The Evolution of Income or Wealth Distribution with Higher Order Autoregressive Processes

Sam Forbes, Kritika Bansal, Supervisors: Yonatan Berman, Ravi Kanbur, LML Summer School

29th July 2021

1/13

Introduction

How does intergenerational mobility effect inequality? We shall investigate using autoregressive process models. Could a 'snapshot' inequality estimate mobility between generations?

From shirtsleeves to shirtsleeves in three generations vs. *Shirtsleeves stay as shirtsleeves over many generations.*

2/13

Model

Let X_t be the log of income/wealth and ϵ_t be the cultural and genetic endowment of generation *t*. Assume the following model with microeconomic foundations [Solon, 2018] $¹$:</sup>

$$
X_t = \alpha + \beta X_{t-1} + \epsilon_t, \quad \text{where } \epsilon_t = \theta \epsilon_{t-1} + \eta_t \tag{1}
$$

 α trend in average incomes, $\eta_t \sim \mathcal{N}(0, \sigma^2)$ random endowment noise. Note endowments AR(1) and if $\theta = 0$ then X_t is AR(1).

 \equiv 990 $3/13$ $^{\rm 1}$ adapted from classical model from Becker and Tomes $\rm 1979$ Sam Forbes, Kritika Bansal, Supervisors: Yonatan Berman, Ravi Kanbur, LML Summer School The Evolution of Income or Wealth Distribution with Higher Order Autoregressive Processes

Model can be Expressed as AR(2)

$$
X_t = \alpha + \beta X_{t-1} + \theta \epsilon_{t-1} + \eta_t
$$

= $\alpha + \beta X_{t-1} + \theta (X_{t-1} - (\alpha + \beta X_{t-2})) + \eta_t$
= $\alpha (1 - \theta) + (\beta + \theta) X_{t-1} - \beta \theta X_{t-2} + \eta_t$

We would expect $\beta > 0$ and $\theta > 0$ which then implies $-\beta \theta < 0$ - a negative relation between children's and grandparents income?!

$$
\mathbf{1} \cup \mathbf{1} \cup
$$

General Results for AR(2)

$$
X_t = \alpha + \beta_1 X_{t-1} + \beta_2 X_{t-2} + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \sigma^2)
$$

Stationary when mean and variance independent of time.

Stat. condns.: $\beta_2 - \beta_1 < 1$ for $-2 < \beta_1 < 0$ and $\beta_2 + \beta_1 < 1$ for $0 < \beta_1 < 2$

 \longleftrightarrow $\overline{5}$ \rightarrow $\overline{5}$ \rightarrow $\overline{5}$ \rightarrow $\overline{5}$ \rightarrow $\overline{5}$ \rightarrow $\overline{5}$ \rightarrow $\overline{5}$

 $\mathbb{E}[X_t] := \mu =$ α $1 - \beta_1 - \beta_2$ $, \quad$ var $(X_t) := \gamma_0 = 0$ $\frac{(1-\beta_2)\sigma^2}{}$ $(1+\beta_2)((1-\beta_2)^2-\beta_1^2)$ *,* $\rho_1 := \frac{\mathsf{cov}(X_{t-1}, X_t)}{\mathsf{cov}(X)}$ $\mathsf{var}(X_t)$ = β_1 $1 - \beta_2$ $X_t \sim \mathcal{N}(\mu, \gamma_0) \Rightarrow$ income lognormal.

Intergenerational Income Elasticity (IGE) and Variance of Logs (VL)

For an AR(1) process $X_t = \alpha + \beta X_{t-1} + \epsilon_t$ where $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$ the OLS estimator for β is

$$
\hat{\beta} = \frac{\text{cov}(X_{t-1}, X_t)}{\text{var}X_t}
$$

Assuming Solon model:

$$
\hat{\beta} = \frac{\beta + \theta}{1 + \beta \theta} \quad \text{(IGE)}
$$
\n
$$
\gamma_0 = \frac{(1 + \beta \theta)\sigma^2}{(1 - \beta \theta)(1 - \theta^2)(1 - \beta^2)} \quad \text{(VL)}
$$

6/13 Note symmetry and that VL is an inequality measure.

Sam Forbes, Kritika Bansal, Supervisors: Yonatan Berman, Ravi Kanbur, LML Summer School

The Evolution of Income or Wealth Distribution with Higher Order Autoregressive Processes

Solving for β , θ given IGE and VL

To solve numerically we fix $\hat{\beta}$ and estimate γ_0 as stationary AR(1) variance:

$$
\hat{\gamma}_0=\frac{\sigma^2}{1-\hat{\beta}^2}.
$$

From data (X_t, X_{t-1}) could find $\hat{\beta}$, $\hat{\gamma}_0$ exactly. Want to solve for β and θ from

$$
\hat{\beta} = \frac{\beta + \theta}{1 + \beta \theta}, \quad \hat{\gamma_0} = \frac{(1 + \beta \theta)\sigma^2}{(1 - \beta \theta)(1 - \theta^2)(1 - \beta^2)}.
$$

 \longleftrightarrow \overline{a} \rightarrow $\overline{a$

There are four (complicated) analytical solutions (β, θ) from a quartic.

Solving Numerically for β , θ given IGE and VL

Minimise cost function $(\sigma^2 = 1)$:

$$
\underset{0<\beta<1,|\theta|<1}{\text{argmin}}\left(\left(\frac{\beta+\theta}{1+\beta\theta}-\hat{\beta}\right)^2+\left(\frac{(1+\beta\theta)\sigma^2}{(1-\beta\theta)(1-\theta^2)(1-\beta^2)}-\hat{\gamma_0}\right)^2\right)
$$

8/13

Analysis of VL

$$
\gamma_0=\frac{(1+\beta\theta)\sigma^2}{(1-\beta\theta)(1-\theta^2)(1-\beta^2)}
$$

- Asymptotes: $\theta = \pm 1$, $\beta = \pm 1$ and $\beta \theta = 1$.
- Symmetry between β and θ .
- If $0 \leq \beta < 1$ and $0 \leq \theta < 1$ then highest VL (or inequality) for highest β and θ .
- If $0 \le \beta < 1$ fixed and $0 \le \theta < 1$ then $\theta = 0$ gives lowest VL (or highest equality).

9/13

Analysis of VL

The Evolution of Income or Wealth Distribution with Higher Order Autoregressive Processes

Negative Grandparental Relationship

As before

$$
X_t = \alpha + \beta X_{t-1} + \epsilon_t, \quad \text{where } \epsilon_t = \theta \epsilon_{t-1} + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \sigma^2)
$$

gives

$$
X_t = \alpha(1-\theta) + (\beta+\theta)X_{t-1} - \beta\theta X_{t-2} + \eta_t
$$

How to reconcile this? [Solon, 2018]

- Subtle implication of higher grandparental income conditional on the amount of parental income.
- **Perhaps it is incomplete we could consider for example** higher order processes.

 \longleftrightarrow \overline{e} \longleftrightarrow \overline{e} \longleftrightarrow \overline{e} \rightarrow \circ \circ \sim $\frac{11}{13}$

Higher Order Endowments

Take endowments AR(2):

 $X_t = \alpha + \beta X_{t-1} + \epsilon_t$, where $\epsilon_t = \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \eta_t$, $\eta_t \sim \mathcal{N}(0, \sigma^2)$

gives the following AR(3) for log income:

 $X_t = \alpha(1-\theta_1-\theta_2)+(\beta+\theta_1)X_{t-1}+(\theta_2-\beta\theta_1)X_{t-2}-\theta_2\beta X_{t-3}+n_t$

Positive grandparent relation if $\theta_2 > \beta \theta_1$ but great grandparent coefficient now negative?! Can extend this to general case of endowments $AR(p-1)$ in which case have negative coefficient $-\theta_{p-1}\beta$ on X_{t-p} , the pth generation back.

 \longleftrightarrow \overline{e} \rightarrow \overline{e} \rightarrow \overline{e} \rightarrow \overline{e} \rightarrow ∞ \sim $12/13$

Final Remarks

- We showed evidence from autoregressive model theory that lower mobility translates to higher inequality.
- **Policy implications: process or outcome?**
- Test theory against data! Especially test residuals/noise part of model.

 \longleftrightarrow \overline{e} \rightarrow \overline{e} \rightarrow \overline{e} \rightarrow \Rightarrow \circ \circ \sim $13/13$