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Motivation

Q1 : Given a partial observation of a system, can we
determine/recover/learn the underlying dynamical system?
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Q2 : Learn dynamical properties of trajectories Vs Averaged quantities?
Q3 : Why Learn about trajectories? Modelling in low-dimensional space
with noise Vs Modelling in High Dimensional space




Direct Construction of Random Dynamical Systems Using

Additive Noise

@ What if we add some additive noise to a discrete time mapping?
(climate science, laser dynamics, etc.)

Xn+1 = 3(}/n — Xn)a
Yn+1 = Xn(b — z1) = Yn, (Lorenz System)

Zn_|_1 — Xnyn - CZn.
@ What kind of random phenomena can we observe and describe, in
particular in multiple dimensions?

Xn+1 = a(yn — xpn) + ow},
Vi1 = Xn(b — zn) — Yn + ow?, (Random Lorenz System)

V4
Zn+1 = XnYn — CZn + OW,,.

where w}, w), wrel0,e] and o > 0



Taken's Embedding

Taken's theorem provides the conditions under which a smooth attractor
can be reconstructed from the observations made with a generic function.

@ Assume we have a map x,11 = f(x,) and xeRY for discrete time teZ™.
@ Assume we have an observation (y1, ¥, y3, ..., ¥n) time series.

The delay embedding theorem states that

Theorem

The delay embedding theorem states that if the dynamics of x is finite
dimensional e.g. d — dimensional attractor, then the dynamics of x is
"topologically conjugate” to the evolution of y in so called delay
co-ordinates, y;, = (Vn, Yn—1, - Yn—p) = (y(n), y(n —7),y(n — (D — 1)7)
i.e on its attractor f is conjugated to the dynamics of F : RP — RP on its
attractor where y,;Jrl = F(y,) for at least D > 2d
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Taken's Embedding
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Learning using Neural Network

@ Goal of NN : Learn an update rule/function which advances state
space from xi to xx4+1 , i.e. find a function f such that xx11 = f(xx)

@ Accurately determining the solution requires a non-linear transfer
function since the underlying system is non-linear

@ Input is the matrix of the partial observation at xx
@ Output is the matrix of the partial observation at xx.1

@ We have used a 3-layer network with 10 nodes in each layer with
three different activation functions
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Partial Observation and Reconstructed Random Dynamical

System
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(b) 1 Embedded
(a) Partial Observation Trajectory

Minimum embedding dimension with false nearest neighbours
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Learning form the Taken’'s Embedding of the Random
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