Time-Dependent Density Functional Theory: An Introduction

Neepa T. Maitra

Rutgers University at Newark

We want to describe phenomena beyond the ground-state

- -- excited states and response
- -- laser-driven systems
- -- non-stationary states

Outline

- **❖** The many-electron problem and TDDFT
- ❖ A few sample applications
- ❖ Linear response formalism
- ❖ What works and what doesn't...

What is the Problem?

Wish to describe a system of *N* electrons in atom, molecule, solid, possibly non-stationary state, possibly subject to an applied field:

$$
\hat{H}(t)\Psi(t) = i\frac{\partial \Psi(t)}{\partial t} \qquad \Psi = \Psi(r_1\sigma_\nu \ r_2\sigma_2 ... \ r_N\sigma_N \ t)
$$
\n
$$
\hat{H}(t) = \hat{T} + \hat{V}_{ee} + \hat{V}_{ext}(t)
$$
\n
$$
\hat{T} = -\frac{1}{2} \sum_{i=1}^N \nabla_i^2 \qquad \hat{V}_{ee} = \frac{1}{2} \sum_{i \neq j}^N \frac{1}{|r_i - r_j|} \qquad \hat{V}_{ext}(t) = \sum_{i=1}^N v_{ext}(r_i, t)
$$
\nsame for all systems of electrons\n
$$
\text{e.g. electron-nuclear attraction} \qquad v_{ext}(r, t) = -\sum_{\nu=1}^{N_n} \frac{Z_{\nu}}{|r - R_{\nu}(t)|}
$$
\n
$$
\text{e.g. laser field} \qquad v_{ext}(r, t) = E f(t) \sin(\omega t) r \cdot \alpha - \sum_{\nu=1}^{N_n} \frac{Z_{\nu}}{|r - R_{\nu}|}
$$

What is the Problem?

Solving for Ψ scales exponentially with the size of the system...

Even just storing the wavefunction:

For *N* electrons \rightarrow 3*N* spatial coordinates \rightarrow M^{3N} grid points if use *M* points for each coordinate \rightarrow exponentially large as *N* grows

... And besides, Ψ contains far more information than we could possibly want.

Usually interested in e.g.

energies equilibrium geometries, lattice constants potential energy surfaces polarizabilities photo-absorption cross-sections ionization probabilities I/V characteristics

These involve "reduced" quantities: e.g. densities, current-densities, twobody-densities…

(TD)DFT provides a way to get observables without computing Y**, in principle exactly.**

Just need the density: $n(r,t) = N \sum_{\sigma, \sigma_2, \sigma_N} \int d^3 r_2 \cdots \int d^3 r_N |\Psi(r\sigma, r_2\sigma_2 \cdots r_N\sigma_N, t)|^2$

For a given particle-particle interaction and statistics:

❖ Ground-state DFT for static *V*_{ext}: Hohenberg-Kohn (1965)

☆ Time-Dependent (TD) DFT for $V_{ext}(t)$ **: Runge-Gross (PRL 52, 997 (1984))**

Proves TD TD

All observables are functionals of n and the initial wavefunction $\Psi(0)$, O[n , $\Psi(0)$]

☆ Time-Dependent (TD) DFT for $V_{ext}(t)$ **: Runge-Gross (PRL 52, 997 (1984))**

All observables are functionals of *n* and the initial wavefunction $\Psi(0)$, O[*n*, $\Psi(0)$]

Proof based on Heisenberg equation of motion for the current-density.

 $v_{\text{ext}}(r,t)$ $v_{\text{ext}}(r,t)$ same $n(r, t)$
 $v'_{\text{ext}}(r,t)$ same $n(r, t)$

But, given a density, how to get the observables?

Consider kinetic energy.

$$
\langle \hat{T} \rangle = \int \Psi^* (\mathbf{r}_1 ... \mathbf{r}_N) \sum_{i=1}^N -\frac{\nabla_i^2}{2} \Psi (\mathbf{r}_1 ... \mathbf{r}_N) d^3 r_1 ... d^3 r_N = ?? [n]
$$

<T> is unknown as a functional of *n*. Yet T is a large part of the total energy

- \dots The **Kohn-Sham system** makes our lives a bit easier.
	- = A *non-interacting* system that has the same density as the interacting system.

Kohn-Sham wavefunction involves products of single-particle orbitals, antisymmetrized to take care of Pauli, i.e. Slater determinant *(usually)*

 \rightarrow Treat *non-interacting kinetic energy* exactly, in terms of the orbitals

GS KS:
$$
\epsilon_j \phi_j(\mathbf{r}) = \left(-\frac{\nabla^2}{2} + v_s[n_{\text{GS}}](\mathbf{r})\right) \phi_j(\mathbf{r})
$$
 $n_{\text{GS}}(\mathbf{r}) = \sum_{j=1}^N |\phi_j(\mathbf{r})|^2$

$$
\text{TD KS: } i\frac{\partial}{\partial t}\phi_j(\mathbf{r},t) = \left(-\frac{\nabla^2}{2} + v_\text{S}[n,\Phi_0](\mathbf{r},t)\right)\phi_j(\mathbf{r},t) \quad n(\mathbf{r},t) = \sum_{j=1}^N |\phi_j(\mathbf{r},t)|^2
$$

The Time-Dependent Kohn-Sham (KS) System

$$
i\frac{\partial}{\partial t}\phi_j(\mathbf{r},t) = \left(-\frac{\nabla^2}{2} + v_\mathbf{s}[n,\Phi_0](\mathbf{r},t)\right)\phi_j(\mathbf{r},t) \qquad n(\mathbf{r},t) = \sum_{j=1}^N |\varphi_j(\mathbf{r},t)|^2
$$

defined such that the density of interacting system reproduced

 $\mathbf{\hat{v}}$ Φ_0 , the initial KS wavefunction, must have the same initial $n(r,0)$ and $\partial_t n(r,t)|_{t=0}$ as Ψ_0 the true initial wavefunction *(this gives a large choice! See example later)*

❖ Decompose Vs into 3 terms:

$$
v_{s}[n; \Phi_{0}](\text{rt}) = v_{\text{ext}}(\text{rt}) + \int_{\mathbf{v}_{\text{ext}}} d^{3}r' \frac{n(\text{r}'t)}{|\textbf{r} - \textbf{r}'|} + v_{\text{xc}}[n; \Psi_{0}, \Phi_{0}](\text{rt})
$$

Hartree, $v_{\text{H}}[n](\text{r}, t)$:
classical electrostatic potential:
approx. in practice

 \dots Note that the structure is set up similar to the (older) ground-state DFT :

$$
\left\{-\frac{1}{2}\nabla^2 + v_s(\mathbf{r})\right\}\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r}), \quad n(\mathbf{r}) = \sum_{k=1}^N |\phi_i(\mathbf{r})|^2
$$

$$
v_s(\mathbf{r}) = v_{\text{ext}}(\mathbf{r}) + \int d^3r' \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + v_{\text{xc}}[n](\mathbf{r})
$$
where $v_{\text{xc}}(\mathbf{r}) = \delta E_{\text{xc}}/\delta n(\mathbf{r}).$

• But in either case, $v_s(r)$, by definition, reproduces the *N*-e interacting density with non-interacting electrons, e.g. He atom ground-state, exact v_s .

What about TDDFT potentials, how do they look? See an example soon!

Differences: simpler functional dependence, and an energy variational principle

Back to the Time-Dependent Kohn-Sham System

$$
v_{\rm s}[n; \Phi_0](\mathbf{r}t) = v_{\rm ext}(\mathbf{r}t) + \int d^3r' \frac{n(\mathbf{r}'t)}{|\mathbf{r} - \mathbf{r}'|} + v_{\rm xc}[n; \Psi_0, \Phi_0](\mathbf{r}t)
$$

 $\mathbf{\hat{P}}$ Functional dependences: Since, by RG, $v_s = v_s[n; \Phi_0]$ and $v_{ext} = v_{ext}[n; \Psi_0]$ → this means $v_{\text{xc}}[n; \Psi_0, \Phi_0]$.

> *Note: functional dep of* v_{ext} *is never directly used!* v_{ext} *is input as the physical potential applied to the system*

- v If begin in ground-state, then no initial-state dependence, since by HK, $\Psi_0 = \Psi_0[n(0)]$ (e.g. in linear response). Then $v_{\text{XC}} = v_{\text{XC}}[n](\text{r}t)$
- * In general, $v_{\text{xc}}[n; \Psi_0]$ Φ_0](*r,t*) depends on n (*r',t'*) everywhere in space and at all earlier times, as well as initial interacting state and KS state \rightarrow Memory dependence
- \cdot In practice $v_{\text{xc}}[n; \Psi_0]$ Φ_0](r,*t*) must be approximated almost all approximations neglect memory!!

Approximations for $v_{\text{xc}}[n; \Psi_{0}, \Phi_{0}]$ (r,*t*)

Almost all approximations simply select an approximation from ground-state DFT, and plug in the instantaneous density.

-- Called "adiabatic" due to implicit assumption that system is in some groundstate at each time.

$$
v_{\text{xc}}^{\text{A}}[n; \Psi_0, \Phi_0](\mathbf{r}, t) = v_{\text{xc}}^{\text{g.s.}}[n(t)](\mathbf{r}) = \left. \frac{\delta E_{\text{xc}}[n]}{\delta n(\mathbf{r})} \right|_{n=n(\mathbf{r}, t)}
$$

Simplest: adiabatic local density approximation (ALDA)

$$
v_{\text{xc}}^{\text{ALDA}}(\mathbf{r},t) = v_{\text{xc}}^{\text{LDA}}[n(\mathbf{r},t)] = \left. \frac{d \left(n \mathcal{E}_{\text{xc}}^{unif}(n) \right)}{dn} \right|_{n=n(\mathbf{r},t)}
$$

where $\mathcal{E}_{\mathsf{xc}}^{\mathsf{unif}}$ (n) is the exchange-correlation energy per particle of a uniform electron gas of density n

-- completely local dependence on the density in both space and time.

How a TDDFT calculation works in practise.

1. Choose an approximation for $v_{xc}[n, \Psi_0, \Phi_0](r,t)$ e.g. ALDA-x, where $v_{\text{xc}}[n](r,t) = -a n^{1/3} (r,t)$

2. Select initial KS state Φ_0 with same $n(r,0)$ and $\partial_t n(r,t)|_{t=0}$ as the physical problem you're trying to model. E.g. N orbitals (in a determinant), $\{\phi_i(\bm{r})\}$

> If system starts in a ground state, then use the initial ground-state KS orbitals, as calculated from *N* lowest energy orbitals of

$$
\left(-\frac{\nabla^2}{2} + v_{\text{ext}}(\mathbf{r}) + v_{\text{H}}[n](\mathbf{r}) + v_{\text{xc}}[n](\mathbf{r})\right)\phi_i(\mathbf{r}) = \epsilon_i \phi_i(\mathbf{r}) \qquad n(\mathbf{r}) = \sum_{i=1}^N |\phi_i(\mathbf{r})|^2
$$

using chosen approximation for $v_{\rm xc}[n]$.

3. Propagate the time-dependent Kohn-Sham equation

$$
i\frac{\partial}{\partial t}\phi_j(\mathbf{r},t) = \left(-\frac{\nabla^2}{2} + v_{\text{ext}}(\mathbf{r},t) + v_{\text{H}}[n](\mathbf{r},t) + v_{\text{XC}}[n,\Psi_0,\Phi_0](\mathbf{r},t)\right)\phi_j(\mathbf{r},t)
$$

$$
n(\mathbf{r},t) = \sum_{j=1}^N |\varphi_j(\mathbf{r},t)|^2
$$

using the applied v_{ext} from the physical problem (e.g. laser field and electronnuclear potential) and your chosen approximation for $v_{\text{xc}}[n; \Psi_0, \Phi_0]$

Outline

- **❖** The many-electron problem and TDDFT
- ❖ A few sample applications
- ❖ Linear response formalism
- ❖ What works and what doesn't...

Brief sampling of applications

• Strong fields applied to molecules:

High-harmonic generation, enhanced ionization, Coulomb explosion imaging, laser control of electronic motion…

e.g. watching attosecond charge migration after nitrogen K-edge ionization in nitrosobenzene

Time-Dependent Hole Density

$$
Q(z,t)=\rho^{\text{+}}\cdot\rho_0
$$

Brief sampling of applications

• Strong-fields applied to solids:

e.g. stopping power of projectiles, dielectric breakdown in semiconductors, high harmonic generation, plasmonics, Maxwell eqns + TDDFT…

e.g. ultrafast laser-induced demagnetization, and control of magnetization

Krieger, Dewhurst, Elliott, Sharma, Gross, J. Chem. Theory Comput. 11, 4870 (2015)

Brief sampling of applications

Rozzi et al. Nature. Comm. 4, 1602 (2013) • Dynamics after photo-excitation: e.g. Photovoltaic design \int_0^1

Light-harvesting molecular triad:

Electron-ion dynamics in chargetransport needed.

TDDFT in Linear Responseà **Spectra**

Vast majority of applications of TDDFT are to get excitation energies and optical spectra

a) Mosca Conta et al, App. Phys. Lett. 104, 224101 (2014);

b) Jornet-Somoza et al. Phys.Chem.Chem.Phys., 17, 26599 (2015)

c) Marini et al. , Phys. Rev. Lett. **91**, 256402 (2003); Botti et al. Phys. Rev. B **72**, 125203 (2005); Sharma et al. Phys. Rev. Lett. **107**, 186401 (2011); Trevisanutto et al., Phys. Rev. B **87**, 205143 (2013); Rigamonti et al., Phys. Rev. Lett. **114**, 146402 (2015); Z.-h. Yang et al. Phys. Rev. B 92, 035202 (2015); Refaely-Abramson et al. Phys. Rev. B 92, 081204 (2015);

d) Rappoport and J. Hutter, in Fundamentals of Time-Dependent Density Functional Theory, edited by M. A. Marques et al. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2012), pp. 317–336.

Outline

- ❖ The many-electron problem and TDDFT
- \triangleleft A few sample applications
- **❖** Linear response formalism
- ❖ What works and what doesn't...

In fact, the vast majority of calculations are in the linear response regime, to calculate spectra, and these usually operate directly in the frequency-domain.

So we'll now discuss how that works.

What do we actually mean by linear response?

Extracting spectra (excitation energies/oscillator strengths) from TDDFT *A brief sketch (1/2)*

$$
\chi[n_{\text{GS}}](\text{r}t; \text{r}'t') = \frac{\delta n(\text{r}, t)}{\delta v_{\text{ext}}(\text{r}', t')} \bigg|_{v_{\text{ext}}[n_{\text{GS}}(\text{r})]}
$$

 χ is a functional of n_{GS} , the unperturbed ground-state density

Use TD QM perturbation theory

And take the Fourier transform w.r.t. $(t-t') \rightarrow$ Frequency-domain response function:

$$
\chi(\mathbf{r}, \mathbf{r}'; \omega) = \sum_{I} \begin{Bmatrix} F_{I}(\mathbf{r}) F_{I}^{*}(\mathbf{r}') \\ \omega - \omega_{I} + i0^{+} \end{Bmatrix} \begin{Bmatrix} F_{I}^{*}(\mathbf{r}) F_{I}(\mathbf{r}') \\ \omega + \omega_{I} + i0^{+} \end{Bmatrix}
$$

$$
F_{I}(\mathbf{r}) = \langle \Psi_{0} | \hat{n}(\mathbf{r}) | \Psi_{I} \rangle
$$

Poles at excitation frequencies, $\omega_{I} = E_{I} - E_{0}$
 $\omega_{I} = E_{I} - E_{0}$

And residues are transition densities, giving oscillator strengths (transition dipoles)

But we don't have wavefunctions in TDDFT! So how to get χ from TDDFT?

Extracting spectra (excitation energies/oscillator strengths) from TDDFT *A brief sketch (2/2)*

$$
\lim_{\chi \to 0} \int_{\chi}^{n(1)} (\mathbf{r}t) = \int_{0}^{\infty} dt' \int d^{3}r' \chi_{S}(\mathbf{r}t, \mathbf{r}'t') \delta v_{S}(\mathbf{r}'t')
$$
\n
$$
\chi_{S}(\mathbf{r}t, \mathbf{r}'t') = \frac{\delta n(\mathbf{r}t)}{\delta v_{S}(\mathbf{r}'t')} \Big|_{v_{S}^{(0)}[n_{GS}]}
$$
\nsame as that of the $\text{m} \times \chi \neq \chi_{S}$

Evaluate previous expression for the case of non-interacting system \rightarrow

$$
\chi_{\rm s}(\mathbf{r},\mathbf{r'},\omega) = \sum_{j,k} (f_j - f_k) \delta_{\sigma_j,\sigma_k} \frac{\phi_k^*(\mathbf{r})\phi_j(\mathbf{r})\phi_j^*(\mathbf{r'})\phi_k(\mathbf{r'})}{\omega - (\varepsilon_k - \varepsilon_j) + iO^+}
$$

Poles at KS frequencies, NOT the true excitation energies

Now use functional chain rule to relate the two functional derivatives, and obtain:

 $→$ **Central Equation of TDDFT Linear Response**

$$
\chi[n_{GS}](\mathbf{r}, \mathbf{r}', \omega) = \chi_{S}[n_{GS}](\mathbf{r}, \mathbf{r}', \omega) + \int d^{3}r_{1}d^{3}r_{2}\chi_{S}[n_{GS}](\mathbf{r}, \mathbf{r}_{1}, \omega)
$$

$$
\left(\frac{1}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} + f_{\text{XC}}[n_{GS}](\mathbf{r}_{1}, \mathbf{r}_{2}, \omega)\right) \chi[n_{GS}](\mathbf{r}_{2}\mathbf{r}', \omega)
$$

 $f_{\text{XC}}[n_{GS}](\mathbf{r}_1t_1, \mathbf{r}_2t_2) = \frac{\delta v_{\text{XC}}(\mathbf{r}_1t_1)}{\delta n(\mathbf{r}_2t_2)}$ exchange-correlation kernel

Spectra from TDDFT

Poles at true Poles at KS excitations excitations $\chi[n_{GS}](\mathbf{r}, \mathbf{r}', \omega) = \chi_{S}[n_{GS}](\mathbf{r}, \mathbf{r}', \omega) + \int d^3 r_1 d^3 r_2 \chi_{S}[n_{GS}](\mathbf{r}, \mathbf{r}_1, \omega)$ $\left(\frac{1}{|\mathbf{r}_1-\mathbf{r}_2|}+f_{\text{XC}}[n_{GS}](\mathbf{r}_1,\mathbf{r}_2,\boldsymbol{\omega})\right)\chi[n_{GS}](\mathbf{r}_2\mathbf{r}',\boldsymbol{\omega})$

Yields exact spectra in principle.

In practice, approxs needed in (1) and (2).

Need (1) ground-state $v_{S,0}[n_0](r)$, and its bare excitations (2) XC kernel $f_{\text{xc}}[n_0](\mathbf{r}, \mathbf{r}', t - t') = \delta v_{\text{xc}}(\mathbf{r}t)/\delta n(\mathbf{r}t')|_{n_0}$

- Cast into matrix equations coded in quantum chemistry codes
- For extended systems, tend to work directly with the Dyson-like equation
- Linear response can also be formulated as a "TD density-functional perturbation theory", a.k.a Sternheimer approach, a.k.a coupled-perturbed KS
- And can also be obtained by Fourier transform under a weak perturbation/delta-kick

Casida, in Recent Advances in Density Functional Methods, ed. D.E. Chong pp. 155–192 (World Scientific, Singapore, 1995); Petersilka, Gossmann, Gross, *PRL 76, 1212 (1996);* Andrade et al. JCP 126,184106 (2007); Yabana et al. Phys. Status Solidi B 243, 1121 (2006).

Approximate Functionals in Linear Response

• Almost all calculations today use an **adiabatic approximation:** input instantaneous density into a ground-state approximation

$$
v_{\text{xc}}^{\text{A}}[n; \Psi_0, \Phi_0](\mathbf{r}, t) = v_{\text{xc}}^{\text{g.s.}}[n(t)](\mathbf{r}) = \frac{\delta E_{\text{xc}}[n]}{\delta n(\mathbf{r})}\bigg|_{n=n(\mathbf{r}, t)}
$$

$$
f_{\text{xc}}^{\text{A}}[n_0](\mathbf{r}, \mathbf{r}', t - t') = \frac{\delta^2 E_{\text{xc}}[n]}{\delta n(\mathbf{r})\delta n(\mathbf{r}')} \bigg|_{n=n_0(\mathbf{r})} \delta(t - t')
$$

$$
f_{\text{xc}}^{\text{A}}[n_0](\mathbf{r}, \mathbf{r}', \varphi) = \frac{\delta^2 E_{\text{xc}}[n]}{\delta n(\mathbf{r}) \delta n(\mathbf{r}')} \bigg|_{n=n_0(\mathbf{r})}
$$

frequency-independent

Example:
$$
v_{\text{xc}}^{\text{ALDA}}(\mathbf{r}, t) = v_{\text{xc}}^{\text{LDA}}[n(\mathbf{r}, t)] = \frac{d\left(n\mathcal{E}_{\text{xc}}^{unif}(n)\right)}{dn}\Bigg|_{n=n(\mathbf{r}, t)}
$$

\n
$$
f_{\text{xc}}^{\text{ALDA}}[n_0](\mathbf{r}, \mathbf{r}', t-t') = \frac{d^2\left(n\mathcal{E}_{\text{xc}}^{unif}(n)\right)}{dn^2}\Bigg|_{n=n_0(\mathbf{r})} \delta(\mathbf{r}-\mathbf{r}')\delta(t-t')
$$

Outline

- **❖** The many-electron problem and TDDFT
- ❖ A few sample applications
- ❖ Linear response formalism
- ❖ What works and what doesn't...

How well does adiabatic TDDFT do in linear response?

Energies typically to within a few tenths of an eV, bond lengths to within about 1%, dipoles and vibrational frequencies to about 5%

 \bullet Cost scales as N³ or less

Available now in many electronic structure codes

Unprecedented balance between accuracy and efficiency

TDDFT Sales Tag

But, there are cases where the usual functional approximations do quite badly…

Where the *usual* **approxs give poor excitations**

i.e. the usual xc approxs that are semi-local in space and local in time (GGAs). Hybrids can partially ameliorate *some* of these problems.

But recent and ongoing functional development has helped with many of these!

Perspective on TDDFT, N. T. Maitra, in J. Chem. Phys. **144**, 220901 (2016) is a semi-recent review with many references…

Returning to fully non-perturbative TDDFT: **How well does adiabatic TDDFT do?**

- Often gives results accurate enough to be useful, but not always…
	- -- fails for certain phenomena
		- e.g. charge-transfer dynamics
		- e.g. resonant Rabi oscillations
		- e.g. some pump-probe situations
- We still need better predictions of what the errors will be in a given situation
- A useful tool for analysis is to disentangle errors in the adiabatic approx.:

$$
v_{\text{xc}}^{\text{A}}[n; \Psi_0, \Phi_0](\mathbf{r}, t) = v_{\text{xc}}^{\text{g.s.}}[n(t)](\mathbf{r}) = \left. \frac{\delta E_{\text{xc}}[n]}{\delta n(\mathbf{r})} \right|_{n=n(\mathbf{r}, t)}
$$

- Two sources of error:
- (i) Adiabatic approximation itself
- (ii) Ground-state functional approximation

To disentangle, can study "adiabatically-exact" potential:

$$
v_{\text{xc}}^{\text{A-ex}}(r,t) = v_{\text{xc}}^{\text{ exact-gs}}[n(t)](r)
$$

An example: The *exact* **TD xc potential and Time-Resolved e-H scattering**

Choice of initial spin-singlet KS wavefunction:

(1) Slater determinant (one orbital, doubly-occupied)

(2) Two-orbital state: one for the electron in the atom, one for the incoming

Y. Suzuki, L. Lacombe, K. Watanabe, N. T. Maitra, PRL **119**, 263401 (2017) L. Lacombe, Y. Suzuki, K. Watanabe, N. T. Maitra, Eur. Phys. J. B. **91,** 96 (2018)

Time-Resolved e-H scattering

❖ Although ALDA and AEXX densities don't show unphysical oscillations for choice (2), they overspread and ultimately fail to scatter – $v_{\rm xc}$ lacks crucial peak and valley structures.

Adiabatically-exact lacks these features too.

reflection

 0.8

 $\overline{1}$

 $p = -1.5$

Need memory!!

t/fs

 0.4 0.6

 0.2

 Ω

 $\bf{0}$

Y. Suzuki, L. Lacombe, K. Watanabe, N. T. Maitra, PRL **119**, 263401 (2017) L. Lacombe, Y. Suzuki, K. Watanabe, N. T. Maitra, Eur. Phys. J. B. **91,** 96 (2018)

Summary and Outlook

 \cdot There are so many different interesting things to do with TDDFT!

-- time-dependence opens up a wealth of interesting applications

optical absorption spectra attosecond laser control of electronic motion photovoltaic design time-resolved spectroscopy ….

-- functional development (memory…implementing exact conditions…)

frequency-dependence in linear-response full memory-dependence for non-perturbative dynamics

-- extensions

Coupling of TDDFT to ionic motion (phonons) QED-DFT for polaritonic systems Finite temperature for warm dense matter ….

Thanks for your attention!

Some Literature on TDDFT

ortura Natas in Physics 1837 el A. L. Marque Neepa T. Maitra nando M. S. Noqueira ard K. U. Gross el Ruhio Fditors **Fundamentals of Time-Dependent Density Functional Theory** 2 Springer

● A semi-recent review on theory of TDDFT, by N. T. Maitra, *Perspective* in J. Chem. Phys. **144**, 220901 (2016).

• Graduate Student Seminar Series on theory developments in DFT and TDDFT

https://sites.rutgers.edu/dft-student-seminar/

- TDDFT: Concepts and Applications, by Carsten Ullrich (Oxford University Press 2012)
- Fundamentals of TDDFT, ed. Marques et al. (Springer, 2012)å

