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Outline of this lecture:

* Why doing molecular dynamics and simulations?
» Recap of classical and statistical mechanics

* Propagation schemes for MD

* Force fields vs Ab initio approaches

* Born-Oppenheimer Molecular Dynamics

* Moving across statistical ensembles



University of
Zurich™

G. Melani — Lecture “Forces & Molecular Dynamics”

Why doing molecular dynamics and simulations?

* Condensed-phase systems often
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structures at a given temperature. o f;:‘ SR
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processes can be seen in “real A
time”.
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Why doing molecular dynamics and simulations?

* Condensed-phase systems often
experience many different
structures at a given temperature.

e Static approaches do not take into
account fluctuations and finite-
time effects.

* Dynamical (even reactive)
processes can be seen in “real
time”.
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Picture taken from: M. Ozboyaci et al., Q. Rev. Biophys., 49, 1-45 (2016)
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Recap of classical and statistical mechanics

 Let’s consider a system of N particles (atoms) moving in
absence of an external field. From the BOA we know
atoms move much slower than electrons and, if we'’re
interested only in the nuclear dynamics we can assume
they move classically™:

*Be careful when treading light nuclei like H (NQEs become important) A%A
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Recap of classical and statistical mechanics

 Let’s consider a system of N particles (atoms) moving in
absence of an external field. From the BOA we know
atoms move much slower than electrons and, if we'’re
interested only in the nuclear dynamics we can assume
they move classically™:

momentum p

position z

N

2 (r,p) are the phase-
H(r,p)=Y, -

+V ( r ) ——= space (or canonical)
T 2m, coordinates

energy

= — = —— Hamilton’s classical EOM position

*Be careful when treading light nuclei like H (NQEs become important) A%A
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Recap of classical and statistical mechanics

e Any (thermodynamic) property of the system is given by
its expectation value <A>:

<A>E=%f d;_*f dpe_BHA(p,[) Ensemble average

T
<A>T=%j dt'A(p(t'),I_‘(t')) Time average
0

Ensemble <A> = Time <A>

Ergodic Theorem
A%A
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Recap of classical and statistical mechanics

* We can also extend this equivalence to dynamical
properties — time correlation functions:

(A(0)B(t))=7 [ dr [ dpe" A(p(0),r(0)) B(p(t),r(r)

(A(O)B(t)>=%i dt'A(t')B(t+t’)

« Examples of TCFs:
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Propagation schemes in Molecular Dynamics

* For a small change in time A(t), we can Taylor expand the coordinates r:

r(t+At)=r(t)+MAt+MAt2+ (1) AC+O(At")

m 2m 3!
r(t—At)=r(t)—%At+%Atz— r?fl;) At’+O(AtY)
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Propagation schemes in Molecular Dynamics

* For a small change in time A(t), we can Taylor expand the coordinates r:

r(t+At)=r(t)+MAt+MAt2+ (1) AC+O(At")

m 2m 3!
r(t—At)=r(t)—%At+%Atz— r?fl;) At’+O(AtY)
r(t+At)+r(t—At)=2r(t)+%At2+o(At4)

r(t+At)NZr(t)—r(t—At)+MAt2 A%A

2m
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Propagation schemes in Molecular Dynamics

* For a small change in time A(t), we can Taylor expand the coordinates r:

p(t) , . b(t)

_ 2 3 4
r(t+At)—r(t)+—m At+" SAC+ AL +O(AtY)
r(t—At)=r(t)—%At+%Atz—??Ej)At3-|-|O(At4) Integration error
: ~
r(t+At)+r(t—At)=2r(t)+$At2+o(At4)
m > Verlet Algorithm
r(erad)m2r(t)-r(e-agelW s ) Ag%}*:“
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Propagation schemes in Molecular Dynamics

* In most of codes, the preferred algorithm is the “Velocity Verlet”:

@ p(t+At/2)=p(t)+F(t)% First change of momenta

from initial values and forces

AQ%}IA
d
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Propagation schemes in Molecular Dynamics

* In most of codes, the preferred algorithm is the “Velocity Verlet”:

— At First change of momenta
@ p(t+A t/2) - p(t)+ F( t) 7 from initial values and forces
_ p ( t+At/ 2) New positions given initial
@ r ( t+A t) =r ( t ) + m At coordinates and modified
momenta

AQ%}IA
d
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Propagation schemes in Molecular Dynamics

* In most of codes, the preferred algorithm is the “Velocity Verlet”:

— At First change of momenta
@ p(t+A t/2) - p(t)+ F( t) 7 from initial values and forces
_ p ( t+At/ 2) New positions given initial
@ r ( t+A t) =r ( t ) + m At coordinates and modified
momenta

@ p(t+At)=p(t+At/2)+F(t+At)% New force evaluation

A%}IA
d
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Propagation schemes in Molecular Dynamics

* In most of codes, the preferred algorithm is the “Velocity Verlet”:

— At First change of momenta
@ p(t+A t/2) - p(t)+ F( t) 7 from initial values and forces
_ p ( t+At/ 2) New positions given initial
@ r ( t+A t) =r ( t ) + m At coordinates and modified
momenta

p(t+At)=p(t+At/2)+F(t+At)% New force evaluation

The choice of At determines the accuracy of integration:
At ~ 1/10w__ (highest vibrational frequency of the system) Ag%}l A
7
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Force fields (MM) vs Ab initio (DFT) approaches

* Condensed phase systems (eg. liquids,
biomolecules) often require long
trajectories and can be therefore
studied using empirical force fields. um

Length/size

3
3
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Force fields (MM) vs Ab initio (DFT) approaches

* Condensed phase systems (eg. liquids,
biomolecules) often require long
trajectories and can be therefore
studied using empirical force fields. um

* They allow for dynamics up to ns and
us, crucial to investigate phase
transitions or “rare events”.

Length/size

3
3
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Force fields (MM) vs Ab initio (DFT) approaches

* Condensed phase systems (eg. liquids,
biomolecules) often require long
trajectories and can be therefore
studied using empirical force fields. um

* They allow for dynamics up to ns and
us, crucial to investigate phase
transitions or “rare events”.

e There are many parametrized
molecular mechanics FFs, based on
empirical and QM-data:

- AMBER, CHARMM, GROMOS
(organic and biological molecules)
- OPLS (liquids), SPC and TIPxP
(water)

Length/size

3
3
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Force fields (MM) vs Ab initio (DFT) approaches

* Condensed phase systems (eg. liquids, reteh
biomolecules) often require long
trajectories and can be therefore
studied using empirical force fields.

* They allow for dynamics up to ns and
us, crucial to investigate phase
transitions or “rare events”.

e There are many parametrized
molecular mechanics FFs, based on
empirical and QM-data:

- AMBER, CHARMM, GROMOS
(organic and biological molecules)
- OPLS (liquids), SPC and TIPxP
(water)
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Force fields (MM) vs Ab initio (DFT) approaches

« Condensed phase systems (eg. liquids, biomolecules) often require long
trajectories and can be therefore studied using empirical force fields:

b
N 2
ur™)| = > Ui —lio)
bond 2
Potential
Energy
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Force fields (MM) vs Ab initio (DFT) approaches

« Condensed phase systems (eg. liquids, biomolecules) often require long
trajectories and can be therefore studied using empirical force fields:

ur™y| = Z—(I—I,O +Z 9—9)

bond angles

Potential
Energy
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Force fields (MM) vs Ab initio (DFT) approaches

« Condensed phase systems (eg. liquids, biomolecules) often require long
trajectories and can be therefore studied using empirical force fields:

ur™y| = Z—(I—I,O +Z 9—9)

bond angles

Potential " J
Energy . Y

Harmonic approximation
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Force fields (MM) vs Ab initio (DFT) approaches

« Condensed phase systems (eg. liquids, biomolecules) often require long
trajectories and can be therefore studied using empirical force fields:

uer™y| = Y _(: — o) + Z (0 —0;0)° + > \;”(1+cos(nwk—%))
bond angles torsion

Potential

Energy

A%}IA
d
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Force fields (MM) vs Ab initio (DFT) approaches

« Condensed phase systems (eg. liquids, biomolecules) often require long
trajectories and can be therefore studied using empirical force fields:

V,
uer™y| = Y —(I — o) + Z (0; — 0j,0)° + > (1 + cos(nwy — n))
bond angles torsion 2
Potential 12 6
Energy n Z . Tij [ i n qidqj
AN / ri; ri; 450!’"
J>i ij ij ij
N— 7
~

Electrostatic terms (sometimes
including polarizable charges)

AQ%}IA
d
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Force fields (MM) vs Ab initio (DFT) approaches

» Empirical FFs are often not easily transferable to other systems
(especially when considering solid materials) and cannot describe
reactive processes*.

*Exception of the ReaxFF A%A
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Force fields (MM) vs Ab initio (DFT) approaches

» Empirical FFs are often not easily transferable to other systems
(especially when considering solid materials) and cannot describe
reactive processes®.

* One can then employ the Born-Oppenheimer Approximation and
propagate classical nuclei along a quantum mechanical PES - BOMD.
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Force fields (MM) vs Ab initio (DFT) approaches

» Empirical FFs are often not easily transferable to other systems
(especially when considering solid materials) and cannot describe
reactive processes®.

* One can then employ the Born-Oppenheimer Approximation and
propagate classical nuclei along a quantum mechanical PES - BOMD.

®(R) = Egs' [{¥i}; R] + En(R) = E[{¢s}; R]

N
. 1 .
ﬁBo({’thi};R, R) = - E M;R?% — min E[{wi};R]
213 i) (Wil =05}

AQ%}IA
d
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Force fields (MM) vs Ab initio (DFT) approaches

« Empirical FFs are often not easily transferable to other systems
(especially when considering solid materials) and cannot describe
reactive processes®.

* One can then employ the Born-Oppenheimer Approximation and

propagate classical nuclei along a quantum mechanical PES - BOMD.

®(R) = Egs' [{¥i}; R] + En(R) = E[{¢s}; R]

Leo({¥i}; R, R)

Lagrangian

1 N
I=1

min E|{1}; R]”
1¥i} {(¥i|)=0di;}

Ground state PES
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Born-Oppenheimer Molecular Dynamics

* There are two crucial steps in e N P cee
a BOMD: the SCF cycle and )
the time integration. SCF
* Both can strongly affect the ) |
calculation of forces, which ce s O 5 S o cos y
also determines the accuracy .
. £ >, N o » Forces
of the dynamics. N A R
s o o andudu e o8 g
-
TIME
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Born-Oppenheimer Molecular Dynamics

 There are two crucial steps in oM . -
a BOMD: the SCF cycle and K ]
the time integration. wBe H .
- not so” accurate

* Both can strongly affect the
calculation of forces, which
also determines the accuracy
of the dynamics.

Total energy [eV]
= =
SR
] |

0.01—
accurate

0 0.05 0.1 0.15
Time [ps]
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Born-Oppenheimer Molecular Dynamics

* There are two crucial steps in

i
a BOMD: the SCF cycle and T O) ° Tt
the time integration. 3 SCF

* Both can strongly affect the % -
calculation of forces, which e o O) S * eeey
also determines the accuracy R N N
of the dynamics. N N forees

» Forces are derivable from the cee O ™™ ™o sse g
Hellmann-Feynman theorem. -
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Born-Oppenheimer Molecular Dynamics

* There are two crucial steps in

—l A i
a BOMD: the SCF cycle and " 0) ° Tt
the time integration. 3 SCF
* Both can strongly affect the % -
calculation of forces, which e o O) S ™ eeey
also determines the accuracy R N N
of the dynamics. N N Ty forees
 Forces are derivable from the cee O ™pT™d ™z ... g
Hellmann-Feynman theorem. -
TIME
dE d , a0
R’ - ar VHIY)

= <%‘H‘¢’> + <ij“ﬁ‘%> + <¢“J % 'i,ﬂﬂ>

ol gl AN
_E<E‘”>+E<w‘ﬁ> +<"b‘ dR *D>* AQ%}IA
| | y
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Born-Oppenheimer Molecular Dynamics

* There are two crucial steps in o
a BOMD: the SCF cycle and e O) 03

s s X

the time integration.

SCF
* Both can strongly affect the %
calculation of forces, which 5 L
also determines the accuracy Y
. A . ", \"\,' N F
of the dynam1(.:5. A . N | orees
* Forces are derivable from the cee O ™R ™g ... g
Hellmann-Feynman theorem. .
E 4 TIME
— (0| H |4
R~ g VIHIY)

dy | - - | dap dH
= { — | H|— | — |of
<dR ‘HM - <g‘j‘H‘dR> " <"“5 dR i"”>
This terms vanish if we

di | | daf dH
= E<E‘w> + E<w‘ﬁ> + <¢J‘E ‘EP>+ have a complete basis A%}IA
7
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Born-Oppenheimer Molecular Dynamics

* There are two crucial steps in e
a BOMD: the SCF cycle and "o O) © N "
the time integration. 3

SCF
* Both can strongly affect the %
calculation of forces, which 5 5 .
also determines the accuracy N ’
of the dynamics. N T e | Forees
* Forces are derivable from the c e O AT ™ ces g

Hellmann-Feynman theorem.

TIME

 When using an incomplete basis or if the basis is position-
dependent, an additional term will appear
— Pulay forces (or stresses)

 Pulay forces vanish in the CBS limit and also for position-

independent basis functions, like PWs AQ%}A
7
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Car-Parrinello Molecular Dynamics .

* In the early days of BOMD this technique was
impractical to use. Therefore, R. Car and M.
Parrinello designed a way to combine DFT
with MD at a reasonable computational cost.

» They introduced an “extended Lagrangian”
formulation, assigning a mass the electrons.

. ' . 1 Y :
Lo ({3} RR) = o S (hlii) + 5 > MRS
1 I=1

~ E[{os}s R + 3 Ay ((hiluy) —6,5) _ 1985Tneske /
X

w = fictitious electron mass
A A
7
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Car-Parrinello Molecular Dynamics

* In the early days of BOMD this technique was ‘AL A B B
impractical to use. Therefore, R. Car and M. 5 *r ]
Parrinello designed a way to combine DFT g ot
with MD at a reasonable computational cost. 8 20 ) i

» They introduced an “extended Lagrangian” | j
formulation, assigning a mass the electrons. g ol ‘ T 1

- ilUJMLIIIIIII]JULL_;
Cop ({1} R, R HZ dilb) b = Z M, R? 0 2000 4000 6000 8000

w (THz)
Triangle = highest ionic frequency

o E[{wi —I_Zﬁij (%WJ ) )

w = fictitious electron mass
A A
7
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Car-Parrinello Molecular Dynamics

1 T T I L] ] T 'I | FIEE ] T I' L L

In the early days of BOMD this technique was

impractical to use. Therefore, R. Car and M. et ]
Parrinello designed a way to combine DFT
with MD at a reasonable computational cost. 20 - i

They introduced an “extended Lagrangian”

formulation, assigning a mass the electrons. ol 1“ ‘ e’ f
Electronic and nuclear modes are artificially . I ||L ” “ "l IIl"I"” ” | ]

separated (like adiabatic) but have coupled o 2000 4000 6000 8000
EOMIs. w (THz)

Triangle = highest ionic frequency

A%}IA
d

v(w) (arb. units)

Advantage: no SCF iteration procedure F

Disadvantage: very small time step v
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Moving across statistical ensembles

Statistical ensembles

—tweight _-weight

I-piston =t—piston

_—insulation _—insulation

Microcanonical Canonical Grand Canonical Gibbs or Enthalpy or
(const. NVE) (const. NVT) (const. yVT) Isobaric-isothermal Isoenthalpic-isobaric
(const. NPT) (const. NPH) H=E+PV
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Moving across statistical ensembles: the NVT case

« Simulating at a given temperature (like “real life” conditions) is
important, but how to implement it in a MD scheme?

Total free
energy is
conserved

The energy of the system is not conserved

A%A
d
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Moving across statistical ensembles: the NVT case

« Simulating at a given temperature (like “real life” conditions) is
important, but how to implement it in a MD scheme?

* One needs to apply a thermostat: A few examples
> Langevin dynamics, add a frictional force
mi;(t)=F,(t)-mT p,(t)+y,(t) (y;(t)y(t ')>=6ij6(t_t )6mT k,T

> Velocities rescaling (“Andersen” method)

AT=(A-1)T(t)

AQ%}IA
d
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Moving across statistical ensembles

> Coupling of each coordinate with a fictitious oscillator (“Nosé-Hoover” method)

i)i= F i 6 P; Q determines the coupling to the heath bath
N pz pz

H,, = —+—L4+3Nk,T
T 2m; 2Q
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Moving across statistical ensembles

e —————— 40 S Py —— ,
[ Microcanonic | : Andersen r Nose-Hoover
20 [ ) 20 [ . . *:é E& et L b 200 |'
[ ] U AOSUNEEN, t
00} . 00} : £t 00 | y
V 4 r - : .*;.1.,. 9
20t { e0f | TEELTAL ] 20f
L - | ! L Wi 4 - 1
-4 — e - )
T T e T A R TR e BT R T T
r r r
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Further readings:

“Computer Simulation of Liquids”
Michael P. Allen, Dominic J. Tildesley, OUP (2017)

“Ab Initio Molecular Dynamics:
Basic Theory and Advanced Methods”
Dominik Marx, Jiirg Hutter, CUP (2012)
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Thank you very much for your attention!
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