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Noncritical Berry-Esseen theorem
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What about critical systems?



An analogue of Berry-Esseen theorem holds

… but is valid only for

➢ Thermal states

➢ Finite-temperature phase transitions

➢ Translation-invariant lattices



Bird’s-eye view on the proof: Spectral density

𝐸

Γ 𝐸 = #{𝐸𝑖 ≤ 𝐸}



cumulative 
spectral density

Bird’s-eye view on the proof: Spectral density

𝐸

Γ 𝐸 = #{𝐸𝑖 ≤ 𝐸}



Ω 𝐸 =
𝑑Γ(𝐸)

𝑑𝐸

spectral density

Bird’s-eye view on the proof: Spectral density

𝐸

Γ 𝐸 = #{𝐸𝑖 ≤ 𝐸}



Ω 𝐸 =
𝑑Γ(𝐸)

𝑑𝐸
=
Δ𝑁

Δ𝐸

Bird’s-eye view on the proof: Spectral density

𝐸

Γ 𝐸 = #{𝐸𝑖 ≤ 𝐸}

Δ𝐸



Ω 𝐸 =
𝑑Γ(𝐸)

𝑑𝐸
=
Δ𝑁

Δ𝐸

Bird’s-eye view on the proof: Spectral density

𝐸

Γ 𝐸 = #{𝐸𝑖 ≤ 𝐸}

Δ𝐸

𝜏 =
𝑒−𝛽𝐻

𝑍

thermal state



Ω 𝐸 =
𝑑Γ(𝐸)

𝑑𝐸
=
Δ𝑁

Δ𝐸

Bird’s-eye view on the proof: Spectral density

𝐸

Γ 𝐸 = #{𝐸𝑖 ≤ 𝐸}

Δ𝐸

𝜏 =
𝑒−𝛽𝐻

𝑍

thermal state

𝑞 𝐸 ≔
𝑑𝐽(𝐸)

𝑑𝐸
=
𝑒−𝛽𝐸

𝑍
Ω 𝐸



Bird’s-eye view on the proof: Equivalence of ensembles

𝐸

Γ 𝐸 = #{𝐸𝑖 ≤ 𝐸}

𝜏 =
𝑒−𝛽𝐻

𝑍

Müller, Adlam, Masanes, & Wiebe, Commun.  Math. Phys. 340, 499 (2015)

lim
𝑁→∞

ln Γ(𝑢𝑁)

𝑁
= 𝑠(𝑢)



Bird’s-eye view on the proof: Equivalence of ensembles

𝐸

Γ 𝐸 = #{𝐸𝑖 ≤ 𝐸}

𝜏 =
𝑒−𝛽𝐻

𝑍

Müller, Adlam, Masanes, & Wiebe, Commun.  Math. Phys. 340, 499 (2015)

lim
𝑁→∞

ln Γ(𝑢𝑁)

𝑁
= 𝑠(𝑢)

holds at and above 
critical point, but 
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Critical exponents

𝑐 𝛽 ∝ 𝛽 − 𝛽𝑐
−𝛼

The scaling of 𝑐(𝛽𝑐) with 𝑁:

When 𝛼 = 0,
𝑐 𝛽 ∝ ln 𝑁

When 𝛼 > 0,
𝑐 𝛽 ∝ 𝑁α/(2−𝛼)



Berry-Esseen analogue for 𝛼 = 0
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Berry-Esseen analogue for 𝛼 = 0
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2D Ising model is a paradigmatic 
example of 𝛼 = 0.

Its free energy can be computed 
exactly, and therefore one has 
access to all moments of the 

energy.



Berry-Esseen analogue for 𝛼 = 0

𝜅𝑛
1/𝑛

var 𝐻
∝

1

ln𝑁

2D Ising model is a paradigmatic 
example of 𝛼 = 0.

Its free energy can be computed 
exactly, and therefore one has 
access to all moments of the 

energy.

n-th cumulant 
of energy



Berry-Esseen analogue for 𝛼 > 0

Not much can be said except that 𝑞(𝐸) is a 
unimodal distribution peaked around ⟨𝐻⟩

and decaying exponentially in the tails.



Thank you for your attention!
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