Statistical Physics of Machine Learning
The Basic Notions

Tankut Can, Wave Ngampruetikorn & David Schwab
ICTP virtual school 2021
Machine Learning for Condensed Matter

-ww Center for the Physics
32 ¥W of Biological Function

Two fundamentally different data-analysis paradigms
Estimation vs Prediction

#Period, T :
_« o ‘experimental
. data
L.
Pendulum &
Parameter Estimation Prediction
Knowing physics, what is the Knowing no physics, what are the
. — n th periods of new pendulums in new
gravitational acceleration § in the experiments?

formula 1 = 271 L/g?

Machine learning focuses on prediction

/

m
Pendulum

Pre-data science wants the most
accurate estimates of model
parameters from data

* Good models require insights into
data generating process (e.g.,
physics)

* Model parameters usually have
meanings

YPeriod, T

L] L] -

L]

* oo 'experimental
data

L
>

ML wants models that can
accurately make predictions on new
data

* Model parameters usually do not

have obvious meanings on their
own

* # of data points ~ # of parameters

* Models can have millions of

How to measure prediction performance?
1. Randomly divide data into training and test datasets

+Y
LA L training
g dataset
" Pl
Y . Ve X
. . @ >~ fie
: L] as
L]
alldata NG AY
> M *

test dataset

X
>

How to measure prediction performance?
2. Fit model by minimizing error on training dataset only

tY - i"ferru)
/1_./'4
A% training
' § dataset
/mode
Ay
. X
. . @ . k > J
all data X AY
> : B
test dataset
L]
X
>

How to measure prediction performance?
3. Compute model error on test dataset

AY A
Ee
. « training
dataset
+y . | X
. >
alldata (‘* Y P --Frm\r
2

test dataset

N -)

4Y

Error on test dataset is an unbiased estimate for
generalization error (expected error on new data)

Ay o
e

%% training

f dataset
X
>

s

test dataset
X
P

1. Randomly divide data into
training dataset and test
dataset

2. Fit (train) model by

minimizing error on training
dataset only

3. Use error on test set as a

measure for prediction
performance

ML goal is not to fit existing data
well, but to make accurate
predictions on new data

Overfitting is bad for prediction performance

&Y

P ol
__1'_.,-T' 1 training
' *_ — dataset
-
ty i

3 test dataset
Y

Model is too simple!X
>

Too simple model
big training error & big test error

AY - AY -
e e
T_..nT' "1 training 4 '/ ftraining
° dataset } model dataset
L X Perfect fit X
- g
e T by 1
..N__,._i__.l.l-_..__g..-x. = -':i-'_:- "x\Ti.; ._
P a test dataset ~ test dataset
/ LOverfitting is bad
X for testerrorl X
>

-
More complex model

Too complex model
lower training & test errors

very low training error but big test error

Consider typical model fitting

Let’s compute averaged test error

(Test error) <Z(f +&—f(x;6p)) >

_ <Z 62+ 26(f(x) — flx;6)) + (Flx) - ("‘Q’D))gD

D.s

D.g

- 3 [+ 2000~ Bo o) () o)),
-3 o +Z(~ fx;6))?)_

Bias-variance decomposition

(700 ~fox 02, = { [f00) ~ (fs60) + (s 60) — i))
([fo — ttox 00])+ { [rs8) — (s8])
—2(|f0x) — (fx: 6p) | |f(x;6p) — (Fx; 6p)))
= [f0 — (8] + ([fxio) — (fx€00])

Blas -variance tradeoff

(st eror) = 3~ o2 + Y 1)~ o 8oo] + - ([f0680) ~ tsboio])

D

Primer on Deep Neural Networks (DNNs)

Benchmarks: What tasks do we want to perform?

Architectures: What do DNNs look like?

Learning: How do we train DNNs?

Failure Modes: What can go wrong?

Benchmark Datasets for Image Classification

CIFAR-10

e I - HEEZS
wwonone S MBS
we Emall W ¥ R
@ EEESEEEeP
v EEEYES RS
w FEESHSOANE
v EEENRODANE
v RSP PR
N = E T L P
o e 1 A B

https://www.cs.toronto.edu/~Kriz/citar.html

50,000 training images
10,000 test images

32x32 color images

best: 99.7% acc.

MNIST Handwritten Digits

000 0000Qo2p000Y 0 OD

AL NIE IR NIE I FAIPAIK A1 AT IR TIE R AR F 418

2ld 222 HA2 2L DAZA ini i
BRI E B EkEE B0,000traznfnglmages
Yo rva4y4yyqsvadgyyy 10,000 testimages
S99 1F]3]|S5|5!8)Ts5 5i5]sS

bbb blobbbaceéeédébeel .
x77797117901 2% 777 28x28b/wimages
Vig s ®8(8 25887 BITFNC
ziieiqiqliTii9/Alni119/1419/99 best:9984%acc
yann.lecun.com/exdb/mnist/

ImageNet image-net.org
1.2 million training images
50,000 validation

150,000 test images

22,000 categories
256x256 color images

best: 85.8% acc.

Deep Learning Architectures: Fully-Connected Layer

X y

o J=0 w=o(Twu
O——
O——

Deep Learning Architectures:

O_,_"'O

Fully-Connected Layer

=0 |y Wiy
j [—

Deep Learning Architectures: Fully-Connected Layer
y
O Y2 =0 Z Wajz;

J

TT?TT”

Deep Learning Architectures: Fully-Connected Layer

y

| i

O
O
O Yys = o Z_ngib‘j

3

[TTIT

Deep Learning Architectures: Fully-Connected Layer

X

= FULL =P

O O O]«

O O O O O

* Parameters in a Fully-
Connected Layer:

O—r

OoO— O—»s
—+0 O— O O—> o
o—l—0 o—j O
O—» o— —0
oO—r O—>g
y = o (Wx)

vector notation

W is a matrix.
nonlinearity is applied
element-wise

—— Wyy ———
——— Wy ———

——— W,

Deep Learning Architectures: Fully-Connected Layer

X

00000
v
=
v

O 0 O]+

* Parameters in a Fully-
Connected Layer:

O—r

OoO— O—»s
—+0 O— O O—> o
o—l—0 o—j O
O—» o— —0
oO—r O—>g
y = o (Wx)

vector notation

W is a matrix.
nonlinearity is applied
element-wise

—— Wyy ———
——— Wy ———

——— W,

Deep Learning Architectures: 1 hidden layer

X Y1

= 0 >

O O O O O
SRSRERERS

hidden layer
y(l) - G‘(W(O).’E)

Deep Learning Architectures: 1 hidden layer

X Y1
O O y
O O O
O+ w® O+ wh | O
O O ()
O O
input layer hidden layer output layer

y(l) . J(W(O).’E) Yy = J(W(l)y(l))

Q000 0 |*

Deep Learning Architectures: L hidden layers

(1) (L)

<<
<

> WO P > D >

O O O~

O O 0OO0O0O
\/
v
OO O0OO0O0O

L hidden layers
y(f+1) _ J(wr(l)y(i) 1 b(l)) y(U) — y(LH) -

deep net with fully-connected layers is known as a
multilayer perceptron (MLP)

Y

Deep Learning Architectures: Convolutional Layer

Deep Learning Architectures: Convolutional Layer

O
O O
8;' I—'O Yya = 0 iwj$j+1

Deep Learning Architectures: Convolutional Layer
X y

o— I—'O ys =0 | > Wixjyo

Deep Learning Architectures: Convolutional Layer

O—

o—[—0 L o 8 o
0/ 0._*'—'0 A
O O/' O,..-rl—"o
o o o

= CONV =P

O O Of=

3
Yi =0 E Wizjpio

j=1

O O O O O

* Parameters in a convolution layer: the “convolutional filter”

- [0
Wi

e Hyperparameter: filter size (=3 in this example)

Deep Learning Architectures

CONV FULL

O OO0

SEeROREES
O O 0
O O O O O

* Convnets also have some additional layers: Max Pooling and
average pooling. These basic ingredients are slightly adjusted
to deal with images (2D array of pixels).

Deep Learning Architectures

Hidden Layers
Input Output

e Putting all of these layers together, end up with a
parameterized function which takes an input (e.g. image), and
gives an output (e.g. vector of probabilities)

e Architectural choices informed by structure of the data,
trainability, practical considerations (storage), etc.

Example: Convolutional layers can track patterns that have been translated

If
CONV Then CONV

ONON _
O e®O0

O 000 @
O OO @O

This is useful for images:

.

gives same output as

Example: LeNet

C3: 1. maps 16@10x10

C1: feature maps S54:f. maps 16@5x5
INPUT 6@28x28 X
S52:f maps

32x32
6@14x14

| | Full mmjlecticn Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

LeCun et al. 1998

Training DNNs: Supervised Learning

Training Data (g, Ya) 6= 1; 50 IV

example: MNIST

&
|

S
|

vectorized array of grayscale pixels [-1,1]

Training DNNs: Supervised Learning
Training Data (g, Ya) 6= 1; 50 IV

Loss Function (aka training error, empirical risk, objective function)

N
E=) |ly(xa; W) — vall’
a—=1

parameters of the neural network

Loss on a single training sample F, = ||y(za; W) — yal|?

Training DNNs: Gradient Descent

Loss Function (aka training error, empirical risk, objective function)

N
E=) |ly(za;W)—yal[* Taining Data (a,Ya)
a=1

Loss on a single training sample E, = ||y(za; W) — yal|?
Loss Surface Gradient Descent takes
" you to a local minimum
E
dE

/ AW =g
N

1 X dE,
AW == (ﬁ dW)
. a=1

Backpropagation to compute gradients

Example: Multilayer perceptron

gD = o(2), 0 = O,W

Depends on layer weights in this compositional manner
(1)
Z

~
y=oc(WDe(WE=D oWy

Gradient of loss obtained by chain rule

oF oF (1)
ow) 9z

Backpropagation to compute gradients

OFE OF Oy
ng) Y E)zg)

 Byw ayD 9,V

(I+1)
_ OF oy Oyll) gylt2) Oz
Oypr \ OyL) Oy(L—1) " 9y(i+1)

(L) (1+2)
_OF Oy Oy m(r))y)
Oyr: W@yt gylt=" 0 gyttt

(1)
k!kH 3Zk

Gradient of loss is product of matrices (Jacobian):
ay(l'l‘])
k — ((1))Wkk"

Backpropagation to compute gradients:
exploding/vanishing gradients problem

The product of many matrices tend to vanish or explode,
depending on the largest eigenvalue

y(I+1)
H EO H <1 Gradients tend to vanish for deep nets
Y
3y(l+1)
H 0 () H > 1 Gradients tend to blow-up for deep nets
Y

Lots of tricks to help with this issue, and thus make training possible

e Batch Norm
e Careful initialization
* Skip connections (Resnets)

Training DNNs: Stochastic Gradient Descent
Training sets can be too large to efficiently compute full gradient

Loss Function can be complicated, and might have bad local minima

//

A

E

Solution: introduce noise by computing gradient on a mini-batch

Training DNNs: Stochastic Gradient Descent

1) Choose Subset of B Training examples
2) Update weights using gradient on loss on this subset

B
1 dE
AW = —n | = a1
”(B 1dW)

a1=

3) Choose a different subset of training examples (which
you haven't seen), and repeat (2).

This is much more computationally efficient, and has the
advantage that the samples of the gradient from different
“batches” introduces noise that appears to kick the training
out of bad local minima.

Toy Model for Stochastic Gradient Descent
min (10W?, 6(W — 1) +5) min (10W?, 60(W — 1)? + 5)
E{) E{(W) E;(W)

p— | -

\ - | . [(W

curvature of bad minimum fluctuates

Gradient descent gets between samples

stuck at a bad local Stochastic gradient descent

minimum at W = 1 escapes the bad minimum (for the
right learning rate)

E{ (W), w/ prob.=1/2

Ej(W,), w/ prob.=1/2

W
Wt L1 = Wrt — N EI(VVt) H”rﬂ 1 — I’Vr, — = {

20 40 50 80 100 o0 20 &0 i s t

see also Wu, Ma, Weinan E, “How SGD selects the global minima..” 2018

Fooling DNNs: Adversarial Examples

PERCEPTION PROBLEMS

Adding carefully crafted noise to a picture can create a new image that
people would see as identical, but which a DNN sees as utterly different.

In this way, any starting image can be tweaked so a DNN
misclassifies it as any target image a researcher chooses.

enamre
D. Heaven, 'Why deep-learning Als are so easy to fool', Nature 574, 163-166 (2019)

see also Adversarial Examples are not Bugs, they are Features: https://gradientscience.org/adv/

Additional References

Introductory books and review articles on machine learning and neural networks:

- Bishop - Pattern Recognition and Machine Learning
- MacKay - Information Theory, Inference, and Learning Algorithms (available free onling)

- Mehta et al. A high-bias, low-variance introduction to ML for physicists
(https://arxiv.org/abs/1803.08823)

A good review on the connections between statistical physics,
dynamical systems, and deep learning, with lots of references:

Bahri et al. “Statistical Mechanics of Deep Learning”, Annual Review of CMP 2020

