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Background: Stochastic Langevin Equation

Figure: Particle of mass M undergoing Brownian motion. [L Sjogren]

Brownian Motion can be modeled by the Langevin Equation:
MY = —vY +n(t)

Y: velocity, 7v: damping constant, 7(t): delta-correlated Gaussian white
noise I1.e:

E[n(t)] =0
(n(t)n(t)) = o°6(t — t')
2

o<: variance of Gaussian white noise 0(t): Dirac delta function.
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Deterministic Langevin Equation

Replace the stochastic term 7(t) with chaotic dynamics generated by a
deterministic map B [C. Beck, 1996] :

n(t) = 71/? Z x))8(t — n)

Xnt1 = B(xn) = 2x, (mod1)

7 > 0: time difference between subsequent impulses of kick force, strength
given by map B, known as the Bernoulli shift map.
Integrate the original equation to get Y = e (t=17)y, .

Yntl = AYn + 7'1/2(Xn+1 —(x)) A=e "

xni1 = B(xp)  x, €]0,1]
We will consider a simplified case with v7 — 0 and 7 — 1.
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Langevin Equation driven by a random dynamical system

In the simplified form:

Y1 = Yn + (Xnp1 — (X))

Xpnt1 = B(xn)

For this project, the deterministic map B is replaced by:

Xn+1 = T(xp) = {3)(” (modl) p€[0,1]

EXn 1—p

xn € [0, 1] where p is the probability.
T: random dynamical system. [S. Pelikan, 1984]

p =1 — reproduces the deterministic map B, positive Lyapunov
exponent

p = 0 = negative Lyapunov exponent

1
P—3

—> (intermittency) transition point with zero Lyapunov exponent
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The invariant density of the Pelikan Map

Analytic result (% <p<1)

The explicit form of the invariant density p,(x) was derived to be:

L _2p—1[  (21—p) U+d)
I 3p—2 p

in each interval /; = [2J—£1, 2%] j=0,1,2... [S. Pelikan, 1984]
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Figure: The invariant density of the Pelikan map at p=0.7
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The transition in the invariant density
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Figure: The invariant density as a curve derived using midpoint interpolation.

y(p,x) = A(p)(1 — B(p)x~1¢P))
The invariant density changes from a uniform to an unbounded function.
[Jin Yan, LML Summer School 2019]
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Simulations using arbitrary precision computation
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Figure: Simulations (left to right) at p=0.99, 0.8, 0.6 and 0.501 with an ensemble
of 10° initial conditions and corresponding time series plots (bottom panel). They

were computed using the GNU MPFR library, with precision up to 1010’ digits.

2x, (modl) p € [0,1]
Xpt1 = T(xn) = 9 4
§Xn 1 — P
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Auto-correlation functions

The velocity auto-correlation function captures the decay of memory with
time. For the Langevin equation, it is related to the position
auto-correlation function of the previously defined random dynamical
system:

(Vk — Yk—1)(y1 — y0)) = (xkx0) — <X>2

A semi-Markovian analytical approximation for (xxxp) in terms of p has
been derived. [Jin Yan, 2021]

To compare the auto-correlation functions obtained from theory with
numerical results computed using infinite precision.

To compare across different p, we compute the normalized
auto-correlation function:

CF(p) = <)<<f:2<(>)>__< SZ
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Exponential to power law decay
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Figure: The log-log plot of the normalized auto-correlation function for 25 values
of p € (%, 1), which decays exponentially at p = 1, by monotonically changing to
a power law decay as p — %
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Comparison of theoretical and numerical results
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Figure: (xxxo) from theory (red) and simulations (blue). At p = 0.5001, the
power law exponent b = —0.3584 from simulations, and b = —0.067 from theory.
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1.) The auto-correlation functions for the random dynamical system were
numerically calculated using arbitrary precision computation.

2.) For p — 1, the theoretical result shows good agreement with the
numerical computation of the auto-correlation function.

3.) For p— % the auto-correlation function calculated from theory shows
the expected power law decay, however the exponent is different from the
one observed in simulations.
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To compute the mean square displacement (MSD={(x, — xg)?)) for
Langevin dynamics driven by this random dynamical system.

The MSD exhibits a transition from linear to sub-linear growth in time t

(MSD ~t%: with a < 1, showing subdiffusion) under variation of p.
[Y. Sato R. Klages, 2019]
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