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Two fundamentally different data-analysis paradigms
Estimation vs Prediction
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Machine learning focuses on prediction
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Pre-data science wants the most
accurate estimates of model
parameters from data

* Good models require insights into
data generating process (e.g.,
physics)

* Model parameters usually have
meanings
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ML wants models that can
accurately make predictions on new
data

* Model parameters usually do not

have obvious meanings on their
own

* # of data points ~ # of parameters

* Models can have millions of



How to measure prediction performance?
1. Randomly divide data into training and test datasets
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How to measure prediction performance?
2. Fit model by minimizing error on training dataset only
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How to measure prediction performance?
3. Compute model error on test dataset

AY A
Ee
. «  training
dataset
+y . | X
. >
alldata (‘* Y P --Frm\r
2

test dataset

N - )




4Y

Error on test dataset is an unbiased estimate for
generalization error (expected error on new data)
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1. Randomly divide data into
training dataset and test
dataset

2. Fit (train) model by

minimizing error on training
dataset only

3. Use error on test set as a

measure for prediction
performance

ML goal is not to fit existing data
well, but to make accurate
predictions on new data



Overfitting is bad for prediction performance
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Model is too simple!X
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Too simple model
big training error & big test error
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More complex model

Too complex model
lower training & test errors

very low training error but big test error



Consider typical model fitting



Let’s compute averaged test error

(Test error) <Z(f +&—f(x;6p)) >

_ <Z 62+ 26(f(x) — flx;6)) + (Flx) - ("‘Q’D))gD

D.s

D.g

- 3 [+ 2000~ Bo o) () o)),
-3 o +Z( ~ fx;6))?)_




Bias-variance decomposition
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Blas -variance tradeoff
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Primer on Deep Neural Networks (DNNs)

Benchmarks: What tasks do we want to perform?

Architectures: What do DNNs look like?

Learning: How do we train DNNs?

Failure Modes: What can go wrong?



Benchmark Datasets for Image Classification

CIFAR-10
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https://www.cs.toronto.edu/~Kriz/citar.html

50,000 training images
10,000 test images

32x32 color images

best: 99.7% acc.

MNIST Handwritten Digits
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ImageNet image-net.org
1.2 million training images
50,000 validation

150,000 test images

22,000 categories
256x256 color images

best: 85.8% acc.



Deep Learning Architectures: Fully-Connected Layer
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Deep Learning Architectures:
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Deep Learning Architectures: Fully-Connected Layer
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Deep Learning Architectures: Fully-Connected Layer
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Deep Learning Architectures: Fully-Connected Layer
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* Parameters in a Fully-
Connected Layer:
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Deep Learning Architectures: Fully-Connected Layer
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* Parameters in a Fully-
Connected Layer:
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W is a matrix.
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Deep Learning Architectures: 1 hidden layer
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Deep Learning Architectures: 1 hidden layer
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input layer hidden layer output layer

y(l) . J(W(O).’E) Yy = J(W(l)y(l))
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Deep Learning Architectures: L hidden layers
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L hidden layers
y(f+1) _ J(wr(l)y(i) 1 b(l)) y(U) — y(LH) -

deep net with fully-connected layers is known as a
multilayer perceptron (MLP)
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Deep Learning Architectures: Convolutional Layer



Deep Learning Architectures: Convolutional Layer
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Deep Learning Architectures: Convolutional Layer
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Deep Learning Architectures: Convolutional Layer

O—

o—[—0 L o 8 o
0/ 0._*'—'0 A
O O/' O,..-rl—"o
o o o

= CONV =P

O O Of=

3
Yi =0 E Wizjpio

j=1

O O O O O

* Parameters in a convolution layer: the “convolutional filter”
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e Hyperparameter: filter size (=3 in this example)




Deep Learning Architectures

CONV FULL
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* Convnets also have some additional layers: Max Pooling and
average pooling. These basic ingredients are slightly adjusted
to deal with images (2D array of pixels).



Deep Learning Architectures

Hidden Layers
Input Output

e Putting all of these layers together, end up with a
parameterized function which takes an input (e.g. image), and
gives an output (e.g. vector of probabilities)

e Architectural choices informed by structure of the data,
trainability, practical considerations (storage), etc.



Example: Convolutional layers can track patterns that have been translated
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This is useful for images:
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Example: LeNet

C3: 1. maps 16@10x10

C1: feature maps S54:f. maps 16@5x5
INPUT 6@28x28 X
S52:f maps

32x32
6@14x14

| | Full mmjlecticn Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

LeCun et al. 1998



Training DNNs: Supervised Learning

Training Data (g, Ya) 6= 1; 50 IV

example: MNIST
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vectorized array of grayscale pixels [-1,1]



Training DNNs: Supervised Learning
Training Data (g, Ya) 6= 1; 50 IV

Loss Function (aka training error, empirical risk, objective function)

N
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parameters of the neural network

Loss on a single training sample  F, = ||y(za; W) — yal|?



Training DNNs: Gradient Descent

Loss Function (aka training error, empirical risk, objective function)
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Loss on a single training sample  E, = ||y(za; W) — yal|?
Loss Surface Gradient Descent takes
" you to a local minimum
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Backpropagation to compute gradients

Example: Multilayer perceptron

gD = o(2), 0 = O,W

Depends on layer weights in this compositional manner
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Backpropagation to compute gradients
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Backpropagation to compute gradients:
exploding/vanishing gradients problem

The product of many matrices tend to vanish or explode,
depending on the largest eigenvalue

y(I+1)
H EO H <1 Gradients tend to vanish for deep nets
Y
3y(l+1)
H 0 () H > 1 Gradients tend to blow-up for deep nets
Y

Lots of tricks to help with this issue, and thus make training possible

e Batch Norm
e Careful initialization
* Skip connections (Resnets)



Training DNNs: Stochastic Gradient Descent
Training sets can be too large to efficiently compute full gradient

Loss Function can be complicated, and might have bad local minima
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Solution: introduce noise by computing gradient on a mini-batch



Training DNNs: Stochastic Gradient Descent

1) Choose Subset of B Training examples
2) Update weights using gradient on loss on this subset

B
1 dE
AW = —n | = a1
”(B 1dW)

a1=

3) Choose a different subset of training examples (which
you haven't seen), and repeat (2).

This is much more computationally efficient, and has the
advantage that the samples of the gradient from different
“batches” introduces noise that appears to kick the training
out of bad local minima.



Toy Model for Stochastic Gradient Descent
min (10W?, 6(W — 1) +5) min (10W?, 60(W — 1)? + 5)
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curvature of bad minimum fluctuates

Gradient descent gets between samples

stuck at a bad local Stochastic gradient descent

minimum at W = 1 escapes the bad minimum (for the
right learning rate)

E{ (W), w/ prob.=1/2

Ej(W,), w/ prob.=1/2
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see also Wu, Ma, Weinan E, “How SGD selects the global minima..” 2018



Fooling DNNs: Adversarial Examples

PERCEPTION PROBLEMS

Adding carefully crafted noise to a picture can create a new image that
people would see as identical, but which a DNN sees as utterly different.

In this way, any starting image can be tweaked so a DNN
misclassifies it as any target image a researcher chooses.

enamre
D. Heaven, 'Why deep-learning Als are so easy to fool', Nature 574, 163-166 (2019)

see also Adversarial Examples are not Bugs, they are Features: https://gradientscience.org/adv/



Additional References

Introductory books and review articles on machine learning and neural networks:

- Bishop - Pattern Recognition and Machine Learning
- MacKay - Information Theory, Inference, and Learning Algorithms (available free onling)

- Mehta et al. A high-bias, low-variance introduction to ML for physicists
(https://arxiv.org/abs/1803.08823)

A good review on the connections between statistical physics,
dynamical systems, and deep learning, with lots of references:

Bahri et al. “Statistical Mechanics of Deep Learning”, Annual Review of CMP 2020





