Hamiltonian truncation methods for the study of continuous quantum field dynamics

Spyros Sotiriadis

DCCQS Freie Universität Berlin

Adriatic Conference on Strongly Correlated Systems Mar 2021

Outline

Introduction

motivation quantum many-body dynamics why one spatial dimension?

An analog quantum field simulator

how cold-atom experiments can help us solve the mysteries of QFT

Classical "simulation" of a quantum simulator a numerical RG method for QFT

Effects of topological excitations in and out of equilibrium solitons and non-locality

Quantum equilibration and recurrences a quantum central limit theorem

Quantum Chaos level spacing & eigenvector statistics

Motivation

Motivation

- Quantum equilibration is a *fundamental* and *long-standing* question of statistical mechanics
- Reach the ultimate limits of classical thermodynamics expectations and unveil novel quantum effects at macroscopic level
- Recent progress in experimental (ultra-cold atoms) and numerical (tDMRG, MPS) techniques for study of quantum manybody dynamics
- Applications to quantum technologies: quantum thermal engines, quantum information processing & computing

Why focus on one spatial dimension?

- Exact analytical tools
 - Integrability
 - Dualities

• Efficient numerical tools

An analog quantum field simulator

how cold-atom experiments can help us solve the mysteries of QFT

An analog quantum field simulator

Quantum simulator

A quantum system of many particles is described by a Hilbert space whose dimension is exponentially large in the number of particles. Therefore, the obvious approach to simulate such a system requires exponential time on a classical computer. However, it is conceivable that a quantum system of many particles could be simulated by a quantum computer using a number of quantum bits similar to the number of particles in the original system.

An analog quantum field simulator

sine-Gordon model

$$H_{SGM} = \int \left(\frac{1}{2}(\partial_t \phi)^2 + \frac{1}{2}(\partial_x \phi)^2 - \frac{m^2}{\beta^2}\cos\beta\phi\right) dx$$

Schweigler et al., Nature (2017)

$$H_{SGM} = \int \left(\frac{1}{2}(\partial_t \phi)^2 + \frac{1}{2}(\partial_x \phi)^2 - \frac{m^2}{\beta^2}\cos\beta\phi\right) dx$$

Non-trivial field topology

$$H_{SGM} = \int \left(\frac{1}{2}(\partial_t \phi)^2 + \frac{1}{2}(\partial_x \phi)^2 - \frac{m^2}{\beta^2}\cos\beta\phi\right) dx$$

- Non-trivial field topology
- Solitons:
 - the field interpolates between different minima of the cosine potential
 - stable under collisions (integrability)
 - form breathers:

$$H_{SGM} = \int \left(\frac{1}{2}(\partial_t \phi)^2 + \frac{1}{2}(\partial_x \phi)^2 - \frac{m^2}{\beta^2}\cos\beta\phi\right) dx$$

- Non-trivial field topology
- Solitons:
 - the field interpolates between different minima of the cosine potential
 - stable under collisions (integrability)
 - form breathers:

$$H_{SGM} = \int \left(\frac{1}{2}(\partial_t \phi)^2 + \frac{1}{2}(\partial_x \phi)^2 - \frac{m^2}{\beta^2}\cos\beta\phi\right) dx$$

- Non-trivial field topology
- Solitons:
 - the field interpolates between different minima of the cosine potential
 - stable under collisions (integrability)
 - form breathers:

$$H_{SGM} = \int \left(\frac{1}{2}(\partial_t \phi)^2 + \frac{1}{2}(\partial_x \phi)^2 - \frac{m^2}{\beta^2}\cos\beta\phi\right) dx$$

- Non-trivial field topology
- Solitons:
 - the field interpolates between different minima of the cosine potential
 - stable under collisions (integrability)
 - form breathers:

Equilibrium

Equilibrium

Schweigler et al., Nature (2017)

Equilibrium

2-point correlation functions

Langen et al., Science (2015)

Dynamics

2.5 ms 1.5 ms 3 ms 5 ms В 7 ms steady state 20 1 -20 0 20 z₁ (µm) -20 20 150 local 0 -20 20 -20 0 20 -20 0 20 -20 0 20 -20 0 20 -20 0 -20 0 20 z₂(µm)

2-point correlation functions

Schweigler et al., Nature (2017)

Classical "simulation" of a quantum simulator a numerical RG method for QFT

Theoretical problem

Theoretical problem

- Numerical method for the study of continuous (I+I)D QFT (integrable or non-integrable)
- Based on Renormalisation Group and Conformal Field Theory
- In contrast to tensor network methods that work in I d lattice systems, TCSA is one of the few methods applicable to continuous systems (I+ID or even higher)
- Positive:
 Captures efficiently non-perturbative effects
- Negative: does not solve the "curse of dimensionality" problem
- Introduced by: later applied to sG by: and in sG dynamics by:

Yurov & Zamolodchikov (1991) Feverati, Ravanini, Takacs (1998-99) Kukuljan Sotiriadis Takacs (2018), (2019)

Problem:

Find the spectrum of a (continuous) QFT in finite volume

• Express it as $H = H_0 + \lambda \Delta H$ where H_0 : known spectrum and eigenstates E_α , $|\Psi_\alpha\rangle$ and ΔH : known matrix elements in eigenstates of H_0

$$\Delta H_{\alpha\beta} = \langle \Psi_{\alpha} | \Delta H | \Psi_{\beta} \rangle$$

- finite volume \rightarrow d screte spectrum
- apply high-energy cutoff \rightarrow finite truncated Hilbert space
- Diagonalise numerically the truncated Hamiltonian matrix

$$H_{SGM} = \int \left(\frac{1}{2} (\partial_t \phi)^2 + \frac{1}{2} (\partial_x \phi)^2 - \frac{m^2}{\beta^2} \cos \beta \phi \right) dx$$

truncation cutoff	number of states
5	19
10	139
15	684
20	2714
25	9296
30	28629
35	81156
40	215308
45	540635
50	1295971

Outline

Introduction

motivation quantum many-body dynamics why one spatial dimension?

An analog quantum field simulator

how cold-atom experiments can help us solve the mysteries of QFT Classical "simulation" of a quantum simulator

a numerical RG method for QFT

Effects of topological excitations in and out of equilibrium solitons and non-locality

Quantum equilibration and recurrences

a quantum central limit theorem

Quantum Chaos level spacing & eigenvector statistics

Effects of topological excitations in and out of equilibrium

solitons and non-locality

SG ground state correlations

- > 2p correlations in free massless boson ground state: algebraically decaying
- In free massive boson (Klein-Gordon) ground state: exponentially decaying
- In sG ground state: much more extended than those of Klein-Gordon ground state at mass equal to lightest breather mass

Kukuljan Sotiriadis Takacs, PRL (2018)

SG thermal states

- 4p conn. correlations: almost vanishing in ground state
- increase with temperature, but still relatively small compared to 2p
- Analysis of interaction / temperature effects on correlations

Kukuljan Sotiriadis Takacs, PRL (2018)

Deviations from Gaussianity

- Numerical calculation of kurtosis (experimental measure of non-Gaussianity) in sine-Gordon ground and thermal states
- Identification of experimentally observed regimes

$$\mathcal{K} := \frac{\int \mathrm{d}^4 x \left| G_{\mathrm{con}}^{(4)}(x_1, x_2, x_3, x_4) \right|}{\int \mathrm{d}^4 x \left| G^{(4)}(x_1, x_2, x_3, x_4) \right|}$$

Kukuljan Sotiriadis Takacs, PRL (2018)

Kurtosis of sG thermal states

Quantum sine-Gordon: dynamics

Quench dynamics

Quantum sine-Gordon: dynamics

 $\Delta_0 = 1/18, \Delta = 1/8, E_0 \sim E_{gs} + 0.73M, \quad (L = 30/M)$

Violation of the Horizon effect

after a quantum quench in sine-Gordon

Horizon Effect

- Dynamics in relativistic Quantum Field Theory
- Example: quantum quench of the mass in Klein Gordon model

$$\hat{H}_{KG} = \int \left(\frac{1}{2}\hat{\pi}^2 + \frac{1}{2}(\partial_x\hat{\phi})^2 + \frac{1}{2}m^2\hat{\phi}^2\right) dx$$

• Correlation functions exhibit "light-cone spreading": connected correlations are restricted within the region |r| < 2ct and exponentially suppressed outside

Calabrese Cardy, PRL (2006)

Horizon Effect

• Horizon effect: measurements at distant points remain uncorrelated until time $t_h = r/2$ when the fastest pair of entangled particles originating from the middle reach both observers

Connected correlations are exponentially small outside the horizon

$$\langle \hat{\mathcal{O}}(x,t)\hat{\mathcal{O}}(y,t)\rangle - \langle \hat{\mathcal{O}}(x,t)\rangle \langle \hat{\mathcal{O}}(y,t)\rangle | < Ae^{-(|x-y|-2t)/\xi} \quad \text{for all } |x-y| > 2t$$

Examples

 Lieb-Robinson bounds (lattice systems with local interactions)

```
||[\mathrm{e}^{+\mathrm{i}Ht}A\mathrm{e}^{-\mathrm{i}Ht}, B]|| < \mathrm{e}^{-\lambda(r_{AB}-vt)}
```


Bonnes Essler Läuchli, PRL (2014)

Bertini Essler Groha Robinson, PRB (2016)

Buyskikh et al, PRA (2016)

Kormos Collura Takács Calabrese, Nature Phys (2017)

Examples

Cheneau et al, Nature (2012)

Langen et al, Nature Phys (2013)

 Experimental observation in cold-atom systems (lattice & continuous)

Jurcevic et al, Nature (2014)

What happens under sine-Gordon dynamics?

• Initial state $|\Omega\rangle$: ground state of Klein Gordon model

$$\hat{H}_{KG} = \int \left(\frac{1}{2}\hat{\pi}^2 + \frac{1}{2}(\partial_x\hat{\phi})^2 + \frac{1}{2}m_0^2\hat{\phi}^2\right) dx$$

- Fine evolve under SGM Hamiltonian \hat{H}_{SG}
- Calculate dynamics of connected correlation functions of $\hat{\phi}$, $\partial_x \hat{\phi}$ and $\Pi = \partial_t \hat{\phi}$ Due to field compactification $\hat{\phi}$ is not a well-defined local field - should be defined through spatial integration of $\partial_x \hat{\phi}$ which is local, starting from some reference point

$$C_{\mathcal{O}}(x, y, t) = \langle \mathcal{O}(x, t) \mathcal{O}(y, t) \rangle$$

- Despite integrability, calculation of out-of-equilibrium correlation functions not possible yet
- Use numerical simulation: Truncated Conformal Space Approach

Correlation spreading after a quantum quench

 $C_{\phi}(x, y, t) = \langle \hat{\phi}(x, t) \hat{\phi}(y, t) \rangle$

$$C_{\partial\phi}(x,y,t) = \langle \partial\hat{\phi}(x,t)\partial\hat{\phi}(y,t) \rangle$$

Explanation based on soliton non-locality

Relativistic dynamics alone does not guarantee presence of horizon

- Initial state: **Dynamics: Exponential clustering** relativistic invariance + of correlations For short-range initial state Horizon effect
- and free dynamics: initial correlations between free particles decay with distance
- But for sine-Gordon dynamics quasiparticles are solitons: non-local fields

$$\Psi_{\pm}(x) = \mathcal{N} : \exp\left[i\frac{2\pi}{\beta}\int_{-\infty}^{x} dx'\pi(x') \pm i\frac{\beta}{2}\phi(x)\right]$$
Mandelstam (1975)

- Decay of quasiparticle correlations not guaranteed, even for short-range initial states
- Test scenario by means of analytical calculation exploiting **Duality** between sine-Gordon & massive Thirring model

Analytical verification

- Exact dynamics at the Luther-Emery point exploiting the sine-Gordon — massive Thirring model duality
- No violation of relativistic invariance: Green's functions supported only inside past lightcone
- Even short-range correlated initial states exhibit infinite-range correlations between soliton fields due to their non-locality (cluster decomposition not valid).

Kukuljan Sotiriadis Takacs, JHEP (2020)

Further results: Horizon Violation in I+ID QED

Quantum equilibration and recurrences

a quantum central limit theorem

$$H_{sG} = \int \left(\frac{1}{2}\pi^2 + \frac{1}{2}(\partial_x\phi)^2 - \frac{\mu^2}{\beta^2}\cos\beta\phi\right) dx$$
$$\downarrow$$
$$H_{LL} = \int \left(\frac{1}{2}\pi^2 + \frac{1}{2}(\partial_x\phi)^2\right) dx$$

Non-Gaussian initial state, Gaussian dynamics

Theoretical prediction: Gaussification

"A quantum quench from a general interacting to a non-interacting Hamiltonian results in relaxation to a Gaussian non-thermal steady state, under two conditions:

- I. clustering of initial correlations
- 2. delocalising dynamics."

Sotiriadis Calabrese (2014), Sotiriadis (2016), (2017), Doyon (2017), Gluza et al. (2016), Murthy Srednicki (2018) GGmm G C_0

G

Cramer Eisert (2010),

None of these conditions satisfied in the experimental quench!

Twist:

The experimental system **does** relax to a Gaussian state!

Schweigler et al. (2020)

- New information-scrambling mechanism:
 based on dominance of momentum π over φ field fluctuations in the initial state and phase-space rotation under dynamics
- Conjugate momentum fluctuations play the role of Gaussian bath

Schweigler et al. (2020)

$$M^{(4)}(t) = \frac{\sum_{\boldsymbol{z}} \left| G^{(4)}_{\text{con}}(\boldsymbol{z}, t) \right|}{\sum_{\boldsymbol{z}} \left| G^{(4)}(\boldsymbol{z}, t) \right|} = \frac{S^{(4)}_{\text{con}}(t)}{S^{(4)}(t)}$$

- Quantum revivals also observed
- Initial state information scrambled but fully preserved: recurs at revival time

Schweigler et al. (2020)

level spacing & eigenvector statistics

Level spacing statistics

Level spacing statistics

double sine-Gordon model

 $H_{DSGM} = \frac{1}{2} \int \left[(\partial_t \phi)^2 - (\partial_x \phi)^2 - \mu_1 \cos \beta_1 \phi - \mu_2 \cos \beta_2 \phi \right] \, \mathrm{d}x$

Level spacing statistics

double sine-Gordon model

 $H_{DSGM} = \frac{1}{2} \int \left[(\partial_t \phi)^2 - (\partial_x \phi)^2 - \mu_1 \cos \beta_1 \phi - \mu_2 \cos \beta_2 \phi \right] \, \mathrm{d}x$

Eigenvector component statistics

Level spacing & eigenvalue component stats

Long-tail distribution unchanged from weak to intermediate perturbation strength

Eigenvector component statistics

- Surprise:
 Even though level statistics obey RMT, eigenvector component statistics do not follow the RMT prediction!
 (long-tails instead of Gaussian distribution)
- Gaussianity of eigenvector components statistics crucial for validity of the Eigenstate Thermalisation Hypothesis (ETH)
 → challenges thermalisation in DSG
- Same observations in (I+I)D ϕ^4 model

Outline

Introduction

motivation quantum many-body dynamics why one spatial dimension?

An analog quantum field simulator

how cold-atom experiments can help us solve the mysteries of QFT

Classical "simulation" of a quantum simulator a numerical RG method for QFT

Effects of topological excitations in and out of equilibrium solitons and non-locality

Quantum equilibration and recurrences a quantum central limit theorem

Quantum Chaos level spacing & eigenvector statistics

Collaborators

Ivan Kukuljan (Munich)

Gabor Takacs (Budapest)

Miha Srdinsek (Paris)

Tomaz Prosen (Ljubljana)

Marek Gluza (Berlin)

Jens Eisert (Berlin)

Thomas Schweigler (Vienna) Jörg Schmiedmayer (Vienna)

Thank you for your attention!