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Ab initio, first-principle: from the beginning

The Schrodinger equation (1926)

Erwin Schrédinger 1887 — 1961




The holy grail of computational physics

' the rest, is chemistry."

Paul Dirac, 1929




The holy grail of computational physics

"The fundamental laws necessary for the math-
ematical treatment of a large part of physics
and the whole of chemistry are thus com-
pletely known, and the difficulty lies only in
the fact that application of these laws leads to

equations that are too complex to be solved.
|

Paul Dirac, 1929



The holy grail of computational physics

' ..approximate practical methods of apply-
Ing quantum mechanics should be developed,
which can lead to an explanation of the main
features of complex atomic systems without
too much computation.”

Paul Dirac, 1929




Trade-off between cost and accuracy
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Quantum Monte Carlo— ¢«
~10 atoms HFPA—
CCSD(T) S5

~100 atoms, ~0.0000000000001s

Hartee-Fock™

empirical force fields

model force fields ¢
~10%atoms, ~0.000001s COS




What we will talk about:

@ Statistical mechanics & molecular dynamics 101.

e Metadynamics
e Thermodynamic integration
e Nuclear quantum effects (NQEs)

@ Translating materials and molecules into matrices.

e Representations
e Dimensionality reduction

@ Introduction to machine learning potentials.



Thermodynamics

From thermodynamic point of view

Gs(P, T) = Hs — TS, G(P,T)=H,— TS



Thermodynamics & statistical mechanics

From statistical mechanics point of view ...

Free energy is a measure of probability!

GI(P,T)— G(P, T) = —(1/kT)In(5)



Thermodynamics & statistical mechanics

From statistical mechanics point of view ...

Free energy is a measure of probabilit%!
GI(P, T) = Gs(P, T) = =(1/kT)In(5!)
But you have to sum over all the microstates.

Pr= » P(Q)

Q€eliquid



Thermodynamics & statistical mechanics

From statistical mechanics point of view ...

Free energy is a measure of probability!
Gi(P, T) = Gy(P, T) = —(1/kT ) In(!)

But you have to sum over all the microstates.

Pr= » P(Q)

Q€eliquid




Statistical mechanics

A microstate is a specific realization
of the coordinates and velocities of all
Ludwig Boltzmann atoms in the system.




Monte Carlo sampling

H(Q)

The goal is to sample from: P(€2) = e™ %7
@ A move is generated from Q to Q" with probability P(Q2 — Q).

@ The probability distribution is consistent with P(€2), if P(€2) is invariant
under the move, i.e.

/de(x — x"YP(Q) = P(QY)

@ A stronger condition: detailed balance
P(Q— QYP(Q)=P(Q — QP(Q)
@ One possible option: Metropolis sampling

P(Q — Q) = aqaP()/P(Q), if P(Q) < P(Q)

P(Q — Q) = aqqr, otherwise



Monte Carlo sampling

@ One possible option: Metropolis sampling

P(Q — Q') = aqaP()/P(Q), if P(Q) < P(Q)

P(Q — Q) = aqqr, otherwise
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Molecular dynamics

@ Microstates can be sampled using
molecular dynamics (MD). |

@ In classical MD, Atoms follow

Newton's equation of motion.
F = ma

Ax = vt

@ Proper thermostat and barostat.
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The shortcoming of molecular dynamics

@ The low probability states are under-represented in a finite run.

@ It is difficult to cross the energy barrier between two equilibrium states.
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The shortcoming of molecular dynamics

@ The low probability states are under-represented in a finite run.

@ It is difficult to cross the energy barrier between two equilibrium states.
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The shortcoming of molecular dynamics

@ The low probability states are under-represented in a finite run.
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The shortcoming of molecular dynamics

@ The low probability states are under-represented in a finite run.

@ It is difficult to cross the energy barrier between two equilibrium states.
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The shortcoming of molecular dynamics

@ The low probability states are under-represented in a finite run.

@ It is difficult to cross the energy barrier between two equilibrium states.
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Overcome activation barrier

[Laio and Parrinello. PNAS (2002)]
13



Overcome activation barrier

G(S)
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@ The free energy surface G(S) as a function of the order parameters S.

[Laio and Parrinello. PNAS (2002)]
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Overcome activation barrier

G(S)
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@ The free energy surface G(S) as a function of the order parameters S.

[Laio and Parrinello. PNAS (2002)]
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Overcome activation barrier
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@ The free energy surface G(S) as a function of the order parameters S.

[Laio and Parrinello. PNAS (2002)]
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Overcome activation barrier

G(S)
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@ The free energy surface G(S) as a function of the order parameters S.

[Laio and Parrinello. PNAS (2002)]
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Overcome activation barrier

G(S)

@ The free energy surface G(S) as a function of the order parameters S.
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Overcome activation barrier

G(S)

@ The free energy surface G(S) as a function of the order parameters S.

[Laio and Parrinello. PNAS (2002)]
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Overcome activation barrier

G(S)
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@ The free energy surface G(S) as a function of the order parameters S.

@ Add bias to the system by altering the system Hamiltonian

Hbiased(q) A H(q) + V(S)

And Vi(S) = >, ., 8(5(t"))

[Laio and Parrinello. PNAS (2002)]
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Overcome activation barrier

G(S

@ The free energy surface G(S) as a function of the order parameters S.

@ Add bias to the system by altering the system Hamiltonian

Hbiased(q) A H(q) + V(S)

And Vt(S) — Zt’<t g(S(t/))
@ Upon convergence, —V(S) = G(9)

[Laio and Parrinello. PNAS (2002)]
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The classical Gibbs free energy

In thermodynamics, the Gibbs free energy is G(P, T) = U+ PV — TS.
In classical statistical mechanics, the Gibbs free energy is

PV U
G(P, T) = —kBTlndeexp [—I(B—T] fD(V) dq exp |:—£:|

@ Minimum potential energy at 0 K.

: L _ hw;
@ Harmonic approximation G = kBTZ?iVl ?In kwT°
B

@ Self-consistent phonons [Monserrat & Needs]

@ Thermodynamic integration. [Polson & Frenkel JCP 1998; Li, Totton & Frenkel
JCP 2018]

@ Rare event sampling methods (e.g. umbrella sampling, metadynamics, transition path
sampling).

14



Thermodynamic integration

_ Consider two systems, A and B, which
& © can be transformed continuously be-
- nw=m tween each other via a parameter ),

O ¢
e | Fa—Fg ; N dl;()\)\) dA
< T ”:Oog,_.\; @ This parameter can be
% | 6 @ @ Thermodynamic variables
¢ © (temperature, volume,

Harmonic T="T,

concentration, etc.)

@ Switching parameter between
different Hamiltonians

@ Order parameters (reaction
coordinates)

15



Thermodynamic integration routes

Between harmonic and real crystal.

NPT TA AA = fol d\ (U — Uh>V,T0,>\
e lr — Integrate with respect to temperature.
NVT A n (K+U)y 1
LA A= — [} ——tdT
C "Tl d e —— From NVT to NPT ensemble; from A
o0 to G.
)\ 1 — Integrate with respect to temperature.
a D) = rn (Hp 1
A .TO AG = — To ?dT
; L
0 1
@ To get the Helmholtz free energy A : —

~N

@ To get the Gibbs free energy G: ?

16



Some justifications

NPT

NV 1A
C‘-Tl
a o).
b

: A >

0 1

Why integrate from a harmonic to a real
crystal at a low temperature?

DA = [ dA (U= Un)y 1, 5

w AT
& g 5 e
g’-h e, V=157A
20 ; e
I vac V=17.TA
g [¢—®perf; V=157 A"
= 10f%., perf: V=17.7A
e
= ”“.\“__
@ 0 S - —
< S
e
o
-10
).2 04 0.6 0.8 1

[Grabowski, Ismer, Hickel & Neugebéuer PRB 2009]
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Some justifications

INE'T
NVT LA
C‘-T1
a D\
b
A .
0 1
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A Why switch between the NVT and the NPT

€‘T ensemble?
1
d ®
o gy ®:
)\“—l W
B
i e

Because pressure may not be well-defined for
the reference harmonic system.



Some justifications

INEET
NVT LA
C AT,
7 b .
b
A -l
0 1

19

Choose a reference harmonic crystal that
has the same frequency modes and
equilibrium configuration as the real
crystal.

Separate the harmonic and the
anharmonic part of the potential energy.

Apply the viral theorem.
Change the variable in the integration.

Perform parallel tempering.



Getting started

A detailed yet simple description of the methodology

PHYSICAL REVIEW B 97, 054102 (2018)

Computing the absolute Gibbs free energy in atomistic simulations: Applications to defects in solids

Bingging Cheng™ and Michele Ceriotti

Python notebooks and scripts Sample input files

Init

The energy units in this notebook is in eV, unless specified otherwise

OK results

The free energy of the reference harmonic system with fixed center of mass at
100K

haw;

, IN-3
An(To) =ksTo X;; " In ksTo )

.....................................

Anharmonic correction of A at 100K

—(U = Uy — U(©
ATo) = Ay(Ty) + U(0) _A;.-T\In<cxp['+.'”l>
T 4

20 row we frstcompate A, = —kg T ln(cxpl - I{v’:{ o H




Example: Vacancy formation free energy

in BCC iron

Nvacancy G

perfect

Gvacancy o N
perfect

—
©
T

—
(o)
T 1 T 7T

G Vacancy [eV]
-

—
i'\) .
LI B N B B B B N B |

—
LI L

_ &
500 1000 1500 \:‘%

Temperature [K]

BCC iron system using a widely used EAM potential. [M. Mendelev, S.
Han, D. Srolovitz, G. Ackland, D. Sun & M. Asta 2003]

NPT, 250 atoms for the bulk system, 249 atoms for the system with a
vacancy

21



Example: Stacking fault free energies

in FCC Ni, Fe and Co

st
Vst X Area = Ggr — N Gperfect
perfect
E b - oY Zuk’u":gb:
S P T, 0900950%g0 ¥
E I Tmea UU:UQZUQ :
W 201 Bl P 0000000 « °
7 Ni ANH == 0920920
)= P T TN RS B - 0080030 :
. 500 1000 1500 8808208 °
F T T T T T T T T T 3 QY (7 o
—  F ] 0950920 o
€ 4f Fe ANH : 0920020
s HIHHHHHH; 0920020¥¢vYe
E 2f sriitit E 09006920 .
w o F grzziiit HAR ] 0920920 gy
A TS - 00008codv¥le
: 5 0950%,08¢
-2L T TS R S SR L L Dl * Ve
500 1000 1500
60F —
NE @ EAM Ni: [J. A. Zimmerman, H. Gao, and F.
£ T F. Abraham 2000]
L o
B -20F : @ EAM Fe: [G. Ackland, D. Bacon, A. Calder,
—40%= T T and T. Harry 1997]
Temperature [K] @ EAM Co: [G. P. Pun and Y. Mishin 2012]
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Nuclear Quantum effects
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Path-integral formalism

K+0U

The density of states: p(q) = (qle *87 |q)

24



Path-integral formalism

_k+U
The density of states: p(q) = (qle *8T |q)

K U U K

RU £ UK — e FaTe FaT) £ e FaTe %7
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Path-integral formalism

_k+U
The density of states: p(q) = (qle *8T |q)

K U U K

RU £ UK — e FaTe FaT) £ e FaTe %7

Trotter expansion:

k4D Y S e Ap
e kBT — ||m e 2PkBTe PkBTe 2PkBT — ||m Q

p— 00 p— 00
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Path-integral formalism

K+0U

The density of states: p(q) = (qle *87 |q)

K U U K

RU £ UK — e FaTe FaT) £ e FaTe %7

Trotter expansion:

_k+D o ko 1F Ap
e kpT — ||m e 2PkBTe PkBTe 2Pkg T — ||m Q
p—00 p—00

Insert identity: 1 = [ dq{(q|q)
K+U

(gle *8T |q) = limp_ o0 qu(l)q(Z) .. qP-1)

x(q|Q21gMY (gV|Q]qP) (g@)] ... 1P D) (gP~V|Q)q)
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Path-integral formalism

_k+U
The density of states: p(q) = (qle *8T |q)

K U U K

RU £ UK — e FaTe FaT) £ e FaTe %7

Trotter expansion:

_k+D o ko " Ap
e kpT — ||m e 2PkBTe PkBTe 2Pkg T — ||m Q
p—00 p—00

Insert identity: 1 = [ dq{(q|q)
K+U

(gle *8T |q) = limp_ o0 qu(l)q(Z) .. qP-1)

x(q|Q21gMY (gV|Q]qP) (g@)] ... 1P D) (gP~V|Q)q)

. . O () +0 (j+1) mPko T . )
21h
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Ring polymer molecular dynamics

centroid 4

beads

Isomorphism between a quantum mechanical particle and a ring polymer connected
by harmonic springs. The Hamiltonian can be expressed as

1 PkT
Sm(——

(/) . :
H(p,q) = Z[p E o viao) + 2 )’[q¥ —qi V]2

j=1
q® = qP

[Tuckerman, Statistical Mechanics]
25



Quantum kinetic energy

[Cheng & Ceriotti JCP 2014;
,’F‘Ek Cheng, Behler & Ceriotti JPCL 2016]

d¢ _ (Ex(v))

= [ B0

150.3 151.4 1496 157.0 157.2 1547 158.2 158.3 1555

=

33.8 33.8
291 207 29.3 39.3 34.7 345 351

qTIP4P/FMB pol NN qg-TIP4P/FMB-pol NN q-TIP4P/FMB-pol NN

ExH) [meV ]
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What we will talk about:

@ Statistical mechanics & molecular dynamics 101.

e Metadynamics
e Thermodynamic integration
e Nuclear quantum effects (NQEs)

@ Translating materials and molecules into matrices.

e Representations
e Dimensionality reduction

@ Introduction to machine learning potentials.
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Molecules and materials live in high-D space
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Molecules and materials live in high-D space
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Molecules and materials live in high-D space
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Divide system into atomistic environments

The first step is to divide the system into a set of atomic environments.
So the task becomes representing atomic environments.

Popular representations (Invariant with respect to translation, rotation and permutation.):

@ Smooth overlap of atomic positions (SOAP) [ Barték, Kondor & Csanyi PRB 2013]
@ Behler-Parrinello symmetry functions [ Behler & Parrinello PRL 2008]

29



Divide system into atomistic environments

O — {W(X;)} V(AX;)
The first step is to divide the system into a set of atomic environments.
So the task becomes representing atomic environments.

Popular representations (Invariant with respect to translation, rotation and permutation.):

@ Smooth overlap of atomic positions (SOAP) [ Barték, Kondor & Csanyi PRB 2013]
@ Behler-Parrinello symmetry functions [ Behler & Parrinello PRL 2008]
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Divide system into atomistic environments

O(A) = F(®(A)) O; = f(V(X)))
The first step is to divide the system into a set of atomic environments.
So the task becomes representing atomic environments.

Popular representations (Invariant with respect to translation, rotation and permutation.):

@ Smooth overlap of atomic positions (SOAP) [ Barték, Kondor & Csanyi PRB 2013]
@ Behler-Parrinello symmetry functions [ Behler & Parrinello PRL 2008]
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Representing atomic environments

| Barték, Kondor & Csanyi PRB 2013]
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Representing atomic environments

| Barték, Kondor & Csanyi PRB 2013]
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Representing atomic environments

| Barték, Kondor & Csanyi PRB 2013]
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Representing atomic environments

| Barték, Kondor & Csanyi PRB 2013]

Pa(X) = D ica 9(X — X;)

30



Representing atomic environments

| Barték, Kondor & Csanyi PRB 2013]
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Representing atomic environments

| Barték, Kondor & Csanyi PRB 2013]

k(X,X') = [dR|[ p(x)p' (Bx)
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Representing atomic environments

| Barték, Kondor & Csanyi PRB 2013]

k(X,X') = [dR|[ p(x)p' (Bx)
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Representing atomic environments

| Barték, Kondor & Csanyi PRB 2013]

WX, X') = / AR p(x)p (Rx)

p(x) = > coma(|r]) Yim(P)

nlm

3 \
knn’/(X) — 7T\/2/ i 1 ;(Cn/m) Cn'lm

The list of vector {k,,/(X)} is the descriptor of the atomic
environment X .

30
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Similarity measurement between structures

@ The kernel matrix {K'} records the similarity measurement for each pair
of structures in the data set.

@ The kernel function K(A, B) for structure A and B is

K(A, B) = &(A)' o(B) = Zqﬁ,(/\)qb,
@ Global features are constructed from local features by taking the average:
1 &
d(A) = — Y wah
(A) = gy D W)

@ Other choices available...



ML methods to apply to the design matrix

32

@ Build low-dimensional map using dimensionality reduction (e.g. PCA)

@ Sparsity the train set using farthest point sampling, CUR or uniform
sampling

@ Clustering

@ Regression (Kernel ridge regression (KRR), neural networks)



Dimensionality reduction

{X;}P {xi}
(k)PCA, MDS, t-SNE/UMAP

33



Principal component analysis

Question:
What is preserved during PCA?

34



Principal component analysis

Question:
What is preserved during PCA?
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Principal component analysis

L4
>

Question:
What is preserved during PCA?
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Principal component analysis

PCA identifies the axis that accounts for the largest amount of variance in the
data set.

o {X;}P : data in the D-dimensional space
e {x;}9: linear projection in the low d dimensional space
@ c: normalized projection matrix

X = X,'C

@ Covariance of the data: C = XX

e Covariance of the projected data: x”x

35



Principal component analysis

PCA identifies the axis that accounts for the largest amount of variance in the
data set.

o {X;}P : data in the D-dimensional space
e {x;}9: linear projection in the low d dimensional space
@ c: normalized projection matrix

X = X,'C

@ Covariance of the data: C = XX

e Covariance of the projected data: x”x

Given d , how to reserve the largest amount of variance?
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Principal component analysis

PCA identifies the axis that accounts for the largest amount of variance in the
data set.

o {X;}P : data in the D-dimensional space
e {x;}9: linear projection in the low d dimensional space
@ c: normalized projection matrix

X = X,'C

@ Covariance of the data: C = XX

e Covariance of the projected data: x”x

Keep the first d eigenvectors of the covariance matrix C = X' X

35



Principal component analysis

@ The covariance matrix C = X' X: D x D form.
o Eigenvalues {V}

e Corresponding eigenvectors {W} of the matrix

Eigenvalues and eigenvectors fulfills

Cv = Vv

forj=1...D. |
One can find the eigenvalues { )} by solving

det(C — Al) =0

36
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Principal component analysis




Principal component analysis




Principal component analysis
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Principal component analysis
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https: //github.com /BingqingCheng/ASAP

Contributors: Ryan-Rhys Griffiths, Tamas Stenczel, Bonan Zhu, Felix Faber,
Noam Bernstein

@ Low-dimensional embedding, regression
@ Sparsification

@ Clustering, kernel density estimation
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https: //github.com /BingqingCheng/ASAP

@ Generate descriptor matrix
‘asap gen _desc -f *.xyz soap’
© Make map
‘asap map —f *.xyz -dm [*] pca’
© Other tasks: regression, clustering, sparsification, kernel density

estimation, e.g.
‘asap cluster’, ‘asap fit’, ‘asap kde’, ‘asap select’
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KPCA map for alanine dipeptide

[Cheng et al. Accounts of Chemical Research 2020 |
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| asap map -f desc.xyz -dm '[*]' skpca --no-scale -k polynomial -kp 2|
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KPCA map for water configurations

[Cheng et al. Accounts of Chemical Research 2020 |
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KPCA map for QM9 data set

[Cheng et al. Accounts of Chemical Research 2020 ]

[Figure made by Simon Wengert, Christian Kunkel, Johannes Margarf]
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What we will talk about:

@ Statistical mechanics & molecular dynamics 101.

e Metadynamics
e Thermodynamic integration
e Nuclear quantum effects (NQEs)

@ Translating materials and molecules into matrices.

e Representations
e Dimensionality reduction

@ Introduction to machine learning potentials.

43



ML potentials
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ML potentials

Density functional theory ML potentials
(1/6 of all supercomputer usage!) [ Behler & Parrinello PRL 2008;
Barték et al PRL 2010]

Size: 7100 atoms Size: >10,000 atoms
Time: picoseconds (10712 S) Time: nanoseconds (1072 S)
Scaling: cubic (ON?3) Scaling: linear (ON)

Cost: up to millions of CPU hours Cost: laptop friendly
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ML potential, a black-box view
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ML potential, a black-box view

training
set

Neural Network

46



ML potential, a black-box view
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ML potential, a black-box
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Local atomic environments
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Local atomic environments
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Popular representations for comparing atomic environments

@ Smooth overlap of atomic positions (SOAP) [ Barték, Kondor & Csanyi
PRB 2013]

@ Behler-Parrinello symmetry functions [ Behler & Parrinello PRL 2008]

@ Permutation invariant polynomials [ Braam & Bowman 2008 |
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Popular representations for comparing atomic environments

@ Smooth overlap of atomic positions (SOAP) [ Barték, Kondor & Csanyi
PRB 2013]

@ Behler-Parrinello symmetry functions [ Behler & Parrinello PRL 2008]

@ Permutation invariant polynomials [ Braam & Bowman 2008 |
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Popular representations for comparing atomic environments

@ Smooth overlap of atomic positions (SOAP) [ Barték, Kondor & Csanyi
PRB 2013]

@ Behler-Parrinello symmetry functions [ Behler & Parrinello PRL 2008]

@ Permutation invariant polynomials [ Braam & Bowman 2008 |
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Local atomic environments
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@ Similar atomic environments are encountered over and over again.
@ If you compute all configurations using quantum mechanics, you lose!

@ Near-sightedness of energy and forces of each environment.
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Construct ML potentials

Step 1: Collect environments.

E=3E

Step 2: Interpolate.

\4

u,

0 0 1 u(x)
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Construct ML potentials

Ways to collect atomic environments:

49

Enumerating possible structures
Random displacement
Stretching and compression

Molecular dynamics (MD) and
PIMD

On-the-fly learning [Li, Kermode
& Vita PRL 2015]

Random searches [ Deringer,
Pickard & Csanyi PRL 2018]

Active learning [Podryabinkin &
Shapeev Com. Mat. Sci. 2017]

Step 1: Collect environments.

E=3E




Making a decision
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https: //github.com /BingqingCheng/ASAP

Contributors: Ryan-Rhys Griffiths, Tamas Stenczel, Bonan Zhu, Felix Faber,
Noam Bernstein

@ Low-dimensional embedding, regression
@ Sparsification

@ Clustering, kernel density estimation
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