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Acceleration of Machine Learning Inference

Hardware design - High-Level Synthesis

Vivado HLS:

m It provides the facility to create RTL from a high level of abstraction.

m It allows the optimization of the input code using directives to:
m Reduce latency
m Improve performance and throughput
m Reduce resource utilization
Without directives, Vivado HLS will look minimize latency and improve
concurrency
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Acceleration of Machine Learning Inference

Hardware design - High-Level Synthesis

m Minimize latency: UNROLL, LOOP_FLATTEN, LOOP_MERGE.
m Minimize throughput: DATAFLOW, PIPELINE.

m Improve bottleneck: RESOURCE, ARRAY_PARTITION,
ARRAY_RESHAPE.
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Acceleration of Machine Learning Inference

Hardware design - High-Level Synthesis - Directives

Loop_1: for(i=1; i<3; i++){ OP_RD Read
OP_RD;
OP_CMP; OP_CMP Computation
OP_WR;
} OP_WR Write
Clock (ckl)
OP_RD OP_CMP OP_WR OP_RD OP_CMP OP_WR

__Initiation interval = 3 clock cycles

_, Latency = 3 clock cycles

__ Loop latency = 6 clock cycles

Loop example
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Acceleration of Machine Learning Inference

Hardware design - High-Level Synthesis - Directives

Loop_1: for(i=1; i<3; i++){ OP_RD Read
opP
OP_CMP; OP_CMP Computation
OP_WR;
} OP_WR Write
Clock (ckl)

OP_RD OP_CMP | OP_WR

OP_RD OP_CMP | OP_WR

Initiation interval = 1 clock cycle
«—>

_ Latency = 3 clock cycles

_ Loop latency = 4 clock cycles

Loop + Pipeline directive
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Acceleration of Machine Learning Inference

Hardware design - High-Level Synthesis - Directives

Loop_1: for(i=1; i<3; i++){ OP_RD Read
OP_RD;
OP_CMP; OP_CMP Computation
OP_WR;
} OP_WR Write
Clock (ckl)

OP_RD OP_CMP | OP_WR
OP_RD OP CMP | OP_WR

Initiation interval = 1 clock cycle
«—>

Latency = 3 clock cycles

_ Loop latency = 3 clock cycles

Loop + Unroll directive
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Acceleration of Machine Learning Inference

Hardware design - High-Level Synthesis - Directives

woid function(a, b, ¢, d) {

f_A(a, b, il); FA Function f_A(a, b, i1)
B(c, i1, i2); )
f.cfi2, dy; FB Function f_B(c, i1, i2)
refurn d; FC Function f_C(i2, d)
Clock (ckl)
F_A F B FC
Mo DATAFLOW: 6 clock cycles
Clock {ckl)
F_A F A
F B FB
FC FC

‘With DATAFLOW: 4 clock cycles
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Acceleration of Machine Learning Inference

Romina Molina
ICTP smr3562

axi_periph

axi_dma_0
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BE MOO_AXI ik
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FPGA for the Acceleration of ML Algorithms



High-Level Synthesis for ML
(his4ml)
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High level synthesis for machine learning (hls4ml)

m Package for ML inference in FPGAs using HLS. (Duarte et. al)

m "Fast inference of deep neural networks (DNN) in FPGAs for
particle physics” Duarte et al. [2]

m GitHub: https://github.com/fastmachinelearning/hls4ml-tutorial
m https://fastmachinelearning.org/hls4ml/
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High-Level Synthesis for ML (hls4ml)

his4ml

Keras
TensorFlow
PyTorch

Co-processing kernel

his 4 ml

compressed
model HLS . —
conversion Custom firmware
; : design
Usual machine learning »Zf 9
software workflow

tune configuration
precision
reuse/pipeline

Design flow for hls4ml [2]
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High-Level Synthesis for ML (hls4ml)

his4ml
m HLS to create IP Core.
m Keras, TensorFlow, Pytorch.
m On-chip data structures.
m Quantization through ap_fixed in HLS.
m Trade-off between resoure utilization and latency/throughput.
[

Integration with other tools.
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High-Level Synthesis for ML (hls4ml)

Pipelining to speed up the process by accepting new inputs after an
initiation interval.

m Size/Compression

m Precision

m Dataflow/Resource Reuse

m Quantization Aware Training: Qkeras [3]

reuse =4
as e e e
mult] reuse = 2
| use 2 mutipiers 2 tmes cach

reuse = 1
use 4 multpliers 1 time each

Reuse factor [2]
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High-Level Synthesis for ML (hls4ml)

Profiling

Method: hls4ml.model.profiling.numerical

Distribution of (non-zero) weights Distribution of (nan-zero) activations
L0 - el —
fel/1 — relul A
00 0 —
o —— o —h
20 | ———— [ ez ——i
fe2/1 —OoH 2 —
30 Sy N R 3 —i~
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P A R . pw g >® rm pm 2 g

Profiling to adjust precision
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High-Level Synthesis for ML (hls4ml)

How we start with the tool?
First, we have to download packages and dependencies. Then, we need
to decide between:

m Using command line

m Using Jupyter Notebook
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High-Level Synthesis for ML (hls4ml)

Using command line:
m Configuration file (.yml). In this case, the file has the name
model-config.yml
m Files required: .json y .h5

# particles_keras_config.yml

# File json

KerasJson: ../model/model_architecture.json
# File h5

KerasH5:  ../model/model_weights.hs
#InputData: ../model/modelInput.dat
#OutputPredictions: ../modelPredictions.dat

OutputDir: parti
ProjectName: p
XilinxPart:
ClockPeriod:
Backend: Vivado

I0Type: io_parallel # options: io_serial/io_parall

HLSConfig:
Model:
Precision: fixed<16,8>
ReuseFactor: 1
# LayerType:
# Dense:
# ReuseFactor: 2
# Strategy: Resource
# Compression: Truel
# xczu9eg-ffvb1156-2-e xc7z020clg484-1
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High-Level Synthesis for ML (hls4ml)

Commands for terminal execution

m his4ml convert -c model-config.yml
m hls4ml build -p ProjectName -a
m vivado_hls -f ProjectName.tcl "csim=1 synth=1 cosim=0 export=0"

Following the information in the previous image, ProjectName was replaced by
particlesldentification:

m hls4dml convert -c model-config.yml
m hls4ml build -p particlesldentification -a

m vivado_hls -f particlesldentification.tcl " csim=1 synth=1 cosim=0
export=0"

Romina Molina
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High-Level Synthesis for ML (hls4ml)

Using Jupyter Notebook:

from tensorflow.keras.models import load model
from sklearn.metrics import accuracy_score
model = load model('model keras MLP.h5")

model.summary ()

Model: "sequential®

Layer (type) Output Shape Param #
fel (Dense) (None, 60) 3900
relul (Activation) (None, 60) ]

fco (Dense) (None, 40) 2440
relud (Activation) (None, 40) ]

fc2 (Dense) (None, 30) 1230
relu2 (Activation) (None, 30) 4]

T

Ror M

Thimm

T

Model summary
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High-Level Synthesis for ML (hls4ml)

Using Jupyter Notebook:

import hls4ml

hls_model = hls4ml.converters.convert_from_keras_model (model,
hls_cenfig=config,
oulput dir='
fpga_part= xtzuaeg ff u‘bllSE 2-e')

hls_model.compile()
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High-Level Synthesis for ML (hls4ml)

Generated code

layer3_t layer3_out[N_LAYER 3];
#pragma HLS ARRAY PARTITION varlath-layer} out complete dim=0
nnet::dense_latency<inputz t, layer3 t, config3>(inputl, layer3 out, w3, b3);

layer5_t layer5 out[N LAYER 3];
#pragma HLS ARRAY_PARTITION variable=layerS_out complete dim=8
nnet::relu<layer3 t, layers t, relu wnflg»(LayerBJUt layers_out);

layer6 t layer6 out[N_LAYER 6];
#pragma HLS ARRAY PARTITION variable=layer6 out complete dim=0
nnet: :dense_latency<layer5_t, layer6 t, configé>(layerS_out, layer6_out, w6, b6);

layers t layers out[N_LAYER 6];
#pragma HLS ARRAY PARTITION variable=layers8 out complete dim=0
nnet::relu<layers t, layers t, relu configs>(layer6_out, layers out);

layer9_t layer9 out[N_LAYER 9];
#pragma HLS ARRAY PARTITION variable=layer9 out complete dim=0
nnet::dense_latency<layer8 t, layer9 t, config9>(layer8 out, layer9 out, w9, b9);

layerll t layerll out[N_LAYER 91;
#pragma HLS ARRAY PARTITION variable=layerll out complete dim=0
nnet::relu<layera_t, layerll t, relu_configll>(layer9_out, layerll_out);

layer12 t layerlz out[N LAYER 12];
#pragma HLS ARRAY PARTITION variable=layerl2 out complete din=6
nnet::dense_latency<layerll t, layerl2 t, configl2s(layerll out, layerl2 out, wl2, bi2);

layerl4 t layerl4 out[N_LAYER 12];
#pragma HLS ARRAY PARTITION variable=layerl4 out complete dim=0
nnet::relu<layerlZ t, layerl4 t, relu configld>(layerl2 out, layerl4 out);

layerl5_t layer15_out[N_LAYER_15];
#pragma HLS ARRAY PARTITION variable= layerl5 out complete dim=@
nnet::dense latency<layerld t, layerls t, configl5>(layerld out, layerl5 out, w15, bls);

nnet::softmax<layerls t, result t, softmax_configl7>(layerls out, layerl7 out);

Romina Molina
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High-Level Synthesis for ML
(hls4ml)

Case of study: Muon—Electron Pulse Shape
Discrimination for Water Cherenkov Detectors
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High-Level Synthesis for ML (hls4ml)

Case of study: Muon—Electron Pulse Shape Discrimination for
Water Cherenkov Detectors [4]

m Water Cherenkov detector (WCD) at the Escuela de Ciencias Fisicas

y Matematicas in Universidad de San Carlos de Guatemala
(ECFM-USAQ).

m Signal: sampled at 125 MHz, 14-bit resolution.

m Feature extraction in the incoming signal to obtain signal
classification.
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High-Level Synthesis for ML (hls4ml)

Case of study: Muon—Electron Pulse Shape Discrimination for
Water Cherenkov Detectors

Electron Muon Electric discharges
400
o000
- 5000
000
000 1500
0
o0 . o000
- £ 1000 |
£ 1600 £ £ moo
£ £ 2o £
1400
11000 00
5200
10000 00
5000
9000
14800 0
R R R R R T R S e N B
Samples Samples Samples

Different types of signals: electron, muon and electric discharges
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High-Level Synthesis for ML (hls4ml)

Case of study: Muon—-Electron Pulse Shape Discrimination for
Water Cherenkov Detectors
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Output
layer

MLP architecture
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High-Level Synthesis fo

ML (hls4ml)

Case of study: Muon—-Electron Pulse Shape Discrimination for
Water Cherenkov Detectors

model.summary ()

Model: "sequential 1"

Layer (type) Output Shape Param #
fcl (Dense) (None, 60) 3900
relul (Activation) (None, 60) ]
fco (Dense) (None, 40) 2440
relud (Activation) (None, 40) ]
fc2 (Dense) (None, 30) 1230
reluz (Activation) (None, 30) o
fc3 (Dense) (None, 10) 31e
relu3 (Activation) (None, 10) Q
output (Dense) (None, 3) 33
softmax (Activation) (None, 3) ]

Total params: 7,913
Trainable params: 7,913
Non-trainable params: @

Romi Molina
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High-Level Synthesis for ML (hls4ml)

Case of study: Muon—-Electron Pulse Shape Discrimination for
Water Cherenkov Detectors

HLS reports comparison. Solutions 1 and 5 without directives. Solutions 2 and 6 with directives applied by hls4mland Softmax as
activation function. Solutions 3 and 7 with directives applied by his4ml, PIPELINE to improve the interval,without Softmax and with a
reuse factor of 1 for all the layers. Solutions 4 and 8 with directives applied by his4ml, PIPELINEto improve the interval, without Softmax
and with a reuse factor of 8 for all the dense layers

Solution|  Directives ‘ Estimated | Clock ‘ Inference | [ngerval ’ BRAM ‘ DSP ‘ FF ’ LUT
Clock [ns] Cycles Clock Cycles
ZU9EG
1 No 1653 36917 36,848 36917 3 2 2407 5732
2 Yes + Softmax 1653 18,526 18457 18526 2 1245 | 26,192 | 180,066
3 Yes + NS+ RF:1 | 4251 84 19 64 0 1235 | 27221 | 167158
3 Yes + NS+ RF:8 | 4993 115 50 64 0 155 | 38571 | 141443
XC7Z020

5 No 6.508 91,777 91,707 91,777 3 2 B3 6952
6 Yes + Softmax 6.508 40,063 39,993 40,063 2 1245 | 188626 | 171599
7 Yes + NS+ RFE:1 | 4.350 121 5 64 0 1235 | 189,059 | 159,351
8 Yes + NS+ RF:8 | 5561 43 77 61 0 155 | 76286 | 118,936
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High-Level Synthesis for ML (hls4ml)

Case of study: Muon—Electron Pulse Shape Discrimination for
Water Cherenkov Detectors

Hardware creation with Vivado IP Integrator
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