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Abstract

Let Ω be a domain of Rn, n ≥ 2, u ∈ Wr,p
loc(Ω) with r, p ≥ 2. We establish interpolation inequality estimating∫

Ω

|∇qu|p|∇r−q(ψ)|p where ψ is a ”general” cut-off function and 1 ≤ q ≤ r − 1. When p = 2, we explore this inequality

to provide an explicit universal estimate of finite Morse index solutions to

(−∆)ru = f (x, u), in Ω.

Differently to [1, 2, 3, 4, 6, 7, 8, 10], We did not use a blow-up procedure which requires that Liouville-type theorem
is available in the whole space and also f (x, u) has an asymptotical behavior at infinity like |u|q−1u . We propose here
a direct proof under a large superlinear and subcritical growth conditions on f using a variant of the Pohozaev identity
and a delicate boot strap argument from local Lp-W2r,p estimate. Particularly, we show that the universal constant
(which does not depend on Ω) evolves as a polynomial function of the Morse index.
Also by virtue of our interpolation inequality, we extended and improved the integral estimate obtained in [6], to
provide nonexistence results in the subcritical range of stable and stable at infinity weak solutions to the following
p-polyharmonic equation

∆r
pu = |u|q−1u in Rn, where r ≥ 2, p ≥ 2 and n > rp.

Precisely we removed the exponential growth condition U1 imposed on unbounded sable solutions in [6]. At last, we
revised previous local Lp-W2r,p estimate stated in [5, 9].
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