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We want to describe phenomena beyond the ground-state
-- excited states and response
-- laser-driven systems
-- non-stationary states



What is the Problem?
Wish to describe a system of N electrons in atom, molecule, solid, possibly non-stationary 
state, possibly subject to an applied field:

Y = Y (r1s1, r2s2 … rNsN, t)

“external” to the electronic system

e.g. laser field

e.g. electron-nuclear attraction

same for all systems of electrons



Solving for Y scales exponentially with the size of the system…

Even just storing the wavefunction:

For N electrons à 3N spatial coordinates à M3N grid points if use M points for 
each coordinate à exponentially large as N grows

… And besides, Y contains far more information than we could possibly want. 
Usually interested in e.g.

energies
equilibrium geometries, lattice constants
potential energy surfaces
polarizabilities
photo-absorption cross-sections
ionization probabilities
I/V characteristics

These involve “reduced” quantities: 
e.g. densities, current-densities, two-
body-densities…

What is the Problem?



(TD)DFT provides a way to get observables without computing Y, in principle exactly. 

Proves      

static

All observables are functionals of n, O[n]

v Time-Dependent (TD) DFT for Vext(t): Runge-Gross (PRL 52, 997 (1984))

Proves 

TD

All observables are functionals of n and the initial wavefunction Y(0), O[n, Y(0)]

v Ground-state DFT for static Vext: Hohenberg-Kohn (1965)

TD

ground-state 
density

Just need the density:

For a given particle-particle interaction and statistics:



n’(r,t)

n(r,t)

t

sameY0

Proof based on Heisenberg equation of motion for the current-density.

v Time-Dependent (TD) DFT for Vext(t): Runge-Gross (PRL 52, 997 (1984))

Proves 

TD

All observables are functionals of n and the initial wavefunction Y(0), O[n, Y(0)]

TD



But, given a density, how to get the observables? 

Consider kinetic energy. 

v The Kohn-Sham system makes our lives a bit easier.
= A non-interacting system that has the same density as the interacting system. 

Kohn-Sham wavefunction involves products of single-particle orbitals, 
antisymmetrized to take care of Pauli, i.e. Slater determinant (usually)

à Treat non-interacting kinetic energy exactly, in terms of the orbitals

GS KS: 

TD KS:

<T> is unknown as a functional of n. Yet T is a large part of the total energy



defined such that the density of interacting system reproduced

The Time-Dependent Kohn-Sham (KS) System

v Decompose Vs into 3 terms:

Hartree, vH[n](r,t):
classical electrostatic potential

exchange-correlation potential:
approx. in practise

v F0, the initial KS wavefunction, must have the same initial n(r,0) and 𝜕!n(r,t)|t=0

as Y0, the true initial wavefunction (this gives a large choice! See example later)



v Note that the structure is set up similar to the (older) ground-state DFT :

What about TDDFT potentials, how do they look?
See an example soon! 

Differences: simpler functional 
dependence, and an energy 
variational principle

• But in either case, vs(r), by definition, reproduces 
the N-e interacting density with non-interacting 
electrons, e.g. He atom ground-state, exact vs:



Back to the Time-Dependent Kohn-Sham System

v Functional dependences: Since, by RG, vs = vs[n; F0] and vext = vext[n; Y0]  à
this means vxc[n; Y0 ,F0].

Note: functional dep of vext is never directly used! vext is input as the 
physical potential applied to the system

v If begin in ground-state, then no initial-state dependence, since by HK, 

Y0 = Y0[n(0)] (e.g. in linear response). Then 

v In general, vxc[n; Y0 ,F0](r,t) depends on n (r’,t’) everywhere in space and at all 
earlier times, as well as initial interacting state and KS state à Memory 
dependence 

v In practice vxc[n; Y0 ,F0](r,t) must be approximated – almost all approximations 
neglect memory!!



Approximations for vxc[n; Y0, F0] (r,t)

Simplest: adiabatic local density approximation (ALDA)

where exc
unif (n) is the exchange-correlation energy per particle of a uniform 

electron gas of density n 
-- completely local dependence on the density in both space and time.

Almost all approximations simply select an approximation from ground-state 
DFT, and plug in the instantaneous density. 

-- Called “adiabatic” due to implicit assumption that system is in some ground-
state at each time.  



How a TDDFT calculation works in practise. 

2. Select initial KS state F0 with same n(r,0) and 𝜕!n(r,t)|t=0 as the physical problem 
you’re trying to model. 

using chosen approximation for vxc[n].   

using the applied vext from the physical problem (e.g. laser field and electron-
nuclear potential) and your chosen approximation for vxc[n; Y0, F0]

1. Choose an approximation for vxc[n,Y0,F0](r,t)     e.g. ALDA-x, where 
vxc[n](r,t) = -a n1/3 (r,t)

E.g. N orbitals (in a determinant), {fi(r) } 

If system starts in a ground state, then use the initial ground-state KS 
orbitals, as calculated from N lowest energy orbitals of

3. Propagate the time-dependent Kohn-Sham equation
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Brief sampling of applications
• Strong fields applied to molecules:

High-harmonic generation, enhanced ionization, Coulomb 
explosion imaging, laser control of electronic motion…

Bruner, Hernandez, Mauger, Abanador, LaMaster, 
Gaarde, Schafer, Lopata, J. Phys. Chem. Lett. 8, 3991 
(2017)

e.g. watching attosecond charge migration after nitrogen K-edge 
ionization in nitrosobenzene

Q(z,t) = r+ - r0



Brief sampling of applications

• Strong-fields applied to solids: 

e.g. stopping power of projectiles, dielectric breakdown in 
semiconductors, high harmonic generation, plasmonics, Maxwell 
eqns + TDDFT… 

e.g. ultrafast laser-induced demagnetization, and control of magnetization

Krieger, Dewhurst, Elliott, Sharma, 
Gross, J. Chem. Theory Comput. 11, 
4870 (2015)



Light-harvesting molecular triad: 

Electron-ion dynamics in charge-
transport needed.

Rozzi et al. Nature. Comm. 4, 1602 (2013)

• Dynamics after photo-excitation: e.g. Photovoltaic design

dn(r,t)

Brief sampling of applications



TDDFT in Linear Responseà
Spectra

Vast majority of applications of 
TDDFT are to get excitation 
energies and optical spectra

a) Mosca Conta et al, App. Phys. Lett. 104, 224101 
(2014); 
b) Jornet-Somoza et al. Phys.Chem.Chem.Phys., 17, 
26599 (2015)
c)  Marini et al. , Phys. Rev. Lett. 91, 256402 (2003);  
Botti et al. Phys. Rev. B 72, 125203 (2005); Sharma 
et al.  Phys. Rev. Lett. 107, 186401 (2011); 
Trevisanutto et al., Phys. Rev. B 87, 205143 (2013); 
Rigamonti et al., Phys. Rev. Lett. 114, 146402 
(2015); Z.-h. Yang et al.  Phys. Rev. B 92, 035202 
(2015); Refaely-Abramson et al. Phys. Rev. B 92, 
081204 (2015); 
d) Rappoport and J. Hutter, in Fundamentals of 
Time-Dependent Density Functional Theory, edited 
by M. A. Marques et al. (Springer Berlin Heidelberg, 
Berlin, Heidelberg, 2012), pp. 317–336.
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In fact, the vast majority of calculations are in the linear response regime, to 
calculate spectra, and these usually operate directly in the frequency-domain. 

So we’ll now discuss how that works.



What do we actually mean by linear response?

),( tr

),( t¢¢robserve how the
system responds
at a later time

),(),,,(),( 11 tVtttddtn ¢¢¢¢¢¢= òò rrrrr c
density response perturbation

density-density
response function, 
a.k.a. susceptibility

poke the system

Fourier transform c[n](r, r’, w) à poles at the excitation energies 
& residues give oscillator strength



Extracting spectra (excitation energies/oscillator strengths) from TDDFT
A brief sketch (1/2)

c is a functional of nGS , the unperturbed 
ground-state density 

Use TD QM perturbation theory 

And take the Fourier transform w.r.t. (t-t’) à Frequency-domain response function:

wI = EI - E0

But we don’t have wavefunctions in TDDFT! So how to get c from TDDFT? 

Poles at excitation frequencies, wI =EI - E0
And residues are transition densities,  giving oscillator 
strengths (transition dipoles) 



Extracting spectra (excitation energies/oscillator strengths) from TDDFT
A brief sketch (2/2)

same as that of the 
physical system… …but 𝜒 ≠ 𝜒!

Poles at KS frequencies, NOT the true excitation energies

Evaluate previous expression for the case of non-interacting system à

cs(r, r’, w) 

exchange-correlation kernel

à Central Equation 
of TDDFT Linear 

Response

Now use functional chain rule to relate the two functional derivatives, and obtain: 



Poles at KS 
excitations

Poles at true 
excitations

Need (1) ground-state vS,0[n0](r), and its bare excitations

(2) XC kernel 

Yields exact spectra in 
principle.                  

In practice, approxs
needed in (1) and (2). 

Casida, in Recent Advances in Density Functional Methods, ed. D.E. Chong pp. 155–192 (World Scientific, 
Singapore, 1995); Petersilka, Gossmann, Gross, PRL 76, 1212 (1996); Andrade et al. JCP 126,184106 (2007); 
Yabana et al. Phys. Status Solidi B 243, 1121 (2006).

• Cast into matrix equations coded in quantum chemistry codes

• For extended systems, tend to work directly with the Dyson-like equation

• Linear response can also be formulated as a “TD density-functional perturbation 
theory”, a.k.a Sternheimer approach, a.k.a coupled-perturbed KS

• And can also be obtained by Fourier transform under a weak perturbation/delta-kick

Spectra from TDDFT



Approximate Functionals in Linear Response
• Almost all calculations today use an adiabatic approximation:

input instantaneous density into a ground-state approximation

Example:

frequency-independent
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How well does adiabatic TDDFT do in linear response?

Energies typically to within  a few tenths of an eV, bond lengths to within 
about 1%, dipoles and vibrational frequencies to about 5%

Cost scales as N3 or less

Available now in many electronic structure codes

TDDFT Sales Tag

Unprecedented balance between accuracy and efficiency

But, there are cases where the usual functional approximations 
do quite badly…



Perspective on TDDFT, N. T. Maitra, in J. Chem. Phys. 144, 220901 
(2016)   is a semi-recent review with many references…

Where the usual approxs give poor excitations

• Rydberg states
• Polarizabilities of long-chain molecules

• Optical response of solids
• Double excitations
• Conical intersections with the ground-state
• Derivative couplings between excited states
• Long-range charge-transfer excitations

problem primarily is gs vxc

problem primarily is fxc

i.e. the usual xc approxs that are semi-local in space and local in time (GGAs). Hybrids can 
partially ameliorate some of these problems.  

But recent and ongoing functional development has helped with many of these!  



Returning to fully non-perturbative TDDFT: 
How well does adiabatic TDDFT do?

• Often gives results accurate enough to be useful, but not always…
-- fails for certain phenomena

e.g. charge-transfer dynamics
e.g. resonant Rabi oscillations
e.g. some pump-probe situations

• We still need better predictions of what the errors will be in a given situation

• A useful tool for analysis is to disentangle errors in the adiabatic approx.:

• Two sources of error:
(i) Adiabatic approximation itself
(ii) Ground-state functional approximation

To disentangle, can study “adiabatically-exact” potential:

vxc
A-ex (r,t) = vxc

exact-gs[n(t)](r)



An example: The exact TD xc potential and  Time-Resolved e-H scattering

How do the TDDFT approximations do?

Choice of initial spin-singlet KS wavefunction: 

(1) Slater determinant (one orbital, doubly-occupied)
(2) Two-orbital state: one for the electron in the atom, one for the incoming

reflection

t/fs

Y. Suzuki, L. Lacombe, K. Watanabe, N. T. Maitra, PRL 119, 263401 (2017)
L. Lacombe, Y. Suzuki, K. Watanabe, N. T. Maitra, Eur. Phys. J. B. 91, 96 (2018)



Time-Resolved e-H scattering

Choice (1) Slater determinant Choice (2) Two-orbital state

reflection

t/fs

v Although ALDA and 
AEXX densities don’t 
show unphysical 
oscillations for choice 
(2), they overspread 
and ultimately fail to 
scatter – vxc lacks 
crucial peak and 
valley structures.

Adiabatically-exact 
lacks these features too. 

Need memory!!

Y. Suzuki, L. Lacombe, K. Watanabe, N. T. Maitra, PRL 119, 263401 (2017)
L. Lacombe, Y. Suzuki, K. Watanabe, N. T. Maitra, Eur. Phys. J. B. 91, 96 (2018)



Summary and Outlook

v There are so many different interesting things to do with TDDFT!

-- time-dependence opens up a wealth of interesting applications
optical absorption spectra
attosecond laser control of electronic motion
photovoltaic design
time-resolved spectroscopy ….

-- functional development (memory…implementing exact conditions…) 
frequency-dependence in linear-response
full memory-dependence for non-perturbative dynamics

-- extensions
Coupling of TDDFT to ionic motion (phonons)
QED-DFT for polaritonic systems
Finite temperature for warm dense matter  ….



Thanks for your attention!

● A semi-recent review on theory of 
TDDFT, by N. T. Maitra, Perspective in J. 
Chem. Phys. 144, 220901 (2016).

Some Literature on TDDFT

● TDDFT: Concepts 
and Applications, by 
Carsten Ullrich 
(Oxford University 
Press 2012)

● Fundamentals of TDDFT, 
ed. Marques et al.  
(Springer, 2012)å

• Graduate Student Seminar Series 
on theory developments in DFT 
and TDDFT

https://sites.rutgers.edu/dft-student-seminar/


