

PROJECT ACTIVITIES

Project I

DPP

Project 2

ADC500

Project 3

UDMA

ProjectIntegration

INTEGRATION OF DPP, ADC AND UDMA

DPP

- ☐ DPP top module :
- I. Output mux
- 2. Fir derivative
- 3. Edge detector

Generate using vivado (Zedboard) with comblock IP Core

☐ Generate bit stream and open the SDK

IMPLEMENTED SOLUTION

- ➤ Print the value of Pulses
- ➤ By changing the threshold in the C code, the pulses produced will be changing based on initial input given.

ADC500

- ☐ ADC500 module
 - I. decimator module
 - 2. clocking wizard

Generate using vivado (Zedboard) with comblock IP Core

- ☐ Create ports match with the ones in the constraint files.
- ☐ Generate bit stream and open the SDK

IMPLEMENTED SOLUTION

- ☐ Import the file from sdk folder which is adc500.h
- Program the FPGA, and Produce Waveform
- ☐ The setting waveform output can be modified from GUI waveform
- □ Data acquisition can be produced using the SerialPlot software

UDMA

☐ Combination between FPGA and microprocessor

Generate using vivado (Zedboard) with comblock IP Core

- ☐ This project is using FreeRTOS and LwIP
- ☐ Create Boot Image

IMPLEMENTED SOLUTION

- ☐ By using terminal, clone the repository and connect the board.
- ☐ By typing help command in the terminal, we can test the system and see how it works
- ☐ It shows that we can transfer the information given

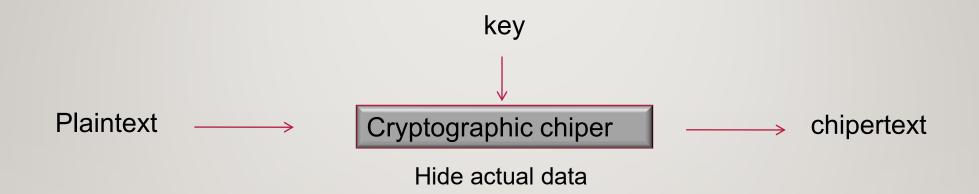
DPP, ADC500, UDMA

SoC -FPGA

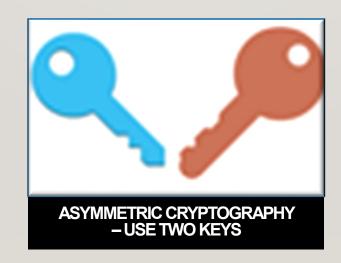
- ☐ FPGA:
- DPP, ADC500 (Programmable Logic)
- ☐ Microprocessor
- UDMA FreeRTOS and LwIP

Generate using vivado (Zedboard) with comblock IP Core

IMPLEMENTED SOLUTION

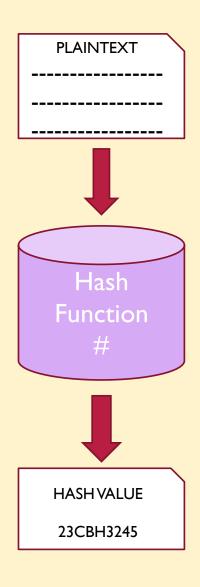

□ It shows that the combination between data acquisition and digital pulse processing will produce the Digital Pulse Processor based on SoC-FPGA for Particle Detectors

PREFERABLE PROJECT : DPP


DPP

- ☐ This project generates the output using vivado (Zedboard) with comblock IP Core
- ☐ Produce simulation waveform
- The step concept of the design is almost like any FPGA application design

CRYPTOGRAPHY



WHAT IS HASH FUNCTION?

TRANSFORMATION

☐ Take a variable size input, m and return a fixed-size string, hash value, h

BASIC REQUIREMENT

- ☐ Input can be any length
- Output has a fixed length
- One-way function infeasible to find an input message x

GENERAL TYPES OF HASH FUNCTIONS

□MD5, SHA-1, RIPEMD160, SHA-224, SHA-256, SHA-384, SHA-512 and others

Vivado, SDK, Gitlab, ILA, HLS, Access Memory etc

NEW TOPICS LEARNED

C and VHDL for embedded system design

New Idea of the FPGA application design

Time constraint

DIFFICULTIES AND CHALLENGES

Create IP core in the future design

PERSONAL IMPROVEMENT TO THE IMPLEMENTED SOLUTION

THANK YOU