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Introduction
Systems involving a large no. of interacting particles whose detailed behaviour
and properties can be studied using quantum mechanics. E.g- superconductors,
nano-materials, nuclei

Schr•odinger eqn. H |ki = E |ki
|ki = c""""..... | """" .....i + c#"""..... | #""" .....i + ...... + c####..... | #### .....i

Hilbert space increases exponentially with increase in no. of particles
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Artificial Neural Networks (ANN)
Simplification of a Biological Neural Network (BNN)

Figure: Image credit:’Using a Data Driven Approach to Predict Waves Generated by Gravity Driven Mass Flows’

Dendrites, Synapses, Cell body and Axon terminals are mimicked by the Input
layer, Weights, Activation functions, and the Output layer respectively
Used for pattern recognition and classification in Machine Learning



Neural Network Quantum States (NQS)

We use a type of ANN called Restricted Boltzmann Machine (RBM)1

Figure: RBM with input nodes fz
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Figure- Restricted Boltzmann Machine
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where hi = {�1, 1}
ai and bi ! visible and hidden biases
wij ! weights

1Carleo and Troyer, Science 355, 602 (2017)



1D Quantum Ising Model

system of interacting spins- 1

2
in a chain

transverse magnetic field applied in x-direction

(a) 1D spin chain
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(b) Phase Diagram for a 1D Transverse Field Ising

model

J > 0 ! Ferromagnetic interactions

| �
J
| = 1 ! Quantum phase transition



Method and Software: NetKet
open source framework developed by Carleo et al.

2 for solving quantum
many-body systems using Machine Learning techniques
finds ground state properties of a discrete lattice model using an inbuilt
Hamiltonian and a custom-built Hamiltonian on any non-trivial lattice graph

Figure: Convergence of the ground state energy to the exact value for | �
J
| > 1

2Elsevier: doi.org/10.1016/j.softx.2019.100311



Results for the Ground state problem

E (N) = hkM |Ĥ |kMi
hkM |kM i >= E0, E0 ! exact ground state energy

Figure: Convergence of the Ground state energy for �=1, J=1 using RBM, to the result obtained using Exact Diagonalization

for N=20 lattice sites

minimization of ground state energy using variational sampling
Exact Diagonalization (ED) is limited to small system sizes due to Hilbert space
growing exponentially with system size



Error Analysis

nrel =
ERBM (U)�Eexact

|Eexact | U = M/N

M!No. of hidden nodes of RBM
N!No. of visible nodes

Figure: Relative error in the ground state energy of the 1D TFI model using a RBM as compared to that calculated using Exact

Diagonalization for di�erent values of �/J ratio



Supervised Learning
Exact Target wavefunction is given: |ktargeti
Variational Neural Network quantum state is chosen: |kNQSi

Figure: Overlap between the target and the variational wavefunction for 4000 iterations for di�erent learning rates.

L(") = � log h target | NQS (")i
h target | targeti

h NQS (") | targeti
h NQS (") | NQS (")i , " ! " � _r"L

where r"L ! gradient of loss function, _ ! learning rate
Optimized ground state can be used to predict excited states 3

3H.Kawai Y.O. Nakagawa Mach. Learn.: Sci. Technol. 1 (2020)



Magnetization
Transverse Magnetization = 1

N

Õ
j

D
k0

���fx

j

���k0

E
,

|k0i ! ground state wavefunction.
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Figure: Transverse magnetization vs
�
J

ratio using RBM, Exact Diagonalisation and the analytical solution



Magnetization
Longitudinal Magnetization = 1
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However, the Hamiltonian is slightly modified
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Figure: Longitudinal magnetization vs
�
J

ratio using RBM and the analytical solution



Spin-Spin Correlation functions
is a measure of the probability to what extent the spin at site i is
aligned with the spin at site j
Longitudinal correlation function: hfz
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Transverse correlation function: hfx
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obtain an exponential decay with increasing n

Figure: x-x correlation function with di�erent neighbour interactions



Result comparison

Figure: Caption

Mean field ansatz:
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Conclusion - The ’Ising’ on the cake

Advantages:
compact representation of quantum many body states on ANN
applies even to highly entangled states
extends to high dimensional systems

Current Research and future possibilities:
apply more advanced neural networks
look at dynamic observables, frustrated(J1-J2), dissipative, and
time-dependent models
quantum enhanced machine learning



Thank You


