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Motivation

Q1 : Given a partial observation of a system, can we
determine/recover/learn the underlying dynamical system?

Q2 : Learn dynamical properties of trajectories Vs Averaged quantities?
Q3 : Why Learn about trajectories? Modelling in low-dimensional space
with noise Vs Modelling in High Dimensional space



Direct Construction of Random Dynamical Systems Using

Additive Noise

What if we add some additive noise to a discrete time mapping?
(climate science, laser dynamics, etc.)

xn+1 = a(yn � xn),

yn+1 = xn(b � zn)� yn,

zn+1 = xnyn � czn.

(Lorenz System)

What kind of random phenomena can we observe and describe, in
particular in multiple dimensions?

xn+1 = a(yn � xn) + �!x
n ,

yn+1 = xn(b � zn)� yn + �!y
n ,

zn+1 = xnyn � czn + �!z
n.

(Random Lorenz System)

where !x
n ,!

y
n ,!

z
n✏[0, "] and � > 0



Taken’s Embedding

Taken’s theorem provides the conditions under which a smooth attractor
can be reconstructed from the observations made with a generic function.

Assume we have a map xn+1 = f (xn) and x✏Rd for discrete time t✏Z+.

Assume we have an observation (y1, y2, y3, ..., yn) time series.

The delay embedding theorem states that

Theorem

The delay embedding theorem states that if the dynamics of x is finite
dimensional e.g. d � dimensional attractor, then the dynamics of x is
”topologically conjugate” to the evolution of y in so called delay
co-ordinates, y

0
n = (yn, yn�1, ..., yn�D) = (y(n), y(n � ⌧), y(n � (D � 1)⌧)

i.e on its attractor f is conjugated to the dynamics of F : RD ! RD on its
attractor where y

0
n+1 = F (y

0
n) for at least D > 2d



Taken’s Embedding



Learning using Neural Network

Goal of NN : Learn an update rule/function which advances state
space from xk to xk+1 , i.e. find a function f such that xk+1 = f (xk)

Accurately determining the solution requires a non-linear transfer
function since the underlying system is non-linear

Input is the matrix of the partial observation at xk

Output is the matrix of the partial observation at xk+1

We have used a 3-layer network with 10 nodes in each layer with
three di↵erent activation functions



Partial Observation and Reconstructed Random Dynamical

System

(a) Partial Observation

(b) 1 Embedded

Trajectory

(c) The right embedding

dimension for delay 10

(d) 100 Embedded

Trajectories

Figure: Reconstruction Reports



Learning form the Taken’s Embedding of the Random

Lorenz

Figure: Learning Reports
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