

Experiments in ergodicity

Kamil Bonna

supervisors:

Ollie Hulme, Ole Peters, Alex Adamou, Yonatan Berman, Mark Kirstein

Aim of the project

Improve the Copenhagen experiment.

Ergodicity-breaking reveals time optimal decision making in humans

David Meder¹, Finn Rabe^{1,2}, Tobias Morville¹, Kristoffer H. Madsen^{1,3}, Magnus T. Koudahl^{1,4}, Ray J. Dolan⁶ Hartwig R. Siebner^{1,7,8}, Oliver J. Hulme^{1*}

DANISH RESEARCH CENTRE FOR MAGNETIC RESONANCE

- validate ergodic theory of decision making
- address criticism, replicate findings

Day⁺ (additive)

Day^x (multiplicative)

Example gamble

Example gamble

Example gamble

Discriminating between models

Results

Aim of the project

Improve the Copenhagen experiment.

• add more wealth dynamics

- show outcomes & realize all trials
- optimize a design

transformed wealth change at a constant rate

$$\frac{du(x(t))}{dt} = \gamma$$

transformed wealth change at a constant rate

$$\frac{u(x(t + \Delta t)) - u(x(t))}{\Delta t} = \gamma$$

transformed wealth change at a constant rate

$$x(t + \Delta t) = u^{-1}(u(x(t)) + \gamma \Delta t)$$

$$x(t + \Delta t) = u^{-1}(u(x(t)) + \gamma \Delta t)$$

$$x(t+\Delta t) = \begin{cases} (x^{1-\eta} + (1-\eta)\gamma\Delta t)^{\frac{1}{1-\eta}}, & \eta \neq 1\\ xe^{\gamma\Delta t}, & \eta = 1 \end{cases}$$

$$x(t+\Delta t) = \begin{cases} (x^{1-\eta} + (1-\eta)\gamma\Delta t)^{\frac{1}{1-\eta}}, & \eta \neq 1\\ xe^{\gamma\Delta t}, & \eta = 1 \end{cases}$$

$$x(t+\Delta t) = \begin{cases} (x^{1-\eta} + (1-\eta)\gamma\Delta t)^{\frac{1}{1-\eta}}, & \eta \neq 1 \\ x \epsilon^{\gamma\Delta t}, & \eta = 1 \end{cases}$$

$$x(t+\Delta t) = \begin{cases} (x^{1-\eta} + (1-\eta)\gamma\Delta t)^{\frac{1}{1-\eta}} & \eta \neq 1\\ xe^{\gamma\Delta t}, & \eta = 1 \end{cases}$$

multiplicative dynamic

Aim of the project

Improve the Copenhagen experiment.

- add more wealth dynamics
- show outcomes & realize all trials
- optimize a design

Fully realized paradigm

pros	challenges
• realistic	 difficult to control bankruptcy
engagingtemporal effects	 difficult to control payout potential confounds from
 wealth dependency effects 	emotions & probability matching

Cost bounds

When subjects bankrupt or exceed max payout intended for single participant the experiment ends.

Aim of the project

Improve the Copenhagen experiment.

- add more wealth dynamics
- show outcomes & realize all trials
- optimize a design

Good experiment would provide data allowing to discriminate between competing models.

Optimization framework

Optimized growth rate

The end