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Stat. Phys./High-Dimensional Approach

• typical case

• benchmark, random design problems

• exact solutions

• strong assumptions

How realistic are the stat. phys. benchmarks ?

What can we do to make them more realistic ?
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Teacher Student Generalized Linear Model

Observe ”teacher” generative model

y = f0(Xw 0) 2 Rn, w 0 2 Rd X 2 Rn⇥d
i.i.d. N (0, 1)

Learn with ”student”

w? 2 argmin

w2Rd

L (y ,Xw) + r(w)

• L, r are a convex loss and penalty

• n, d ! 1 with fixed ratio

Goal : statistical properties of w?

Beyond i.i.d. assumption : introduce correlation
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Introducing Correlation : a Block Covariance Model

Teacher and student with di↵erent feature spaces

Block covariate model proposed in

[B. Loureiro, CG, H. Cui, S. Goldt, M. Mézard, F. Krzakala, L. Zdeborova ’21]
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Solution to Block Covariance model

Theorem (informal)[B. Loureiro, CG, H. Cui, S. Goldt, M. Mézard, F.

Krzakala, L. Zdeborova ’21]

Unique fixed point of self-consistent equations
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Proof uses convex Gaussian comparison inequalities

[M. Stojnic, ’13][C. Thrampoulidis, E. Abbasi, B. Hassibi ’18]
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How well does is work ?

Ridge regression works well ...

Figure 1: (Left) Ridge regression on real data. (Right) Logistic regression with

real and synthetic (GAN) data

... but classification is more problematic

Need for another realistic benchmark problem
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Gaussian mixtures are meaningful

Study classification of k-Gaussian mixture with convex GLM

• Benchmark problem in ML, universal approximation, ...

• many scenarios described by Gaussian mixtures (GANs, ’Neural

collapse’, ...)

[M. Seddik, C. Louart, M. Tamaazousti, R. Couillet, ’20][V. Papyan, X. Han,

D.Donoho, ’20]
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Classifying Gaussian Mixtures with Convex GLM

Data and teacher

x 2 Rd , y 2 RK P(x , y) =
KX

k=1

yk⇢kN (x |µk ,⌃k ) ,

Figure 2: K=3, d=2
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Classifying Gaussian Mixtures with Convex GLM

Data and teacher

x 2 Rd , y 2 RK P(x , y) =
KX

k=1

yk⇢kN (x |µk ,⌃k ) ,

Student

W ? 2 min
W2Rd⇥K

L (Y ,XW ) + r(W )

Learn K separating hyperplanes, i.e. a matrix W 2 Rd⇥K

Examples : ridge regression, softmax with cross-entropy, ...
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Main result (informal)

Theorem [B. Loureiro, G. Sicuro, CG, A. Pacco, F. Krzakala, L. Zdeborova ’21]

Fixed-point of self-consistent equations
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Main result : important points

• very generic statement

• greatly simplifies with assumptions on covariances, separability of

functions, ...

• in most cases reduces to low dimensional statement

10



Examples : synthetic random design problems

Figure 3: Ridge penalized logistic regression on K Gaussian clusters,

⌃k = �Id . (Left) Sample complexity (Right) Regularization

Related works :[T. Cover ’69][E. Gardner, B. Derrida ’89] [EJ. Candès, P. Sur ’20] [F.

Mignacco, F. Krzakala, Y. Lu, P. Urbani, L. Zdeborova ’20][C. Thrampoulidis, S.

Oymak, M. Soltanolkotabi ’20] 11



Examples : real data

Figure 4: Binary classification on Mnist/Fashion-Mnist, odd vs even, Gaussian

approximation and real data
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Examples : real data
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Figure 5: Adding more clusters to the

Gaussian approximation Figure 6: Idealized view
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Proof

Sketch of proof
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What are the di�culties ?

Learning a matrix : how are the di↵erent hyperplanes correlated/linked

by the learning process ?

Di↵erent covariances : e↵ect of each cluster cannot be characterized

with the same quantities

Convex Gaussian Comparison Inequalities break down beyond

least-squares

[C. Thrampoulidis, S. Oymak, M. Soltanolkotabi ’20] (identity covariances)
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Enter Approximate Message Passing (AMP)

Family of iterations with closed form exact asymptotics : state

evolution (SE) equations

• enables matrix valued variables

• handles block correlation structures (spatial coupling)

• very adaptable !

First proof of SE equations due to E. Bolthausen (2009, math. phys.)

Then [M. Bayati, A. Montanari, ’11]
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Enter Approximate Message Passing (AMP)

What does an AMP look like ?

Sequence of matrices u, v :

ut+1
= Z>ht(v t

)� et(ut
)hh0

ti>

v t
= Zet(ut

)� ht�1(v t�1
)he 0

ti>

where Z (block-)Gaussian, ht , et are matrix valued functions.

Brackets are Jacobian-like terms ! inherent to AMP
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Sketch of proof

Target :

W ? 2 min
W2Rd⇥K

L (Y ,XW ) + r(W ) (1)

Tool :

ut+1
= Z>ht(v t

)� et(ut
)hh0

ti>

v t
= Zet(ut

)� ht�1(v t�1
)he 0

ti> (2)

Instructions:

• design ht , et s.t. fixed point of (2) matches opt. cond. of (1)

• find a converging trajectory (convexity helps)

• use state evolution equations (fixed point)

AMP for high-dim. stat : [M. Bayati, A. Montanari ’11] [D. Donoho, A.

Montanari ’16]
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Designing the AMP : a quick look

Often designed from a factor graph, see e.g. [L. Zdeborova, F. Krzakala ’16]

The factor graph for generic multiclass GLM is not obvious ...

Reformulate the optimality condition

X>@L(Y ,XW ?
) + @r(W ?

) = 0

Match it with the fixed point

(Id + e(•)hh0i)(u) = Z>h(v)

(Id + h(•)he 0i)(v) = Ze(u)

[B. Loureiro, G. Sicuro, CG, A. Pacco, F. Krzakala, L. Zdeborova ’21]
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Validity of state evolution

Non-separable, block structure gradient

Z>

2

66664

@L̃1(Z 1W̃ 1)
@L̃2(Z 2W̃ 2) (0)

(0)
. . .

@L̃K (ZKW̃ K )

3

77775
+

2

66664

@ r̃(W̃ )1
@ r̃(W̃ )2 (0)

(0)
. . .

@ r̃(W̃ )K

3

77775

Spatially-coupled, matrix AMP : [A. Javanmard, A. Montanari ’12]

Non-separable AMP : [R. Berthier, A. Montanari, P. Nguyen ’18]

Combination included in [CG, R. Berthier ’21]
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Future directions

Relevance to realistic scenarios

• Gaussian models are relevant to a certain degree

• Gaussian density estimators are universal ...

• ... becomes more complicated than original problem !

• middle ground/parametrization relevant for given tasks ?

Technical improvements

• more possibilities using AMP methods

• finite size analysis [C. Rush, R. Venkataramanan ’18]

• universality properties [M. Bayati, M. Lelarge, A. Montanari ’15]
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Thank you

Collaborators : Bruno Loureiro, Gabriele Sicuro, Raphaël Berthier, Lenka

Zdeborova and Florent Krzakala
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