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Background: Stochastic Langevin Equation

Figure: Particle of mass M undergoing Brownian motion. [L Sjögren]

Brownian Motion can be modeled by the Langevin Equation:

MẎ = ��Y + ⌘(t)

Y : velocity, �: damping constant, ⌘(t): delta-correlated Gaussian white
noise i.e:

E [⌘(t)] = 0

h⌘(t)⌘(t 0)i = �2�(t � t
0)

�2: variance of Gaussian white noise �(t): Dirac delta function.
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Deterministic Langevin Equation

Replace the stochastic term ⌘(t) with chaotic dynamics generated by a
deterministic map B [C. Beck, 1996] :

⌘(t) = ⌧1/2
1X

n=1

(xn � hxi)�(t � n⌧)

xn+1 = B(xn) = 2xn (mod1)

⌧ > 0: time di↵erence between subsequent impulses of kick force, strength
given by map B , known as the Bernoulli shift map.
Integrate the original equation to get Y = e

��(t�n⌧)
yn:

yn+1 = �yn + ⌧1/2(xn+1 � hxi) � = e
��⌧

xn+1 = B(xn) xn 2 [0, 1]

We will consider a simplified case with �⌧ ! 0 and ⌧ ! 1.
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Langevin Equation driven by a random dynamical system

In the simplified form:

yn+1 = yn + (xn+1 � hxi)

xn+1 = B(xn)

For this project, the deterministic map B is replaced by:

xn+1 = T (xn) =

(
2xn (mod1) p 2 [0, 1]
1
2xn 1� p

xn 2 [0, 1] where p is the probability.
T : random dynamical system. [S. Pelikan, 1984]
p = 1 =) reproduces the deterministic map B , positive Lyapunov
exponent
p = 0 =) negative Lyapunov exponent
p ! 1

2 =) (intermittency) transition point with zero Lyapunov exponent
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The invariant density of the Pelikan Map

Analytic result (
1
2 < p  1)

The explicit form of the invariant density ⇢p(x) was derived to be:

aj =
2p � 1

3p � 2


1�

✓
2(1� p)

p

◆(j+1)�

in each interval Ij = [ 1
2j+1 ,

1
2j
] j = 0, 1, 2... [S. Pelikan, 1984]

Figure: The invariant density of the Pelikan map at p=0.7
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The transition in the invariant density

Figure: The invariant density as a curve derived using midpoint interpolation.

y(p, x) = A(p)(1� B(p)x�1+C(p))

The invariant density changes from a uniform to an unbounded function.
[Jin Yan, LML Summer School 2019]
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Simulations using arbitrary precision computation

Figure: Simulations (left to right) at p=0.99, 0.8, 0.6 and 0.501 with an ensemble
of 103 initial conditions and corresponding time series plots (bottom panel). They

were computed using the GNU MPFR library, with precision up to 1010
7
digits.

xn+1 = T (xn) =

(
2xn (mod1) p 2 [0, 1]
1
2xn 1� p
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Auto-correlation functions

The velocity auto-correlation function captures the decay of memory with
time. For the Langevin equation, it is related to the position
auto-correlation function of the previously defined random dynamical
system:

h(yk � yk�1)(y1 � y0)i = hxkx0i � hxi2

A semi-Markovian analytical approximation for hxkx0i in terms of p has
been derived. [Jin Yan, 2021]

Goal

To compare the auto-correlation functions obtained from theory with
numerical results computed using infinite precision.

To compare across di↵erent p, we compute the normalized

auto-correlation function:

CF (p) =
hxkx0i � hxi2

hx2i � hxi2
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Exponential to power law decay

Figure: The log-log plot of the normalized auto-correlation function for 25 values
of p 2 ( 12 , 1), which decays exponentially at p = 1, by monotonically changing to
a power law decay as p ! 1

2
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Comparison of theoretical and numerical results

Figure: hxkx0i from theory (red) and simulations (blue). At p = 0.5001, the
power law exponent b = �0.3584 from simulations, and b = �0.067 from theory.
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Summary

1.) The auto-correlation functions for the random dynamical system were
numerically calculated using arbitrary precision computation.

2.) For p ! 1, the theoretical result shows good agreement with the
numerical computation of the auto-correlation function.

3.) For p ! 1
2 , the auto-correlation function calculated from theory shows

the expected power law decay, however the exponent is di↵erent from the
one observed in simulations.
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Outlook

Next Step

To compute the mean square displacement (MSD=h(xn � x0)2i) for
Langevin dynamics driven by this random dynamical system.

Conjecture

The MSD exhibits a transition from linear to sub-linear growth in time t

(MSD ⇠t↵: with ↵ < 1, showing subdi↵usion) under variation of p.
[Y. Sato R. Klages, 2019]
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