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Motivation

The ability of clearly explaining the process that lead to a given
solution is fundamental AI

A well-known example is the 2016 (taking e↵ect in 2018) European
Union General Data Protection Regulation (EU GDPR) law

Concrete applications includes:
Automated online credit or mortgage scoring,
E-recruiting without human intervention,
Automated insurance quoting, etc.

It is fundamental to explain why a system suggests certain decisions
to respect the principles of ethics and fairness

But there seems to be a “trade-o↵” on rationality and a good
explanation:

How much rationality can one retain?
How good enough the explanation should be?

Hence a distortion
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Approach

Work-flow diagram

Group 8 LML Summer School August 10, 2021 2 / 10



Rationalization with decision theory

For a generic decision problem of outcomes s. There are S possible
choices and the probability that s is an optimal choice is:

ps =
1

Z
e
µs , Z =

SX

s=1

e
µs (1)

Let `s be the length of code-word that corresponds to s. For an optimal
rationalisation, we have:

min
`

SX

s=1

ps`s

Which is known as the entropy:

H[p] = �
SX

s=1

ps log ps

But taking rational choices this way leads to choices which are hard to
explain.
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Large deviations theory and optimal distortion

Let qs , ps be probabilities of outcomes s, with rationalisation H[q] and
with distortion measure DKL(p||q)

H[q] = �
SX

s=1

qs log qs , min
p:H[p]H0

DKL(p||q) (2)

From (2), we solve an optimization problem:

min
p

h
DKL(p||q)± �H[p] + ⌫

X

s=1

ps

i
, (3)

Now taking @
@ps

= 0 on (3), we get solutions:

ps =
q
µ
s

Z
, Z =

X

s

q
µ
s , µ =

1

1⌥ �
.

Solutions are case-wise. For, � > 0,� < 0 and � ! ±1.
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Large deviations theory: proof of concept

Provides a way to think about trade-o↵s between fidelity and
compression in relaying a decision-making process.
Given a decision-making process (or algorithm) with distribution q

over outcomes
We compress it into an explanation with distribution p.
DKL(p||q) vs H[p] convex with � as the slope
� is the shadow price - the amount of compression that must be given
up in order to achieve a certain level of fidelity.
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Deep Belief Network

A composition of Restricted Boltzmann Machines

Learns representations of the data at decreasing scales of resolution.

We use DBN to explore the trade-o↵s between accuracy and
compression.

As we go from shallow to deeper layers, original message (or
decision-making process) is coarse-grained, leading to a more
compressed explanation but with a distribution that is further away
from the original distribution of the data set.

According to large deviations theory, the relationship between the
layers should be ps =

q
µ
s

Z
,

where p is the distribution of states in the deeper layer and q is the
distribution in the shallower layer.
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Representations and distributions in DBN

Q: How can we compare representations between layers of a DBN and
evaluate its evolution?

For s 2 S , where S is the set of states over M data points, we can
calculate:

ks , the number of data points that take the state s.

The statistics ks

M
induces a distribution over states for a given layer.

We study the evolution of this distribution across layers as predicted
by the large deviations theory.
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Results 1

Optimal distortion successfully predicts the behavior near the middle layer.

ps =
q
µ
s

Z
, Z =

X

s

q
µ
s , µ =

1

1⌥ �
.
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Results 2

The behavior at the shallow and deeper layer are not in the regime
predicted by optimal distortion.
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Conclusion

Our hypothesis that the layers of a DBN are related via ps =
q
µ
s

Z

obtains for the intermediate layers.

There is a trade-o↵ between accuracy and compression, optimally
when � = 0.

Is there a maximum level of compression which retains the features of
representation necessary for human decision-making?

Instead of or in addition to the constraint H[p]  H0 we specify that
the compressed representation of the original decision-making process
must be adequate for human decision-making.

Can the framework be extended to supervised learning?

Labels might enforce a distorted representation, and this might be an
additional cost of compression.
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