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MACHINE LEARNING FOR MANY-BODY SYSTEMS

Coincise introduction to the field Given by Prof. Giuseppe Carleo (EPFL)

Topics:

* Neural Quantum States

* Sampling GIUSEPPE

CARLEO
* Optimisation problems (ground state,

time-evolution..) Exciting, new stuff

(please attend, overwise it’s obvious | was
too boring)
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CHAPTER 1: THE TOOL

NEURAL QUANTUM STATES

1. Neural Quantum States

2. Variational Monte Carlo



QUANTUM PHYsICS

Understand the laws governing quantum systems H

Quantum Computing Quantum Biology
l, ‘é\ ~~~~~~ ¥ o /
' B o o
< EMRES Se B
\ =g 3 L0 i
. ' ) 2 i e 2 B
r N\ = - LUE e @RS 1©
% _ BT R S (C
w 4 . ) F. Arute et Al. N. Lambert et Al.
Nature 574, 505 (2019) Nat Phys 9, 10 (2013)
Superconductivity Optical Devices

A. Mann N. Carlon Zambon et Al.
Nature 475, 280 (2011) Nature Phot. 13, 283 (2019)



QUANTUM STATE: THE WAVEFUNCTION

A SPIN: A BINARY PARTICLE WHICH BE EITHER \L (0) ORT (1)

CONSIDER A SYSTEM COMPOSED OF N-SPINS, AND ITS STATE

CLASSICAL STATE

The state is completely specified by the configuration
of each individual spin.

i.e: 3 spins -> /M\i

For N spins -> N bits of informations

Memory requirements grow linearly O(N)

QUANTUM STATE

The state is described by the wavefunction, a probability
distribution (+ phase) over all possible configurations.
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For N spins -> 2N bits of informations

Memory requirements grow exponentially O(2%)



QUANTUM STATE: THE WAVEFUNCTION

A SPIN: A BINARY PARTICLE WHICH BE EITHER \L (0) ORT (1)

CONSIDER A SYSTEM COMPOSED OF N-SPINS, AND ITS STATE

MORE FORMALLY...

Y(o1,...,0n) ={(01,...,0N]|0)
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The state is described by the wavefunction, a probability
distribution (+ phase) over all possible configurations.
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QUANTUM STATE
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For N spins -> 2N numbers of informations

Memory requirements grow exponentially O(2%)



QUANTUM STATE: THE WAVEFUNCTION

A SPIN: A BINARY PARTICLE WHICH BE EITHER \L (0) ORT (1)

CONSIDER A SYSTEM COMPOSED OF N-SPINS, AND ITS STATE

MORE FORMALLY...

Y(o1,...,0n) ={(01,...,0N]|0)
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H Vector space of all possible wavefunctions
‘H C 7H Subset of Physically relevant states
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QUANTUM STATE: THE WAVEFUNCTION

[ (b HUO)
(e W)

\ (1. )

ZZ¢W01,--. N)lo1,. ..,

7 {a’

W € CMwhere M < dimH ~ 2V

(TN>

¢

H Vector space of all possible wavefunctions
‘H C H Subset of Physically relevant states
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VARIATIONAL STATES

N
BOV) =D > Yw(or,...,on) o1, .., on)
i {o:}
MEMORY REQUIREMENTS RUNTIME REQUIREMENTS

2 classes:

W e (CMWhere M << dimH ~ 2N » Computationally Tractable States

* Given the parameters, it is possible to
efficiently compute observables with

M ~ pOly(N) arbitrary precision.

* Mean Field

* Gutzwiller Mean Field
Polynomial memory ¢ 1D MPS

* Computationally Efficient States




COMPUTATIONALLY TRACTABLE VARIATIONAL STATES

2 REQUIREMENTS: *$

EFFFICIENTLY EVALUABLE EFFICIENTLY SAMPLABLE
(o lp V)|
bw(o) = (a|p(W)) pw(o) = 2
2o (o))
In Poly(N)
In Poly(N)
THEOREM
If those two requirements are satisfied, any expectation-value of a K-local operator can be estimated with polynomial

accuracy.

At most k-body interactions

[Formalized by Van Der Nest, ArXiv:0911.1624]



EXPECTATION VALUES
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[Formalized by Van Der Nest, ArXiv:0911.1624] [Becca, Sorella (2017) Book, chapters 5-6]



METROPOLIS SAMPLING
< > Zp Oloc <Oloc>p(a) *‘

We have shown that expectation values of an observable O can be
computed as averages of O'°¢ over the distribution p(0).

To avoid an exponential cost, we need to define a set ( ) _ ‘ <¢|0'> |2

{oeH}, dim[{o}]~ poly(N) < dim[H] ~ 2V Do | (Ylo) |2

(0) = (00 = ¥ > 0" (e \/VarJ(V(ZIOC) (o) = Oa’"%

[Formalized by Van Der Nest, ArXiv:0911.1624] [Becca, Sorella (2017) Book, chapters 5-6]



GENERATING SAMPLES: MARKOV CHAINS

METROPOLIS-HASTINGS MONTE CARLO SAMPLING

* Ifyou can compute f(o) o p(o) Easy to compute

* We want to generate a chain of states

Oy)p— 01 —>02 — " — ON, ‘<¢‘0.>‘2

PO) = STl

Exponentially hard (sum over hilb. Space)

[Hastings, W.K. , Biometrika 57, 97-109 (1970)] [for a simple introduction see: Robert, Arxiv: 1504.01896]



GENERATING SAMPLES: MARKOV CHAINS

METROPOLIS-HASTINGS MIONTE CARLO SAMPLING

* If you can compute f(o) x p(o)

* We want to generate a chain of states
Oygp—01 202 — - —> ON,

*  We start with o
* Ateveryiterationi, o;

A. We propose a new state 0 by sampling T(o'|o;)
B. We compute the ‘acceptance probability’

p(a’) T'(o’'|o)
p(oi) T'(oilo’)

A(o'|o) = min |1,

. ope /
C. With probability A(o’|o) acceptthe move, Oit1 =0
otherwise ‘reject’ it, setting o;,11 = 0;
[Hastings, W.K. , Biometrika 57, 97-109 (1970)]

Easy to compute
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p(o) =

Exponentially hard (sum over hilb. Space)

[for a simple introduction see: Robert, Arxiv: 1504.01896]



GENERATING SAMPLES: MARKOV CHAINS

METROPOLIS-HASTINGS MIONTE CARLO SAMPLING

* If you can compute f(o) x p(o)

* We want to generate a chain of states
Oygp—01 202 — - —> ON,

*  We start with o
* Ateveryiterationi, o;

A. We propose a new state 0" by sampling T(o'|o;)
B. We compute the ‘acceptance probability’

p(a’) T(o'|o:)
plo;) T(oilo’)

C. With probability A(c'|o) acceptthe move, Oi+1 = o’
otherwise ‘reject’ it, setting 0,411 = 0
[Hastings, W.K. , Biometrika 57, 97-109 (1970)]

A(o'|o) = min |1,

This technique is derived from the
Detailed balance,

or microscopic reversibility condition
At equilibrium, the following is valid:

P(o'|o)p(o) = P(a|a’)p(a’)

And by defining the transition probability:
P(o'lo) =T(o'|o)A(c’|o)

[for a simple introduction see: Robert, Arxiv: 1504.01896]



NEURAL QUANTUM STATES

Restricted Bolzmann Machine:

Y({W,b},0) = exp !Z log cosh (W(i)a- 4 b(i))

(x) logp(o)] = 5=, Di(@)

‘ / N + Output layer

\@,
\Qi

+ Dense layer
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CHAPTER 2: THE PROBLEM

VARIATIONAL MONTE CARLO

1. Neural Quantum States

2. Variational Monte Carlo



QUANTUM PHYSICS: 2 PROBLEMS (avone many)

SIMULATION: COMPUTING THE GROUND/STEADY STATE

Given a system encoded by the hamiltonian H,
find the fundamental (ground) state

ive
BSNN

a |¢gs> — Egs |¢98>

[Carleo and Troyer, Science 355, 602 (2017)]



QUANTUM PHYSICS: 2 PROBLEMS (avone many)

SIMULATION: COMPUTING THE GROUND/STEADY STATE

Given a system encoded by the hamiltonian H,
find the fundamental (ground) state

ive
BSNN

a |¢gs> — Egs |¢98>

[Carleo and Troyer, Science 355, 602 (2017)] [Torlai et Al, Nature Physics 14, 447 (2018)]



DETERMINING THE GROUND STATE

GROUND STATE VARIATIONAL PRINCIPLE
H gs) = Egs [thys) EW) = <ﬁ> = <1<p'g(b)(/\lj\)/|)ﬁb|zb)/(vy)v>)> > Egs

We want to use a flexible representation of |'gb> :
Neural Quantum States

W,s sothat [1h(Wys)) = [1hgs)) EW)=Eg = [P(W)) = lthgs)

So we want to determine the

mV%}n[E (W)]

[simple introduction, see Wikipedia: Variational principle (Quantum Mechanics)] [Landau, Quantum Mechanics (pg. 58)]



VARIATIONAL OPTIMISATION

OPTIMISATION VARIATIONAL PRINCIPLE

| start from a set of parameters

Wo = E(Wy)

7) = (W) H[p(W))

EW) = (#) = ~omuom) = B

| can also compute the gradient of the energy

VwEW) EW)=E;s = [pW)) = |1hgs)

And use it to optimisee the parameters

Wit1 =W, —nVwEW;)

So we want to determine the

mV%}n[E (W)]

Can we compute the gradient efficiently?

[Landau, Quantum Mechanics (pg. 58)]



VARIATIONAL OPTIMISATION

But we cannot compute the energy and it’s gradient exactly:

BEOY) = 3 pw(0) Bl (0) = (B), Bi(0) = Y (ol f]o") 7
So the gradient is the vector pW(a) — |¢W(a)|2/Z
( Vi EOWV) \
vweom = | Y Obu(@) = Vi log (@)
\ Vi EW)

VWk:E(W) _ <EIOCO)I§V>p . <E10c>p <O)€V>p



VARIATIONAL OPTIMISATION

OPTIMISATION

| start from a set of parameters

Wo = E(Wy)

| can also compute the gradient of the energy

VwEW)

And use it to optimisee the parameters

Wit1 =W, —nVwEW;)

Can we compute the gradient efficiently?

STOCHASTIC GRADIENT (DESCENT)

Wi+1 =W, —n <<VWkE(W)>p —|—N(,u = 0,02 = ))

In the limit Ng — oo the stochastic term is 0 and we recover
the exact result.

r(t+dt) = z(t) — dtVV(t) + N(u = 0,07 = 2T'dt)

Otherwise, notice the similarity to the Langevin process
Describing a particle in a potential and temperature T.

T o« Ng~*

[Benjo, Goodfellow, Deep Learning book]



TIME EVOLUTION

Consider the state
[Yw)

And consider an infinitesimal time evolution of the same state (tau real or imaginary)

e_idtﬁ ) ~ (I — idtﬁ) V)

Expanding to first order in dW

[Pwrow) & [bw) + D OWLOF [Yw) = (T+ > SW,0) [¢y)
K k

Then we want to find dW that matches the two equations above
I dt H 27
‘ (V| e [hwtsw) ’
max

W [ sw| ‘e_idtﬁ WW>|

[Becca, Sorella (2017) Book, chapters 7]



TIME EVOLUTION

Solving that system gives:

/
() E S],: 5W/; — ka E(W) (same equation for imaginary time, excepti-> 1)
k/
/ / /
Quantum Geometric Tensor Sllj = <020k > — <Ok>; <Ok >
p p
Symbolically it is solved by: Q.G.T: Local approximation of the metric

tensor in variational space

SW = S~V E(W)

But in general it is best to solve it with a linear solver (CG, GMRES, MINRES...)

Then inserted back into

Wit1 = W; — W



CONCLUSIONS

Neural Quantum States are efficient encodings of Quantum states
* Can estimate expectation values efficiently through sampling
* Can compute the gradient of the energy efficiently

The Variational Principle recasts the ground state problem into
optimisation problem

Also valid for time evolution (Quantum Geometric Tensor)

Those techniques are implemented in Netket

http://netket.org




