

RADIOACTIVE TRACER APPLICATIONS

Isotope	Half-life	Main energy (MeV)	Chemical form	Tracing of phase
Sodium-24	15 h	γ: 1.37 (100%) 2.75 (100%)	Sodium carbonate	Aqueous phase
Bromine-82	36 h	γ: 0.55 (70%) 1.32 (27%)	Ammonium bromide, p-dibrombenzene, Dibrombiphenyl CH ₃ Br	Aqueous phase Organic phase Organic phase Gas phase
Gold-198	2.7 d	γ: 0.41 (99%)	Chloroauric acid	Solids / aqueous phases
Lanthan- 140	40 h	γ: 1.60	La_2O_3	Solid phase
Iodine-131	8.04 d	γ: 0.36 (80%) 0.64 (9%)	KI & NaI, Iodobenzene	Aqueous phase Organic phase
Iodine-123	13 h	γ: 0.159	KI & NaI, Iodobenzene	Aqueous phase Organic phase
^{99m} Tc from ⁹⁹ Mo/ ^{99m} Tc generator	6 h	γ: 0.14 (90%)	Sodium pertechnetate (TcO ₄ ⁻)	Aqueous phase
^{137m} Ba from ¹³⁷ Cs/ ^{137m} Ba generator	2.55 min	γ: 0.661	^{137m} BaCl ₃	Aqueous phase
^{113m} In from ¹¹³ Sn / ^{113m} In generator	99.5 min	γ: 0.392	^{113m} InCl ₃ ^{113m} In-EDTA	Solid phase Aqueous phase
⁶⁸ Ga from ⁶⁸ Ge/ ⁶⁸ Ga generator	68.3 min	γ: 1.08	⁶⁸ GaCl ₃ ⁶⁸ Ga-EDTA	Solid phase Aqueous phase
Xenon-133	5.27 d	γ: 0.08 (100%)	Xenon	Gas phase
Krypton-79	35 h	y: 0.51 (15%)	Krypton	Gas phase
Argon-41	110 min	γ: 1.29 (99%)	Argon	Gas phase

Generator principles

Contraction Mother Moth

Daughter radionuclide

^{99m}Tc is eluted as an anion TcO₄⁻ (perthecnetate)

Residence Time Distribution (RTD) measurement Data acquisition system and NaI(TI) detectors for

Smoothed 0.001 Raw Data 27.188 Equiv. Noise %: ○ S-G <u>6</u>th deriv C Gauss Convol. • Loess ○ <u>F</u>FT Filtering Algorithm: Level 5.0 % B Data Smoothing C Savitzky-Golay ○ S-G <u>5</u>th deriv ○ S-G <u>3</u>rd deriv ○ S-G 1st deriv ◯ S-G 4th deriv C S-G 2nd deriv Al Expert (0.01%) Help Cancel R ġ 2 37.262,78.378 <mark>-+</mark> ≣+ ≥ Þ 262,78.3 þ Σ l₫ ∕ø ₽ ***** Ē H. g 100 ģ 8 8 98 70 8

Experimental points and final experimental RTD curve

Tools: spreadsheet, ...

Background correction

Independently of the tracer experiment Background radiation level that exists (constant value)

 $\dot{n}_{\scriptscriptstyle N}(t)=\dot{n}_{\scriptscriptstyle m}(t)-\dot{n}_{\scriptscriptstyle bg}$

Tools: spreadsheet, Peakfit, DTSPro ...

Radioactive decay correction

 $\dot{n}_{c}(t) = \dot{n}_{m}(t)\exp(\lambda t) = \dot{n}_{m}(t)\exp\left(\frac{0.693t}{T_{\frac{1}{2}}}\right)$

Tools: Peakfit, DTSPro

RTD Experimental curve and its smoothing

Quantity	Without extrapolation	With extrapolation	% difference
Total count (counts)	1.22 107	1.28 107	4.7
MRT (s)	1392	1624	17
Variance (s ²)	6.86 10 ⁵	1.89 106	180

Data extrapolation

RTD software

by a model: Considering a system with an inlet and an outlet, represented

Figure 1: Basic configuration

the RTD software basically does two things:

- Ο calculate the response $E^*H(t)$ of the model to a given signal E(t); convolution operation H(t) being the impulse response of the model and * the
- 0 if the actual response of the system, S(t), has been measured, as possible to S(t). optimise the parameters of the model so that E*H(t) is as close

Data input – Preparing the calculation **RTD** software:

RTD software needs three things to be specified:

- \circ the signal at the inlet, *E*(*t*),
- the signal measured at the outlet, S(t),
- the model and the value of its parameters.

All this is done with the Setup item of the menu. There are two choices for the inlet signal:

Defining the inlet signal:

- $\circ\,$ A Dirac delta function, corresponding to a very short tracer injection,
- 0 data that in stored in a file (Data from file). In this case, the usual dialog box appears to let the user specify where the file is:

RTD software

Dialog box for the selection of the model

The graphs show: inlet signal E(t), outlet signal S(t), model response E*H(t) and model impulse response H(t).

Optimal values of the parameters of the perfect mixers in series model:

-MRT = 0.77 s

- Number of perfect mixers in serties: J = 657 , it means the flow within the pipeline moves as plug (piston) flow model.

The"goodness of fit" criterion, the sum of the square of errors over the number of points= 0.0125, good fitness.

Training and certification (Laboratory flow rig in Seibersdorfs)

Tracer tests in flow rig:

Flow rate in the vessel: Q= 6 Lpm $MRT_{th} = V/Q = 39 / 6 = 390 s$ Volume of the vessel (three compartments, N=3): V = 39 L

Model: Perfect mixers inseriesNot good fitting:MRTexp = 422 s??? > MRTthNumber of tanks in series:

N = 2 (out of 3 real mixers)

Model: Perfect mixers in series with backmixing Good fitting: MRT = 381 s Number of tanks in series: N = 2.3 (out of 3 mixers) Time of exchange= 272 s Coeficient of exchange with stagnant zone: kexch = 19%

11/12/2014 04 14 🖉 🖓 14 🕼 😒 🛃 🗞 🍈 🖷

Role of mixers in the RTD model of the flow rig tank

Test 2, With mixers: - Normal curve - Good fitting MRT_{exp}= 187s, N=2.6 (out of 3 real mixers)

Gas flow distribution in a SO₂ - oxidation industrial reactor

Problem: A reactor for H_2SO_4 production having four catalytic beds and three internal heat exchangers gave a low SO_2 conversion of 90% instead of 95%

Conclusion: Gas flow distribution device was situated in close proximity to surface of first catalytic bed causing separation of entering gas flow into two zones, annular one and central.

RADIOTRACER INVESTIGATION OF WASTEWATER CHLORINATE PROCESS

Chlorine reactor consisted of two cylindrical reservoirs connected in series with volumes of V1 = 925 m3 and V2 = 1625 m3

Problem: low efficiency of wastewater chlorinate process

t, min