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Introduction
Epidemics modeling on networks

A brief introduction to epidemiology

Epidemiology is defined as the study and analysis of the distribution, determinants and
control of health and diseases conditions in defined populations and been a
cornerstone of public health research since the 19th century (Anderson and May, 1991;
Fred and Carlos, 2001)

Epidemic models generally assume that the population can be divided into di↵erent
classes or compartments depending on the stage of the disease (Anderson and May,
1992; Diekmann and Heesterbeek, 2000; Keeling and Rohani, 2007)
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Introduction
Epidemics modeling on networks

Simplest mathematical epidemic models ! SIS and SIR

Population divided in classes eg. SIR

S + I + R = 1 (1)

S = Susceptible fraction
I = Infected fraction
R = Recovered fraction

Two processes

1 Infection (with rate �)

S + I
��! I + I (2)

2 Recovery (with rate �)

I
��! R (3)
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Introduction
Epidemics modeling on networks

Infection rate

R0 = �/� (4)

if R0 > 1 it is called endemic state.

These beyond simple models can be fitted to real data

Figure 1: (Left) Stereotyped curves of the model. (Right) Fitted data for flu epidemics in a school, Murray 1989.
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Introduction
Epidemics modeling on networks

On networks...

...the infection rate on these models also depend on the (physical) social network.

R0 = �/�
hk2i
hki

(5)

Figure 2: Example of two di↵erent networks. We expect an epidemic to spread faster on the right network,
Pastor-Satorras et al 2015.

The key here is...

...by controlling the connectivity of the network one can also control the spreading of
the infection.
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Introduction
Oscilations induced by feedback

Epidemic models in networks with feedback

Infection state  ! Network structure

Figure 3: Example of feedback control on networks, Caccioli and De Martino 2020. A school friendship network,
Mastrandrea 2015.

The idea is to simulate lockdowns.
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Introduction
Oscilations induced by feedback

Figure 4: Feedback control impact on the SIR model. (Left) No feedback model. (Right) Feedback online. Results
for a school friendship network, Mastrandrea 2015.
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Introduction
Oscilations induced by feedback

It is shown the emergence of a closed trajectory in real data.

Figure 5: Data for the first epidemic wave from the region of Lombardy.
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Introduction
Phase reconstruction

Now that we are treating oscillators...

Are these oscillators coupled?
Is there any type of synchronization between them?

Phase reconstruction!

Hilbert transform

Y (t) = Ĥ[X (t)] =
1

⇡

Z
tm

t0

X (t0)

t � t0
dt

0 (6)

look at data, extract the phase for each country and compare.

Figure 6: Example of Iterated Hilbert transform embedding for an periodically driven Stuart-Landau oscillator,
Gengel and Pikovsky 2020. If trajectories are closed, the phase can tell us if di↵erent oscillators are synchronized by
knowing exactly where in their own trajectory they are.
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Results
Empirical Data
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Figure 7: Example of analyzed data 1. (Left) Signal and its Hilbert transform for Ghana as example. (Right) Phase
space for the same country.

Extracting the phase

Supposing z(t) = X (t) + iY (t) the phase would be

�(t) = arctan(Y (t)/X (t)) (7)

1https://github.com/Covid19Dynamics/trajectories
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Results
Empirical Data

We define

Lij =

Z
tm

0
|��ij (t)|dt =

Z
tm

0
|�i (t)� �j (t)|dt (8)
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Figure 8: Integral of the modulus of the phase di↵erence, two examples. Purple area represents the integral of the
modulus of the phase di↵erence in each case.

If we have some relation between these countries we should see some kind of block
structure on the synchronization matrix L.
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Results
Empirical Data

First attempt with 20 countries organized on regions (8 from South America, 4 from
Africa and 8 for Europe).
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Figure 9: Block structure on the synchronization matrix L.

The matrix can be decomposed in blocks! Now our goal is to optimize the block
structure using our migration hypothesis through some clustering algorithm.
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Results
Empirical Data

We gathered all data available to us and followed the above discussed procedures to
arrive on a 164⇥ 164 synchronization matrix.
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Figure 10: Worldwide synchronization matrix and (Right) our first attempt of block structure.

Now we want to explain and model these structures.
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Results
Simulations

Model proposal

It is then proposed a model with migration/connectivity between two previously
independent networks:
At each time a node would try to contaminate its own network it also has a (smaller)
chance to infect some node of the adjacent population.

Alongside with the average connectivity of the network hkiI we also have an average
migration connectivity hkiE .

Two clear limits:

hkiE = 0  ! Completely independent networks

hkiE = hkiI  ! One huge network
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Results
Simulations
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Figure 11: Impact of migration on Poissonian networks of average degree hkiI = 6 subject to feedback control.
(Left) hkiE = 0. (Right) hkiE = 1.
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Figure 12: Distance between phases as a function of the average network interdegree hkiE .
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Conclusions and perspectives

Conclusions

We have elaborated a synchronization matrix for the worldwide data for the
Covid-19 epidemic wave.

We also have shown that this matrix can be decomposed in a block structure.

We propose a mechanism for this synchronization between two populations and
model it.

Perspectives

Optimize the clustering algorithm so we can in some way minimize distance
between countries.

Estimate a synchronization parameter for each group of synchronized countries
(Kuramoto parameter).
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