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Structure for the day
Lecture 1: Factors affecting the accuracy of cosmic-ray neutron counts and estimated 
soil moisture

• Factors do influence the signal from the cosmic-ray sensors
• Important to account for those factors to reduce uncertainty in estimated soil moisture

Lecture 2: Efforts to a harmonized data processing approach for cosmic-ray neutron 
sensors

• Despite important, there are currently no standard way that individual national-scale 
networks correct such factors and process the data globally

• There are ongoing efforts to produce a global harmonized database

Lecture 3: The use of cosmic-ray neutron sensors in hydrometeorology
• Examples of applications of cosmic-ray neutron sensors combined with different 

environmental models with a wide range of complexity
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At the end of  this lecture you should…

• Be familiar with the way the cosmic-ray sensor works in 
translating neutron counting rates to soil moisture estimates
• Be able to understand the required corrections and to identify 

additional factors affecting the sensor signal
• Be aware of way the sensor operates in dry versus humid site 

conditions
• Have a basic understanding of which factors may impact, more 

or less, both the neutron signal as well as the derived soil 
moisture product
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Brief  introduction
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Born in Piracicaba, Brazil
1999 – 2002 BSc Meteorology (University of São Paulo 🇧🇷)
2003 – 2005 MSc Agricultural Systems Ecology (University of São Paulo 🇧🇷)
2006 – 2010 PhD Hydrology (University of Arizona 🇺🇸)
2009 – 2012 NASA Earth and Space Science Fellow (University of Arizona 🇺🇸)
2013 – Senior Lecturer Hydrometeorology (University of Bristol 🇬🇧)

Additional (current) appointments :
Co-leader for the ‘Water’ theme of the Cabot Institute of the Environment
Co-leader for the ‘Impact and risk-based predictions’ theme of the MetOffice Academic Partnership
Board Member for the GW4 Water Security Alliance
Associate Editor for the American Geophysical Union’s Water Resources Research Journal
Associate Editor for the American Meteorological Society’s Journal of Hydrometeorology

Who am I?
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Coastal desert shrubland (Southwest USA)

Cerrrado (Woody Savanna) 🇧🇷 Farmland/grassland 🇬🇧Grassland/pasture 🇧🇷Harvard Forest 🇺🇸

Amazon Rainforest 🇧🇷

Sugarcane cropland 🇧🇷

Cerrado (Woody Savanna) 🇧🇷 Biosphere2 Tropical Rainforest mesocosm 🇺🇸

Rafael Rosolem ©

Experience in the field
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Simple Biosphere Model NOAH model Joint UK Land Environment Model

Experience with modeling



Research projects
§ Team member ‘Large-scale Biosphere Atmosphere Experiment in Amazonia’ – LBA 

(NASA/INPE)
§ Principal Investigator ‘A MUlti-scale Soil moisture- Evapotranspiration Dynamics study’ –

AMUSED (NERC)
§ Co-Principal Investigator ‘MOSAIC Digital Environment Feasibility Study’ (NERC)
§ Principal Investigator ‘Brazilian Experimental datasets for MUlti- Scale interactions in 

the critical zone under Extreme Drought’ – BEMUSED (NERC/FAPESP)*
§ Co-Investigator ‘Drought Resilience In East African dryland Regions’ - DRIER (Royal 

Society)*
§ Co-Investigator ‘Mobile phone App Development for Drought Adaptation in Drylands -

MAD DAD’ (EPSRC)*
§ Co-Investigator ‘DOWN2EARTH: Translation of climate information into multilevel 

decision support for social adaptation, policy development, and resilience to water 
scarcity in the Horn of Africa Drylands’ (ERC)*

* Ongoing projects
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Understanding the factors
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Our understanding of  the sensor was limited at 
the beginning
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qGRAV = gravimetric water content (g g-1)
Npi = corrected measured neutron counting rate 

(counts per hour)
Nraw = raw measured neutron counting rate (counts per 

hour)
N0 = site-specific calibration parameter
fp = atmospheric pressure correction factor (-)
fi = solar intensity correction factor (-)
a0, a1, a2 = fixed coefficients (-)
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Based on Zreda et al. (2008) and Desilets et al. (2010)



Over the years, the community has learned 
more about the cosmic-ray neutron sensors
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where

𝑁&'*+ = 𝑁,-. & 𝑓& & 𝑓' & 𝑓* & 𝑓+

qVOL = volumetric water content (m3 m-3)
Npihv = fully-corrected measured neutron counting 

rate (counts per hour)
Nraw = raw measured neutron counting rate (counts per 

hour)
N0 = site-specific calibration parameter
LW    = lattice water content (g g-1)
SOC  = soil organic carbon (g g-1)
rbd = dry soil bulk density (g cm-3)
fp = atmospheric pressure correction factor (-)
fi = solar intensity correction factor (-)
fh = atmospheric water vapor correction factor (-)
fv = aboveground biomass correction factor (-)
a0, a1, a2 = fixed coefficients (-)
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Based on Franz et al. (2012), Rosolem et al. (2013); 
and Baatz et al. (2015?)



a0, a1, a2 are fixed coefficients originally obtained 
from neutron particle transport modeling

Rafael Rosolem © 12Unpublished work by Marek Zreda and Darin Desilets

a0 = 0.0808 (cm3 g-1)
a1 = 0.372 (-)
a2 = 0.115 (cm3 g-1)

However, there have been attempts to ‘adjust’ 
these coefficients to site-specific conditions 
through empirical methods!

See for example:
Rivera Villarreyes et al., 2011
Iwema et al., 2015
Heidbüchel et al., 2016

What are the advantages and 
disadvantages of such approaches?



Lattice water: function of soil formation and weathering 

Generally higher lattice water with clay content but need to sample locally 
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What we know, soil lattice water 

Franz et al. (2012; WRR)

where N is the neutron counting rate/flux normalized to a
reference atmospheric pressure and solar activity level and
N0 is the counting rate/flux over dry soil under the same
reference conditions.

3. Results

3.1. Uniform Profiles of Hydrogen
[12] First, we investigate how the effective sensor depth

varies with uniform vertical profiles of different lattice water
and pore water. For these conditions, the length of water
increases linearly with depth. Figure 2a illustrates three cases
of different lattice water and pore water conditions. The
effective sensor depth, z*, is defined as the depth at which
the sum of surface, pore, and lattice water crosses the 86%
cumulative sensitivity contour (section 2.1, equation (4)).
In Figure 2a we also illustrate how the relative position of
the 86% cumulative sensitivity contour would vary for no
ponded water and 2 cm of ponded water on the surface. The
values of z*, computed using equation (5) for different water
contents and three different lattice water values (Figure 2b)
show the nonlinear reduction in z* for increasing lattice
water. The large reductions in z* with changes in water
content under dry conditions are expected because of the
relatively high sensitivity of the neutron probe’s response
under dry conditions. The value of z* is relatively indepen-
dent of lattice water content at high water contents.
[13] Hydrogen in lattice water contributes to the reduction

of z* values (Figure 2). But lattice water is rarely reported
in the literature and we know little about its variations in
soils. Despite the recognition of lattice water in soils and
its potential influence on neutron counts [Gardner and
Kirkham, 1952], it was mostly ignored given the locality of
the in situ neutron probes and site specific calibration pro-
cedures [Chanasyk and Naeth, 1996; Evett and Steiner,
1995]. Because lattice water can significantly affect neutron
counts, we measure lattice water in soils at COSMOS sites as
part of the standard calibration procedure. The analysis is
performed using gravimetric methods in a laboratory (we use

Actlabs, Ancaster, Ontario, Canada) on various samples
collected within the probe footprint. We found significantly
higher lattice water in the volcanic soils of Hawaii (average
of 12.6! 7.26% by weight for three sites) compared to those
from the continental USA (average of 3.64 ! 1.55% for 41
sites, full data available at http://cosmos.hwr.arizona.edu/).
Previous research [Greacen, 1981] showed a linear rela-
tionship between lattice water and clay content. But our
results suggest a more complex relationship. Lattice water is
present not only in clay minerals, but also in many common
rock-forming primary minerals such as hornblende and bio-
tite and requires further research.

3.2. Variable Profiles of Pore Water
[14] In addition to the uniform case (section 3.1), we

investigate how vertical variations in soil moisture affect
the effective measurement depth. Using a one-dimensional
modeling experiment, we simulate the temporal distribution
of soil moisture in various homogeneous porous media for
two prescribed atmospheric boundary conditions. Figures 3a
and 3c show the infiltration, redistribution, and evaporation
of water in uniform sand and silty clay loam for a 7.62 rain
event over 24 h followed by a 2 mm d"1 potential evapo-
transpiration. Note, the boundary conditions were chosen to
avoid surface runoff and that the simulations showed similar
behavior for the 2.54 cm rain event for each soil texture and
where not shown. There are large differences in the wetting
front and total infiltration of water for the two different tex-
tures. As soil moisture is redistributed in time, the effective
measurement depths change (Figures 3b and 3d). Specifi-
cally, the effective depth becomes shallower when surface
layers are wetter, and deeper with drier surface layers. There
is a significant difference between the two cases: given the
differences in field capacity (and thus also the initial water
content) between the two soils, we see a reduced range in z*
values of 9 to 15 cm for the silty clay loam (Figure 3d) as
compared to 15 to 45 cm for the sand (Figure 3b), for the
same precipitation and evaporation boundary conditions.

Figure 2. (a) Length of water as a function of soil depth for different lattice water and uniform dry or wet
soil moisture profiles. The effective sensor depth, z*, for each case is where the sum of water crosses the
86% cumulative sensitivity contour, j. (b) Relationship of effective sensor depth, z* (equation (5)), for all
uniform soil moisture profiles, three cases of lattice water, and no ponded water on surface calculated with
equation (4). Note rbd = 1.4 g cm"3 for all cases, t is the weight fraction of lattice water in mineral grains,
q is the volumetric pore water, and WS is the surface water.

FRANZ ET AL.: MEASUREMENT DEPTH OF THE COSMIC-RAY SOIL MOISTURE PROBE W08515W08515

4 of 9

Chemically-bound “lattice” water is not exchanged 
with the atmosphere but affects the signal

Rafael Rosolem © 13

McJannet (3rd COSMOS Workshop 2012)



Soil Organic Carbon acts in a similar way to 
lattice water (usually assumed time-invariant)

Rafael Rosolem © 14

conditions and the contribution increased up to 10.8%
under dry conditions. Hydrogen stored in the trees as carbo-
hydrates and in tissue water accounts for approximately
39–48% of the hydrogen pool. Assuming a mean instanta-
neous interception storage capacity of 1.5 mm, canopy
interception makes up !1.6% of the total hydrogen content
in the CRP footprint. According to Klaassen et al. [1998],
the storage capacity of coniferous trees does not exceed 3
mm, which would lead to a maximum contribution of
!3.1% of the total hydrogen in the CRP footprint. There-
fore, we neglected the contribution of the dynamic above-
ground hydrogen pool associated with canopy interception.
The static aboveground hydrogen pools affect the incoming
neutron flux, and we assumed here that this can be
accounted for by calibration of N0 against in situ soil water
content measurements.

3.2. Effective Sensor Depth
[40] Figure 6 illustrates how the effective sensor depth

(z") decreases with increasing soil water content and
increasing number of belowground hydrogen pools. For dry
conditions, z" is approximately 70 cm without considering
additional hydrogen pools and less than 40 cm for the case
that all belowground hydrogen pools are included. Due to
the high amount of organic matter in the litter layer and in

Figure 5. Estimated percentages of hydrogen in the main hydrogen pools present within the footprint
of the CRP in the W€ustebach site for different catchment wetness conditions during the study period: (a)
maximal wetness, (b) average wetness, and (c) driest condition (OM, organic matter ; LW, lattice water;
RM, root biomass).

Figure 6. The effective sensor depth versus soil water
content for different hydrogen pool combinations (SWC,
soil water content ; OM, organic matter ; LW, lattice water;
RM, root biomass), including the litter layer.

BOGENA ET AL.: COSMIC-RAY PROBE IN HUMID FORESTED ECOSYSTEMS

5785

Bogena et al. 2013 (WRR)

SWC = soil water content
OM = organic matter
LW = lattice water
RM = root biomass



Dry soil bulk density is important if  estimating 
volumetric water content but hard to sample

15Rafael Rosolem ©

Iowa
September 2010
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Cosmic-ray intensity
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Cut-off rigidity map!

Higher values show regions with 
stronger magnetic field (i.e., near the 
equator)

Stronger magnetic fields result in less 
cosmic-rays reaching the Earth’s 
atmosphere

Luckily, this correction is easily 
applied in the cosmic-ray sensor 
measurements



Atmospheric pressure
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Compare the number of molecules at 
10 km of altitude versus surface level!
What do you notice?

More particles were in the cosmic-ray neutron’s 
downward pathway in a thicker atmosphere

Also remember that pressure is continuously 
changing due to weather patterns

Luckily, this correction is also easily applied to 
the cosmic-ray sensor



Atmospheric water vapor
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Additional 
temperature and 
humidity sensors 
allows for 
calculation of 
water vapor 
correction with 
surface 
meteorological 
measurements



Water vapor correction factor relative to fully 
dry atmosphere

Rafael Rosolem © 20

Data from NCEP Reanalysis: 
Monthly climatology (1948-2011)



Aboveground biomass
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Unpublished data (Trenton Franz)



Hydrogen Sources in Support Volume 

7 

1. Water Vapor 

6. Layer of Water 

3. Vegetation 
4. Intercepted 

2. Built-up 
5. Surface Water 

7. Soil Moisture 
8. Lattice Water 

9. Soil Carbon Compounds 

Transient 
Quasi-static 
Static 

Image kindly provided by Trenton Franz (Nebraska-Lincoln)

The cosmic-ray neutron sensor signal is affected bby
all sources of  hydrogen within its support volume

Rafael Rosolem © 22



Example of  relative contribution from 
different hydrogen pools in a humid region

Rafael Rosolem © 23

CHAPTER 2. COSMIC-RAY NEUTRON SENSOR LITERATURE REVIEW

FIGURE 2.9. This figure from Bogena et al. (2013) shows the relative contributions
to the total hydrogen at three wetness levels in the German Wüstebach forest. a
maximal wetness, b average wetness, c driest conditions. OM is organic matter, LW
is lattice water and RM is root biomass. Copied with permission.

of the soil organic matter range (0.001 – 0.077cm3 cm°3 water equivalent) reported. Lattice
water and soil organic matter content affect the neutron counts in a similar way because they
are distributed similarly within the CRNS support volume. Differences in vertical distribution
exist, with soil organic matter content in many soils being higher near the surface than in the
subsoil. Another below ground hydrogen pool discussed is plant roots. This hydrogen pool has
been investigated less due to the difficult sampling process Baatz et al. (2015). In cases where it
has been investigated it was found to be of less importance than lattice water and soil organic
matter (e.g. Bogena et al., 2013).

44

Bogena et al. (2013)



N0 is a parameter obtained through site 
calibration

Rafael Rosolem © 24

Requires an independent 
estimation of soil 
moisture with similar 
footprint

N0 is the theoretical 
maximum amount of 
neutron counts under 
fully dry conditions



This is measured with 
volumetric soil samples 
representative of same 
footprint

This is measured from 
the cosmic-ray sensor 
while taking soil samples
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N0 is a parameter obtained through site 
calibration



Which defines the 
position of the 
calibration curve
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N0 is a parameter obtained through site 
calibration

Requires an independent 
estimation of soil 
moisture with similar 
footprint

N0 is the theoretical 
maximum amount of 
neutron counts under 
fully dry conditions



And consequently, the 
N0 parameter
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N0 is a parameter obtained through site 
calibration

Can you think of 
potential issues with 
these calibration steps?

Think of extreme dry or 
wet regions?



We found that CRS needs to be calibrated for 
multiple days for better performance

Rafael Rosolem © 28

Iwema et al. 2015 (HESS)



Propagation of  uncertainties
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Propagation of  uncertainty: dry versus humid 
regions

Rafael Rosolem © 30
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dry soil 
uncertainty

Rafael Rosolem ©

Propagation of  uncertainty: dry versus humid 
regions

In a dry region:

Uncertainty of neutron 
counts on the order of 2%

Propagated uncertainty 
of soil moisture on the 
order of 1.5% vol.

What do you expect to 
happen for humid 
regions?
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wet soil 
uncertainty

dry soil 
uncertainty

Rafael Rosolem ©

Propagation of  uncertainty: dry versus humid 
regions

In a humid region:

Uncertainty of neutron 
counts on the order of 5%

Do you know why?

Propagated uncertainty 
of soil moisture on the 
order of 17% vol.

Can you understand why?
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Let’s have a look at a dry site: Santa Rita (AZ, USA)

“Hot semi-arid”
Annual Temp = 18.7 oC
Annual Prec = 335 mm 
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Now, let’s have a look at a humid site: Harvard Forest (MA, USA)

“Humid continental”
Annual Temp = 9.0 oC

Annual Prec = 1,131 mm 
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between the two water content time series are apparent in
Figure 11. In particular, a significant overestimation of
water content is visible during 4 days in December 2011
and December 2012. During these days with snow, the esti-
mated soil water content exceeded the expected values by
more than 0.5 cm3/cm3. This can be attributed to thick
snow covers, which depressed the fast neutron intensity.
Since the amount of slow neutrons increases when snow is
present, Desilets et al. [2010] suggested that this effect can
potentially be used to estimate the snow cover depth from
CRP measurements. However, since an appropriate method
is still not available, more research is needed to come up
with appropriate estimates of average snow depths from
CRP data. In order to avoid propagating erroneous meas-
urements affected by snow into the calibration, we
excluded time periods with snow from the calibration.

[45] Zreda et al. [2012] argued that it is important to
consider belowground hydrogen pools for soil water con-
tent determination from CRP measurements. In order to
test whether consideration of belowground hydrogen pools
(lattice water, organic matter, litter layer, and root biomass)
is also important in ecosystems with litter layer, we com-
pared different calibration options: (3) including only the
static belowground hydrogen pools, (4) including only
water dynamics of the litter layer, and (5) including both
static belowground hydrogen pools and water dynamics of
the litter layer. The consideration of belowground hydrogen
pools led to a decrease in the accuracy of soil water content
determination in this study (see options 3 and 5). This is
the first study that compared the accuracy of soil water con-
tent determination with and without corrections for below-
ground hydrogen pools, and it is not clear at this point
whether the decrease in accuracy is systemic or only occurs
for our study site. If one considers that accounting for
belowground pools effectively leads to lower neutron

counts and thus steeper calibration curves, it seems not sur-
prising that a decrease of accuracy was observed for the
humid W€ustebach test site. Three other explanations for the
decrease in accuracy when considering belowground
hydrogen pools are related to (i) the uncertainty in deter-
mining lattice water, soil organic matter, and root biomass
in the face of spatial variability of these properties, (ii) the
uncertainty in effective measurement depth through uncer-
tain belowground hydrogen pools, and (iii) the shallow
measurement depth of the CRP measurement in relation to
the sensor positions of the SoilNet. Clearly, more research

Figure 9. (top) Daily precipitation from the meteorological station Kalterherberg as well as vertically
and horizontally weighted averages of daily in situ soil water content and (bottom) time series of cor-
rected neutron count rates measured at the W€ustebach site (original hourly data as well as 12 and 24
hourly averages).

Figure 10. Standard deviation of soil water content deter-
mined by a cosmic-ray probe versus mean soil water con-
tent for different neutron count integration times.

BOGENA ET AL.: COSMIC-RAY PROBE IN HUMID FORESTED ECOSYSTEMS

5788

Bogena et al. 2013 (WRR)

Rafael Rosolem ©

Longer integration time can reduce uncertainty 
at the cost of  lower temporal resolution
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Example: Sheepdrove Farm (UK)
Hourly data
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3-hourly data

Example: Sheepdrove Farm (UK)
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6-hourly data

Example: Sheepdrove Farm (UK)
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12-hourly data

Example: Sheepdrove Farm (UK)
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Daily data

Example: Sheepdrove Farm (UK)



Applying proper sensitivity analysis in a humid 
region
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18 Iwema et al.

F IGURE 1 Graphical de�nition of accuracy and precision. The black dots represent estimates (measurements),
the green dots represent the average of those estimates, and the red T marks indicate the target (true value), which
is most of the time unknown.

F IGURE 2 The three research sites at Sheepdrove Organic Farm, UK.
Rafael Rosolem ©

Iwema et al. (2021 - In review)



Grass/crop site: Pounds 2b
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Grass site: W2/W3
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Shrub site: Melville Woods



Sensitivity analysis can help identify which factors 
contribute most/least to the process of  interest

45

(QYLURQPHQWDO 0RGHOOLQJ DQG 6RIWZDUH ��� ������ ������

�

LSA, where measures of local sensitivity are computed at many ‘base 
points’ across factor space and somehow averaged to provide a global 
assessment of sensitivity. Such measures are said to be ‘derivative-based’ 
as they either analytically compute derivatives or numerically quantify 
the change in output when factors of interest (continuous or discrete) are 
perturbed around a point. Perturbations typically occur one at a time 
and by some specific ‘perturbation size’ (Campolongo et al., 2011). The 
different derivative-based methods differ in the ways that they choose 
the base points, the perturbation size, and the distributional properties 
of the sampled derivatives (e.g., first or second moment) to provide an 
average global measure of sensitivity (see e.g., Morris, 1991; Campo-
longo et al., 2007; Sobol’ and Kucherenko, 2009; Campolongo et al., 
2011; Lamboni et al., 2013; Rakovec et al., 2014). The outcome of these 
methods is ‘sensitive’ to these choices, among which the sensitivity to 
perturbation size is generally overlooked even though it can be profound 
(Shin et al., 2013; Haghnegahdar and Razavi, 2017). 

2.2. Distribution-based approach 

Distribution-based methods adopt a different philosophy that bases 
the analysis on the distributional properties of the output itself, and 
attempts to quantify how the different inputs contribute to forming 
those properties. The most common distribution-based method is based 
on the analysis of output variance, decomposing that variance into 
portions attributed to individuals or groups of inputs (Sobol’, 1993; 
Owen, 1994; Homma and Saltelli, 1996). Such a ‘variance-based’ SA was 
first conceived in the context of non-linear dependence as far back as 
1905 (Pearson, 1905), and later in terms of a Fourier analysis in the 70s 
(Cukier et al., 1978). The full variance-based SA framework was laid 
down by Ilya Sobol’ in 1993 (Sobol’, 1993), then linked to the 
derivative-based SA via Poincaré inequalities by Sobol’ and Kucherenko 
(2009; see also Roustant et al., 2017). 

Some distribution-based methods go beyond variance and investi-
gate how higher-order moments of the output depend on the inputs. For 
example, the method of Dell’Oca et al. (2017) particularly focuses on 
skewness and kurtosis. Some other distribution-based methods are, 
however, ‘moment-independent’ in that they measure the difference 
between the unconditional distribution of the output and its conditional 
counterparts when one or more inputs are fixed. For example, the 
method of Borgonovo (2007) measures this difference via the Borgonovo 
index, while the methods of Krzykacz-Hausmann (2001) and Pianosi 
and Wagener (2015, PAWN) use the mutual information and 
Kolmogorov-Smirnov test, respectively. Another example is the 

commonly called ‘Regional Sensitivity Analysis’ (RSA) which, rather 
than fixing inputs, defines conditional distributions based on thresholds 
for the model response (Spear et al., 1994; Hamby, 1994). 

2.3. Variogram-based approach 

More recently, a third category has emerged based on the theory of 
variograms that bridges derivative and distribution-based methods 
(Razavi and Gupta, 2016a; 2016b; Sheikholeslami and Razavi, 2020). 
The ‘variogram-based’ approach recognizes that model outputs are not 
always randomly distributed and they possess, as do their partial de-
rivatives, a spatially-ordered (covariance) structure in the input space. 
Anisotropic variograms can characterize this structure by quantifying 
the variance of change in the output as a function of perturbation size in 
individual inputs. Variogram-based sensitivity measures can be consid-
ered more comprehensive than other approaches in the sense that they 
integrate global sensitivity information across a range of perturbation 
scales. Derivative-based and variance-based sensitivity measures are 
also produced as a side product of calculating ‘variogram effects’. The 
efficiency and applicability of the variogram-based approach are 
demonstrated in Razavi et al. (2019), Becker (2020) and Puy et al. 
(2020a). 

2.4. Regression-based approach 

Regression-based SA has a long history, traditionally referring to 
methods that infer sensitivity information from coefficients of a typically 
linear regression model fitted to a sample of model response surface 
points (Kleijnen, 1995). Those early methods, from a GSA point of view, 
have been criticized for their heavy reliance on the prior assumption 
regarding model response form (e.g., linear or polynomial equation), 
and the fact that if the quality of fit is poor, the sensitivity estimates are 
not reliable (Razavi and Gupta, 2015). From an LSA point of view, 
however, they have proven useful for dimensionality reduction via 
orthogonal decompositions from parameter samples (Kambhatla and 
Leen, 1997) or locally approximated sensitivity matrices (Tonkin and 
Doherty, 2005). Also, such methods when using quadratic regression 
allow characterization of parameter interactions in the inverse problem 
(e.g., Shin et al., 2015). 

More recently, regression-based SA has witnessed a new generation 
of methods arising from the machine learning community. The goal of 
these methods typically is to provide the commonly called ‘variable 
importance’ measures, following two general approaches. In one, they 

Fig. 1. A high-level workflow of typical methods for SA. Box (a) represents an SA tool that generates inputs to the system of interest, {θ1, …, θn } that can be 
continuous or discrete variables, or triggers that activate different modeling choices, and receives outputs Z. Box (b) represents the system of interest. Box (c) 
represents a classic outcome of SA where the contribution of each input’s variability on the variability of (some function of) the output is quantified. The outcome of 
SA can also include information about interactions between inputs, statistical variability of the results, etc., which are not shown here. 

S. Razavi et al.                                                                                                                                                                                                                                  
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We use a simple analytical model to account for all 
possible factors affecting the neutron signal and soil 
moisture estimates
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F IGURE 3 Model structure with input and output for the original (bold, italic text) and the modi�ed COSMIC
(plain text). In this case, Ns is the simulated neutron count with added e�ects from soil and surface hydrogen pools
and can be compared with measured neuron counts corrected for above ground e�ects. Nv0 also carries the e�ects
from above ground biomass. N(pihv)0 carries the e�ects from all factors and can therefore be compared with
uncorrected, measured neutron counts.

Rafael Rosolem ©

Modified version of the COSmic-ray Interaction 
Code (COSMIC) to include additional factors

Limited number of factors in the original 
COSMIC model (highlighted in bold)

Note: COSMIC will be introduced properly in 
our last lecture

Iwema et al. (2021 - In review)
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F IGURE 4 Flowchart of the method used to compute soil moisture precision as employed within the PAWN
sensitivity analysis experiments. N(pihv)0 is the neutron count computed by the modi�ed COSMIC which contains
the e�ects of all factors accounted for and which can be compared to measured, uncorrected neutron counts. Nsoil
is the COSMIC neutron count which contains the e�ects from all hydrogen pools within the soil and which are
simulated as a layer on top of the soil (ponding water, litter layer, and animal droppings). �N is the standard deviation
on Nsoil.

F IGURE 5 Multi-day COSMIC calibration curves for the three sites. The left plot shows the calibration curves
when taking taking into consideration only more commonly measured neutron mitigating factors (lattice water, soil
organic matter, dry soil bulk density, atmospheric water vapour, atmospheric pressure, high-energy neutron
intensity). The right plot shows the calibration curves taken into account additional hydrogen pools (above ground
vegetation biomass, plant roots, and animal droppings) with the extended COSMIC. The neutron counts in the right
plot are corrected for above ground biomass and vegetation intercepted water. The markers indicate the calibration
points.



How does each factor influence the neutron 
signal?

Iwema et al. 21

F IGURE 6 Results of the sensitivity analysis for the Coe�cient of Variation (CV; neutron count precision) with
the extended COSMIC (The results for neutron count accuracy are the same). The upper panel shows the results for
the �rst experiment, in which all factors varied. The lower plot shows the results for the three experiments at the
grass/crop site as an example (similar results were found for the other two sites). In these experiments the soil
moisture content (SM) was �xed at three di�erent levels. Soil factors: sm = soil moisture, bd = dry soil bulk density,
lw = lattice water, som = soil organic matter, root = plant roots, drop = animal droppings. Soil cover factors: pond =
ponding water, agb = above ground biomass, inw = intercepted water, ani = animals. Atmosphere and high energy
neutrons: atmw = atmospheric water, pres = atmospheric pressure, � = high-energy neutron intensity.
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F IGURE 6 Results of the sensitivity analysis for the Coe�cient of Variation (CV; neutron count precision) with
the extended COSMIC (The results for neutron count accuracy are the same). The upper panel shows the results for
the �rst experiment, in which all factors varied. The lower plot shows the results for the three experiments at the
grass/crop site as an example (similar results were found for the other two sites). In these experiments the soil
moisture content (SM) was �xed at three di�erent levels. Soil factors: sm = soil moisture, bd = dry soil bulk density,
lw = lattice water, som = soil organic matter, root = plant roots, drop = animal droppings. Soil cover factors: pond =
ponding water, agb = above ground biomass, inw = intercepted water, ani = animals. Atmosphere and high energy
neutrons: atmw = atmospheric water, pres = atmospheric pressure, � = high-energy neutron intensity.
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F IGURE 7 Results of the sensitivity analysis for the soil moisture precision with the extended COSMIC
(accounting for all hydrogen pools) (the results for the neutron count accuracy were the same). The upper panel
shows the results for the �rst experiment, in which all factors varied. The lower plot shows the results for the three
experiments at the grass/crop site. In these experiments the soil moisture content (SM) was �xed at three di�erent
levels. Soil factors: sm = soil moisture, bd = dry soil bulk density, lw = lattice water, som = soil organic matter, root =
plant roots, drop = animal droppings. Soil cover factors: pond = ponding water, agb = above ground biomass, inw =
intercepted water, ani = animals. Atmosphere and high energy neutrons: atmw = atmospheric water, pres =
atmospheric pressure, � = high-energy neutron intensity.
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F IGURE 7 Results of the sensitivity analysis for the soil moisture precision with the extended COSMIC
(accounting for all hydrogen pools) (the results for the neutron count accuracy were the same). The upper panel
shows the results for the �rst experiment, in which all factors varied. The lower plot shows the results for the three
experiments at the grass/crop site. In these experiments the soil moisture content (SM) was �xed at three di�erent
levels. Soil factors: sm = soil moisture, bd = dry soil bulk density, lw = lattice water, som = soil organic matter, root =
plant roots, drop = animal droppings. Soil cover factors: pond = ponding water, agb = above ground biomass, inw =
intercepted water, ani = animals. Atmosphere and high energy neutrons: atmw = atmospheric water, pres =
atmospheric pressure, � = high-energy neutron intensity.

How is that propagated to the derived soil 
moisture estimation?
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Final recommendations

• Whenever possible… measure/sample everything à residual uncertainty
• Consider multi-day calibration especially if site has strong seasonality (if 

unable, consider sampling on a day with average conditions)
• Uncertainty can be further reduced with longer integration time at the 

cost of temporal resolution (e.g., daily versus hourly)
• Neutron signal overwhelmingly responds to changes in pressure, but 

luckily this can be easily corrected for (with some impacts from in situ 
soil moisture and dry soil bulk density)
• Derived product is by far a result of soil moisture variations (as a result 

of effectiveness of corrections) but dry soil bulk density, lattice water, 
and soil organic carbon are likely to affect the estimates
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