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Institut Fourier, Université Grenoble Alpes & Académie des Sciences de Paris

Complex Analysis and Geometry – XXV
CIRM – ICTP virtual meeting, smr 3601

June 7–11, 2021

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L2 extension theorems and applications to alg. geometry 1/55

General plan of the lectures

(1) First lecture: a general qualitative extension theorem
– Setup and general statement
– Main ideas of the proof

(2) Second lecture: extension with optimal L2 estimates
– Ohsawa residual measure
– Log canonical case, case of higher order jets
– Main L2 estimate; solution of the Suita conjecture
– Approximation of quasi-psh functions and currents

(3) Third lecture: applications
– Solution of the strong openness conjecture (Guan and Zhou)
– Pham’s strong semicontinuity theorem
– Generalized Nadel vanishing theorem by Junyan Cao
– Hard Lefschetz theorem with psef coe�cients
(and a complement by Xiaojun Wu)

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L2 extension theorems and applications to alg. geometry 2/55



First lecture

First lecture

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L2 extension theorems and applications to alg. geometry 3/55

First lecture: notation and main concepts

Let (X ,!) be a possibly noncompact n-dimensional Kähler manifold,
and L a holomorphic line bundle on X , with a possibly singular
hermitian metric h = e�', ' 2 L1loc. The curvature current is

⇥L,h = i @@ log h�1 = i@@'

computed in the sense of distributions.
Very often, one needs positivity assumptions for L.

Definition

L is positive if 9h 2 C1 such that ⇥L,h > 0 (, L ample);

L is nef if 8" > 0, 9h" 2 C1 such that ⇥L,h" � �"! ;

L is pseudoe↵ective (psef) if 9h singular such that ⇥L,h � 0.

Now, let J ⇢ OX a coherent ideal sheaf, Y = V (J ) its zero variety
and OY = OX/J . Here Y may be non reduced, i.e. OY may have
nilpotent elements.
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The extension problem

Consider the exact sequence

0 ! J ! OX ! OX/J ! 0.

By twisting with OX (KX ⌦ L), where KX = ⇤nT ⇤

X , one gets the long
exact sequence of cohomology groups

· · · ! Hq(X ,KX ⌦ L) ! Hq(X ,OX (KX ⌦ L)⌦OX/J )

! Hq+1(X ,OX (KX⌦L)⌦ J ) · · ·

Surjectivity / extension problem

Under which conditions on X , Y = V (J ) and (L, h) is

Hq(X ,KX⌦L) ! Hq(Y , (KX⌦L)|Y ) = Hq(X ,OX (KX⌦L)⌦OX/J )

a surjective restriction morphism?

Equivalent injectivity problem

When is Hq+1(X ,KX ⌦ L⌦ J ) ! Hq+1(X ,KX ⌦ L) injective ?
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Multiplier ideal sheaves

Given a hermitian metric h = e�' with ' quasi-psh (i.e. such that
' = psh + C1), one defines the associated multiplier ideal sheaf
I(h) = I(e�') ⇢ OX by

I(e�')x0 =
�
f 2 OX ,x0 ; 9U 3 x0 ,

Z

U
|f |2e�'d� < +1

 

Theorem (Nadel)

I(e�') is a coherent ideal sheaf.
Moreover, I(e�') is always integrally closed.

One says that a quasi-psh function ' has analytic singularities, i.e.
locally on a neighborhood V of an arbitrary point x0 2 X we have

'(z) = c log
P

|gj(z)|2 + u(z), gj 2 OX (V ), c > 0, u 2 C1(V ),

Example: '(z) = c log |s(z)|2hE , c > 0, s 2 H0(X ,E ), hE 2 C1.
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Nadel vanishing theorem

Theorem (Nadel vanishing theorem)

Let (X ,!) be a Kähler manifold that is weakly pseudoconvex, i.e. X
admits a smooth psh exhaustion �. Let L ! X be a holomorphic line
bundle equipped with a singular hermitian metric h such that

⇥L,h � ↵!, ↵ continuous > 0 function.

Then Hq(X ,KX ⌦ L⌦ I(h)) = 0 for q � 1.

Corollary

Assume instead that (⇤) ⇥L,h + i@@ � ↵! for some quasi-psh
function  on X . Then Hq(X ,KX ⌦ L⌦ I(he� )) = 0 for q � 1, and
for all q � 0, we have a surjective restriction morphism

Hq(X ,KX ⌦ L⌦ I(h)) ! Hq(X ,KX ⌦ L⌦ I(h)/I(he� )).

Proof. 0 ! I(he� ) ! I(h) ! I(h)/I(he� )) ! 0.

However, one would like to relax the strict positivity assumption (⇤).
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Motivation: abundance conjecture and MMP

One potential application would be to study the Minimal Model
Program (MMP) for arbitrary projective – or even Kähler – varieties,
whereas only the case of general type varieties is known.

For a line bundle L, one defines the Kodaira-Iitaka dimension
(L) = lim supm!+1 log dimH0(X , L⌦m)/ logm and the numerical
dimension nd(L) = maximum exponent p of non zero “positive
intersections” hT pi of a positive current T 2 c1(L) when L is psef
(pseudoe↵ective), and nd(L) = �1 otherwise. They always satisfy

�1  (L)  nd(L)  n = dimX .

Definition (abundance)

A line bundle L is said to be abundant if (L) = nd(L).

The fundamental abundance conjecture can be stated: for each
nonsingular klt pair (X ,�) the Q-line bundle KX + � is abundant.
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Generalized base point free theorem ?

One can try to investigate the abundance of L = KX + � by induction
on the dimension n = dimX , by extending sections of KX + Lm,
Lm = (m � 1)KX +m� from subvarieties (noticing that KX + � psef
implies Lm psef, and even Lm � � psef). Cf. BCHM and recent work of
D-Hacon-Păun, Fujino, Gongyo, Takayama.

Standard base point free theorem

Let (X ,�) be a projective klt pair, and L be a nef line bundle such that
L� (KX + �) is nef and big. Then L is semiample, i.e. |mL| is base
point free for some m > 0.

Question (weak positivity variant of the BPF property ?)

Assume that X is not uniruled, i.e. that KX is pseudoe↵ective, and let
L be a line bundle such that L� "KX is pseudoe↵ective for some
0 < "⌧ 1. Does there exist G 2 Pic

0(X ) such that L+G is abundant ?
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General (qualitative) extension theorem

The following very general statement was recently obtained by
X. Zhou-L. Zhu as the culmination of many previous works:
Ohsawa-Takegoshi, Ohsawa, ..., D, Cao-D-Matsumura (2017).

General qualitative extension theorem

Let (X ,!) be Kähler holomorphically convex, L a holomorphic line
bundle with a hermitian metric h = h0e�', h0 2 C1, ' quasi-psh on X ,
and  2 L1loc(X ). Assume 9↵ > 0 continuous such that

⇥L,h + (1 + ⌫↵)i@@ � 0 on X , ⌫ = 0, 1.

Then, for all q � 0, the following restriction map is surjective:

Hq(X ,KX ⌦ L⌦ I(h)) ! Hq(X ,KX ⌦ L⌦ I(h)/I(he� )).

Remark. Here I(h)/I(he� ) is supported on the subvariety (Y ,OY )
where OY = OX/JY and JY is the conductor ideal:

JY = I(he� ) : I(h) =
def

{f 2 OX ; f · I(h) ⇢ I(he� )}.
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Simple algebraic corollary

Assume that X is projective (or 9 projective morphism X ! S over S
a�ne algebraic). Let Y =

P
mjYj be a simple normal crossing divisor,

and OY = OX/OX (�Y ). Then OX (�Y ) = I( ) with

 (z) =
X

cj log |�Yj |
2
hj , cj > 0 such that bcjc = mj ,

for any choice of smooth hermitian metrics hj on OX (Yj).
We have i@@ =

P
cj(2⇡[Yj ]� ⇥O(Yj ),hj ).

Corollary

Assume 9 (G⌫)⌫=0,1 semiample Q-divisors such that

(⇤⇤) L� (1 + ⌫↵)
P

cjYj ⌘ G⌫ mod Pic
0(X ), cj > 0, ↵ > 0.

Then, for Y =
P

mjYj , mj = bcjc, there is a surjective morphism

Hq(X ,KX ⌦ L) !! Hq(Y , (KX ⌦ L)|Y ).

The case where  has analytic singularities can in fact always be
reduced to the divisorial case by blowing up.
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(1) Qualitatively, approximate solutions su�ce

Assume X to be holomorphically convex. By the Cartan-Remmert
theorem, this is the case i↵ X admits a
proper holomorphic map p : X ! S only a Stein complex space S .

Observation : cohomology is then always Hausdor↵

Let X be a holomorphically convex complex space and F a coherent
analytic sheaf over X . Then all cohomology groups Hq(X ,F) are
Hausdor↵ with respect to their natural topology (local uniform
convergence of holomorphic Čech cochains)

Proof. Hq(X ,F) ' H0(S ,Rqp⇤F) is a Fréchet space.
Consequence. Coboundary spaces are closed in cocycle spaces.

Corollary

To solve an equation @u = v on a holomorphically convex manifold X ,
it is enough to solve it approximately:

@u" = v + w", w" ! 0 as "! 0.
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(2) Twisted Bochner-Kodaira-Nakano inequality
(Ohsawa-Takegoshi)

Let (X ,!) be a Kähler manifold and let ⌘, � > 0 be smooth functions
on X .

For every compacted supported section u 2 C1
c (X ,⇤p,qT ⇤

X ⌦ L) with
values in a hermitian line bundle (L, h), one has

k(⌘ + �)
1
2@

⇤
uk2 + k⌘

1
2@uk2 + k�

1
2@uk2 + 2k��

1
2@⌘ ^ uk2

�
Z

X
hBp,q

L,h,!,⌘,�u, uidVX ,!

where dVX ,! = 1
n!!

n is the Kähler volume element and Bp,q
L,h,!,⌘,� is the

Hermitian operator on ⇤p,qT ⇤

X ⌦ L such that

Bp,q
L,h,!,⌘,� = [⌘ i⇥L � i @@⌘ � i��1@⌘ ^ @⌘ , ⇤!].

In the sequel, we will apply this to the case of (n, q)-forms (p = n), and
choose ⌘,� > 0 so that Bp,q

L,h,!,⌘,� is � 0 (or close).
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(3) L2 approximate solutions of @-equations

L2 existence theorem “with error term”

Let (X ,!) be a Kähler manifold possessing a complete Kähler metric let
(E , hE ) be a Hermitian vector bundle over X . Assume that
B = Bn,q

E ,h,!,⌘,� satisfies B + " Id > 0 for some " > 0 (so that B can be
just semi-positive or slightly negative, e.g. B � � "

2 Id ).
Take a section v 2 L2(X ,⇤n,qT ⇤

X ⌦ E ) such that @v = 0 and

M(") :=

Z

X
h(B + " Id)�1v , vi dVX ,! < +1.

Then there exists an approximate solutionu" 2 L2(X ,⇤n,q�1T ⇤

X ⌦E )and
a correction term w" 2 L2(X ,⇤n,qT ⇤

X ⌦ E ) such that

@u" = v + w" and
Z

X
(⌘ + �)�1|u"|2 dVX ,! +

1

"

Z

X
|w"|2 dVX ,!  M(").

Moreover, notice that "M(") involves "(B + " Id)�1  2 Id.
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(4) Represent cohomology classes as Čech cocycles

Every cohomology class in

Hq(X ,OX (KX ⌦ L)⌦ I(h)/I(he� ))

is represented by a holomorphic Čech q-cocycle with respect to a Stein
covering U = (Ui ), say (ci0...iq),

ci0...iq 2 H0
�
Ui0 \ . . . \ Uiq ,OX (KX ⌦ L)⌦ I(h)/I(he� )

�
.

By the standard sheaf theoretic isomorphism with Dolbeault
cohomology, this class is represented by a smooth (n, q)-form

f =
X

i0,...,iq

ci0...iq ⇠i0@⇠i1 ^ . . . @⇠iq

by means of a partition of unity (⇠i ) subordinate to (Ui ). This form is to
be interpreted as a form on the (non necessarily reduced) analytic
subvariety Y associated with the conductor ideal sheaf
JY = I(he� ) : I(h).
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(5) Smooth lifting and associated @ equation

We get an extension of f as a smooth (no longer @-closed) (n, q)-form ef
on X by taking a lifting via I(h) ! I(h)/I(he� )

ef =
X

i0,...,iq

eci0...iq⇠i0@⇠i1 ^ . . . @⇠iq ,

where eci0...iq 2 H0(Ui0 \ . . . \ Uiq ,KX ⌦ L⌦ I(h)).

Y

{x2X / t< (x)<t+1}
1

0

✓(s)

1 s

Now, truncate ef as ✓( � t)·ef on the green hollow tubular
neighborhood, and solve an approximate @-equation

(⇤) @ut," = @(✓( � t)·ef ) + wt,", 0  ✓  1, |✓0|  1 + ".
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(6) L2 bound and regularization of the metrics

Here we have

@(✓( � t) · ef ) = ✓( � t) · @ef + ✓0( � t)@ ^ ef
where the second term vanishes near Y .

Moreover the image of @ef in I(h)/I(he� ) is @f = 0, thus @ef has
coe�cients in I(he� ). Hence @ef 2 L2loc(he

� ) = L2loc(h0e
�'� ).

Truncate p : X ! S by taking X 0 = p�1(S 0), S 0 b S Stein.
There are quasi-psh regularizations '� # ',  � #  with analytic
singularities, smooth on X 0rZ�, Z� analytic, and a complete Kähler
metric !� on X 0rZ� such thatZ

X 0 rZ�

|@ef |2!� ,h0e
�'�� �dV!� 

Z

X 0
|@ef |2!,h0e

�'� dV! < +1,

and we have an arbitrary small loss O(�) of positivity in the curvature
assumptions. Since " errors are permitted, we take � ⌧ "
and are reduced to the case where ' and  are smooth on X 0.
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(7) Bound of the error term in the @-equation

We obtain an approximate L2 solution ut," of the @-equation

@ut," = vt + wt,", vt := ✓( � t) · @ef + ✓0( � t)@ ^ ef , withZ

X 0
|wt,"|2!,h0 e

�'� dVX ,!  4

Z

X 0\{ <t+1}
|@ef |2!,h0 e

�'� dV!

+ 4

Z

X 0\{t< <t+1}
"h(Bt + " Id)�1@ ^ ef , @ ^ ef i!,h0 e�'� .

The first integral in the right hand side tends to 0 as t ! �1.

The main point is to choose ad hoc factors ⌘ = ⌘t , � = �t in the
twisted Bochner identity to get the last integral to converge to 0.
As X 0 b X , we can assume ↵ constant and  < 0. For u < 0, set

⇣(u) = log
1
↵+1

1
↵+1�eu

, �(u) =
1
↵2�1+eu�( 1↵+1)u

1
↵ + 1� eu

, � =
(�0)2

�⇣ 00 � �00
.

One checks that " = e2t , �t(u) = log(eu + et), ⌘t = �(�t( )),
�t = �(�t( )) and h0 7! ht = h0e�⇣(�t( )) yield an O(et) bound.
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Second lecture

Second lecture
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Second lecture: extensionwith optimal L2 estimates

Setup. Let L ! X be a holomorphic line bundle, equipped with a
singular hermitian metric h = h0e�', ' quasi-psh. Let  2 L1loc such
that '+  is quasi-psh, and Y ⇢ X the subvariety defined by the
conductor ideal JY = I(he� ) : I(h).
For a section f 2 H0(Y ,OX (KX ⌦ L)⌦ I(h)/I(he� )), the goal is to
get an “extension” F 2 H0(X ,OX (KX ⌦ L)⌦ I(h)),

via I(h) ! I(h)/I(he� ), F 7! f ,

with an explicit L2 estimate of F on X in terms of a suitable L2 integral
of f on the subvariety Y .

Additionally, it will be convenient to assume that X is weakly
pseudoconvex (this is weaker than being holomorphically convex). This
means that there exists a smooth psh exhaustion � on X .

We first define the Ohsawa residual measure associated with f . As for
f , this will be a measure supported on Y .
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The Ohsawa residual measure

Given f 2 H0(U,OX (KX ⌦ L)⌦ I(h)/I(he� )), there exists a Stein
covering (Ui ) of X and liftings efi 2 H0(Ui ,OX (KX ⌦ L)⌦ I(h)) of f on
Ui via I(h) ! I(h)/I(he� ). We obtain in this way a C1 extension
ef =

P
⇠iefi where (⇠i ) is a partition of unity.

Definition of the Ohsawa residual measure

For g 2 Cc(Y ), g � 0, and 0  eg 2 Cc(X ) extending g , we setZ

Y
g dVY [f

2, h, ] := inf
eg

lim sup
t!�1

Z

{t< <t+1}
eg |ef |2!,he� dVX ,!.

Proposition

dVY [f 2, h, ] is independent of the choice of ef as well as of !, and
defines a positive measure on Y (but not necessarily locally finite).

Proof. When �efi 2 H0(Ui ,OX (KX ⌦ L)⌦ I(he� )), then
|�efi |2!,he� 2 L1loc(X ) and the lim sup ! 0 for Supp(eg) ⇢ U.
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The Ohsawa residual measure (2)

Example 1. Take  (z) = r log |s(z)|2hE , where s 2 H0(X ,E ) and

r = rank(E ). Assume that Y = s�1(0) is of codimension r , that s is
generically transverse to 0 on Y and h 2 C1. Then

dVY [f
2, h, ] = cn,r

|f |2!,h dVY ,!

|⇤r (ds)|2!,hE
on Y r{⇤r (ds) = 0}.

Proof. Near a regular point z0 be can pick a holomorphic frame
(e�)1�r of E and coordinates (z1, . . . , zn) such that (e�) is
h-orthornormal and (@/@zj) is !-orthonormal at z0, and
s(z) =

P
1jr �jzjej , �j 6= 0. Then ! ⇠ i

P
dzj ^ dz j and

 (z) ⇠ r log(|�1|2|z1|2 + . . .+ |�r |2|zr |2). This is an easy calculation of
integrals on ellipsoids.

Example 2. Take now  (z) =
P

cj log |sDj |2hj where D =
P

cjDj is a
simple normal crossing divisor, cj > 0, and hj is a C1 metric on
OX (Dj). Also assume h 2 C1.
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Ohsawa residual measure for s.n.c. singularities

By a change of coordinates, we are reduced to computing dVY [f 2, h, ]
for  (z) =

P
cj log |zj |2 + u(z), u 2 C1. However

dVY [f
2, h, + u] = e�u dVY [f

2, h, ],

thus we may assume u = 0. At a regular point of Dj r
S

k 6=j Dk , (and
j = 1, say) we apply the Fubini theorem with z = (z1, z 0),
z 0 = (z2, . . . , zn). We have to compute limits of the form

lim
t!�1

Z

et<|z1|2c1<et+1

eg(z)|ef (z)|2
|z1|2c1

idz1 ^ dz1 =
2⇡

m1
g(0, z 0)|eh(0, z 0)|2

when c1 = m1 2 N⇤ and ef (z) = zm1�1
1

eh(z). However, if cj < 1, we get
0, and in general, if cj /2 N⇤ and cj > 1, we can get only 0 or 1 values,

according to the divisibility of f by z
mj�1
j , mj = bcjc 2 N⇤.

As a consequence, we can capture an interesting (i.e. locally finite, non
zero) residual measure dVY [f 2, h, ] only in the case where one of the
coe�cients cj is an integer.
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Ohsawa residual measure for analytic singularities

One general case of interests is when  has analytic singularities, i.e.
locally  (z) = c log

P
|gj(z)|2 + u(z), gj 2 OX (V ), u 2 C1(V ).

Then, it is interesting to look at the family of multiplier ideal sheaves
I(e�s ) when s 2 R+, which decrease as s increases. Assume without
loss of generality that c = 1.

By Hironaka, we know that there exists a composition of blow-ups
µ : eX ! X such that the pull-back ideal µ⇤(gj) = (gj � µ) is an
invertible ideal sheaf O eX (�

P
mjDj) associated with a simple normal

crossing divisor. The direct image formula implies

I(e�s ) = µ⇤(K eX/X ⌦ I(e�s  �µ)) = µ⇤O eX

⇣X
(aj � bsmjc)Dj

⌘

where K eX/X = O eX (
P

ajDj). This implies that I(e�s ) “jumps”

precisely for a discrete sequence of rational numbers
0 = s0 < s1 < . . . < sk < . . . such that skmj 2 N for some j .

For f 2 I(e�sk�1 ), the measure dVY [f 2, h, sk ] will be interesting.
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Restricted multiplier ideals

We first have to introduce a suitable sheaf of integrable functions on the
subvariety Y associated with JY = I(he� ) : I(h).

Definition of the restricted multiplier ideal

For x 2 Y , we define I 0

 (h)x ⇢ I(h)x to be the ideal of germs

of functions ef 2 I(h)x associated with f = ef mod I(he� )x in
I(h)/I(he� )x , for which dV [f 2, h, ] is locally finite near x on Y .

Clearly, I(he� ) ⇢ I 0

 (h) ⇢ I(h).

Typical case of application. Assume that h = e�' and  have
analytic singularities, and that sk = 1 is one of jumping values for
s 7! I(e�s ) (case of log canonical singularities: s1 = 1).

Then I 0

 (h) ⇢ I(he�sk�1 ) on X , and I 0

 (h) = I(he�sk�1 ) on a Zariski
open subset X0 = X rZ , Z ( Y (however, the ideals may di↵er on Z ).
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Use of more “flexible” weights

The next issue is that we need special and rather flexible weights. Let
↵ 2 ]0, 1[ and A = sup

X
 2 ]�1,+1]. We consider functions

⇢ : [�1,A] ! R⇤
+, such as

⇢(u) = 1� (A+ 1 + ↵�1/2 � u)�1,

that are continuous strictly decreasing, with the property that ⇢ is
concave near �1.

We assume moreover that
Z A

t
⇢(u) du +

⇢(A)

↵
 ⇢(t)2

|⇢0(t)| for all t 2 ]�1,A].

The L2 estimates will involve integrals of the formR
X |F |2!,he� |⇢0( )| dVX ,!, where |⇢0( )| = (C �  )�2 in the above

example, so that e� |⇢0( )| is locally sommable when  has log
canonical singularities.
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General L2 extension theorem

Theorem (X. Zhou-L. Zhu 2019)

Let (X ,!) be a weakly pseudoconvex Kähler manifold, L a holomorphic
line bundle with a hermitian metric h = h0e�', h0 2 C1, ' quasi-psh
on X , and  2 L1loc(X ). Assume 9↵ > 0 constant such that

⇥L,h + (1 + ⌫↵)i@@ � 0 on X , ⌫ = 0, 1.

Then, for every f 2 H0(Y ,OX (KX ⌦ L)⌦ I 0

 (h)/I(he� )) s.t.Z

Y
dVY [f

2, h, ] < +1,

there exists F 2 H0(X ,OX (KX ⌦ L)⌦ I 0

 (h) that is mapped to f by the

morphism I 0

 (h) ! I 0

 (h)/I(he� ), such that
Z

X
|F |2!,he� |⇢0( )| dVX ,!  ⇢(�1)

Z

Y
dVY [f

2, h, ].
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(1) Construction of a smooth extension

Every section f 2 H0(X ,OX (KX ⌦ L)⌦ I(h)/I(he� )) admits a C1

lifting

ef =
X

⇠i efi , efi 2 H0
�
Ui ,OX (KX ⌦ L)⌦ I(h)

�

by means of a Stein covering (Ui ) of X and a partition of unity (⇠i )
subordinate to (Ui ).

Since
P
@⇠i = 0, we have @ef =

P
@⇠i (efi � efj) on Uj , and since efi � efj

has coe�cients in I(he� ), we see that @ef is valued in

OX (KX ⌦ L)⌦ I(he� )⌦OX C1.

As X is assumed to be weakly pseudoconvex, we can consider
Xc = {z 2 X ; �(z) < c} b X , 8c 2 R, and get by compactnessZ

Xc

|@ef |2!,he� dVX ,! < +1.

It will be enough to get estimates on Xc , and then let c ! +1.
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(2) Solving the @ equation

The next idea is to truncate ef by multiplying ef with a cut-o↵ function
✓( � t) equal to 1 near Y ⇢  �1(�1).

Y

{x2X / t< (x)<t+1}
1

0

✓(s)

1 s

We next solve the approximate @-equation

(⇤) @ut," = vt + wt,"

with vt := @(✓( � t) · ef ) = ✓( � t) · @ef + ✓0( � t)@ ^ ef .
It the weights  and ' of h = h0e�' are not smooth, we use
regularizations '� # ',  � #  and complete Kähler metrics !� # ! on
X rZ�. (We omit details here).
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(3) L2 estimates for solution and error term

The existence theorem with twisting factors ⌘t,", �t," yieldsZ

Xc

(⌘t," + �t,")
�1|ut,"|2!,h0e

�'� dVX ,! +
1

"

Z

Xc

|wt,"|2!,h0 e
�'� dVX ,!

 4

Z

Xc\{ <t+1}
|@ef |2!,h0 e

�'� dV!

+ 4

Z

Xc\{t< <t+1}
h(Bt + " Id)�1@ ^ ef , @ ^ ef i!,h0 e�'� .

The first integral in the right hand side tends to 0 as t ! �1.

Again, the main point is to choose ad hoc factors ⌘t , �t , and we want
here the last integral to converge to a finite limit. One can check that
this works with

⇣(u) = log
⇢(�1)

⇢(u)
, �(u) =

R A
u ⇢(v)dv + 1

↵⇢(A)

⇢(u)
, � =

(�0)2

�⇣ 00 � �00
,

�t,"(u) = max"(u, t), ⌘t," = �(�t,"( )), �t," = �(�t,"( )).
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Extension from hypersurface (Stein case)

In the hypersurface case, one gets the following simpler statement.

Theorem

Let X be a Stein manifold of dimension n. Let ' and  be
plurisubharmonic functions on X . Assume that w is a holomorphic
function on X such that supX ( + 2 log |w |)  0 and dw does not
vanish identically on any branch of w�1(0).

Denote Y = w�1(0) and Y0 = {x 2 Y : dw(x) 6= 0}.
Then for any holomorphic (n � 1)-form f on Y0 satisfying

Z

Y0

e
�'� i (n�1)2f ^ f̄ < +1,

there exists a holomorphic n-form F on X satisfying F|Y0
= dw ^ f and

an optimal estimateZ

X
e
�'in

2
F ^ F̄  2⇡

Z

Y0

e
�'� i (n�1)2f ^ f̄ .
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The Suita conjecture

The Suita conjecture was posed originally on open Riemann surfaces in
1972. The motivation was to answer a question posed by Sario and
Oikawa about the relation between the Bergman kernel B⌦ for
holomorphic (1, 0) forms on an open Riemann surface ⌦ which admits a
Green function G⌦.

Recall that the logarithmic capacity c�(z) is locally defined by

c�(z) = exp lim
⇠!z

(G⌦(⇠, z)� log |⇠ � z |) on ⌦.

Suita conjecture

(c�(z))2|dz |2  ⇡B⌦(z), for every z 2 ⌦.

Theorem

The Suita conjecture holds true (planar case: B locki 2013; general case:
Guan-Zhou 2014). Moreover (Guan-Zhou 2014), equality holds i↵ ⌦
biholomorphic to disc minus a closed polar set.
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Approximation of currents, Zariski decomposition

Definition

On X compact Kähler, a Kähler current T is a closed (1,1)-current
T such that T � �! for a smooth (1, 1) form ! > 0 and � ⌧ 1.

Easy observation

↵ 2 E� (interior of E) () ↵ = {T}, T = a Kähler current.

We say that E� is the cone of big (1, 1)-classes.

Theorem on approximate Zariski decomposition (D, 1992)

Any Kähler current can be written T = limTm where Tm 2 {T} has
analytic singularities & logarithmic poles, i.e. 9 modification
µm : eXm ! X such that µ?mTm = [Em] + �m, where Em � 0 is a
Q-divisor on eXm with coe↵. in 1

mZ and �m is a Kähler form on eXm.

Moreover (Boucksom), Vol(�m) =
R
eXm
�nm ! Vol(T ) as m ! +1.
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Proof of the analytic Zariski decomposition

• Write locally on any coordinate ball ⌦ ⇢ X

T = i@@'

for some strictly plurisubharmonic psh potential ' on X .

• Approximate T on ⌦ by

Tm = i@@'m, where 'm(z) =
1

2m
log

X

`

|g`,m(z)|2

where (g`,m) is a Hilbert basis of the space

H(⌦,m') =
�
f 2 O(⌦) ; kf k2m' :=

Z

⌦
|f |2e�2m'dV < +1

 
.

• We have 'm(z) =
1

2m
sup

kf km'1
log |f (z)|2.

The mean value inequality implies

|f (z)|2  1

⇡nr2n/n!
sup
B(z,r)

e2m'(z) ) 'm(z)  sup
B(z,r)

'+
n

m
log

C

r
.
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Use of the pointwise Ohsawa-Takegoshi theorem

• The Ohsawa-Takegoshi L2 extension theorem (extension from a single
isolated point) implies that for every z0 2 ⌦, there exists f 2 O(⌦) such
that f (z0) = c em'(z0) (c > 0 small), such that

kf k2m' =

Z

⌦
|f |2e�2m'dV  C

Z

{z0}
|f |2e�2m'�z0 = 1

for c = C�1/2. As a consequence 'm(z) � '(z) +
1

2m
log c .

• By the above inequalities one easily concludes that the Lelong number
at any point z0 2 ⌦ satisfies

⌫(', z0)�
n

m
 ⌫('m, z0)  ⌫(', z0).

This implies Siu’s analyticity result for Lelong upper level sets Ec(T ).

• The case of a global current T = ↵+ ddc' is obtained by using a
covering of X by balls ⌦j , and gluing the local approximations 'j ,m of '
into a global one 'm by a partition of unity.
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Third lecture

Third lecture
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Log canonical thresholds

The goal is to explain a proof of the strong openness conjecture for log
canonical thresholds. Let ⌦ be a domain in Cn, f 2 O(⌦) a
holomorphic function, and ' 2 PSH(⌦) a psh function on ⌦.

The log canonical threshold cz0(') 2 ]0,+1] (or complex singularity
exponent) is defined to be

cz0(') = sup
�
c > 0 ; e�2c ' is L1 on a neighborhood of z0

 
.

A well known theorem of Skoda asserts that
1

n
⌫(', z0)  cz0(')

�1  ⌫(', z0).

For every holomorphic function f on ⌦, we also introduce the weighted
log canonical threshold cf ,z0(') 2 ]0,+1] of ' with weight f at z0 to
be

cf ,z0(') = sup
�
c > 0 ; |f |2e�2c ' is L1 on a neighborhood of z0

 
.
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Semi-continuity theorem / strong openness

Theorem (Guan-Zhou 2013, version due to Pham H. Hiep 2014))

Let f be a holomorphic function on an open set ⌦ in Cn and
let ' be a psh function on ⌦.

(i) (“Semicontinuity theorem”) Assume that
R
⌦0 e�2c 'dV2n < +1

on some open subset ⌦0 ⇢ ⌦ and let z0 2 ⌦0. Then there exists
� = �(c ,',⌦0, z0) > 0 such that for every  2 PSH(⌦0),
k � 'kL1(⌦0)  � implies cz0( ) > c . Moreover, as  converges to

' in L1(⌦0), the function e�2c  converges to e�2c ' in L1 on every
relatively compact open subset ⌦00 b ⌦0.

(ii) (“Strong e↵ective openness”) Assume thatR
⌦0 |f |2e�2c 'dV2n < +1 on some open subset ⌦0 ⇢ ⌦. When
 2 PSH(⌦0) converges to ' in L1(⌦0) with   ', the function
|f |2e�2c  converges to |f |2e�2c ' in L1 norm on every relatively
compact open subset ⌦00 b ⌦0.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L2 extension theorems and applications to alg. geometry 38/55



Consequences of the semi-continuity theorem

Corollary 1 (Strong openness, Guan-Zhou 2013)

For any plurisubharmonic function ' on a neighborhood of a point
z0 2 Cn, the set {c > 0 : |f |2e�2c ' is L1 on a neighborhood of z0}
is an open interval ]0, cf ,z0(')[.

Proof. After subtracting a large constant to ', we can assume '  0.
Then Cor. 1 is a consequence of assertion (ii) of the main theorem by
taking ⌦0 small enough and  = (1 + �)' with � & 0.

Application to multiplier ideal sheaves (Guan-Zhou 2013)

Let h = e�' a singular hermitian metric with ' quasi-psh. The “upper
semicontinuous regularization” of I(h) is defined to be

I+(h) = lim
"!0

I(h1+") = lim
"!0

I((1 + ")') = lim
k!+1

I((1 + 1/k)')

(by Noetherianity, this increasing sequence is stationary on all compact
subsets). Then I+(h) = I(h).

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L2 extension theorems and applications to alg. geometry 39/55

Convergence from below / idea of the proof

Corollary 2 (Convergence from below)

If   ' converges to ' in a neighborhood of z0 2 Cn, then
cf ,z0( )  cf ,z0(') converges to cf ,z0(').

Proof. We have by definition cf ,z0( )  cf ,z0(') for   ', but again
(ii) shows that cf ,z0( ) becomes � c for any given value
c 2 (0, cf ,z0(')), when k � 'kL1(⌦0) is su�ciently small.

Phams’s theorem is proved by induction on n (n = 0, 1 are easy).

Aassume that the theorem holds for dimension n � 1. Let f 2 O(�n
R)

be holomorphic on a n-dimensional polydisc, such thatR
�n

R
|f (z)|2e�2c'(z)dV2n(z) converges. The idea is to restrict f to a

generic hyperplane zn = wn. By induction, the integral of the restriction
still converges after increasing c to c + " (shrinking R). By the
Ohsawa-Takegoshi theorem, the restriction can be extended to a
function F and one proceeds by comparing f and F .
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Key lemma in Pham’s proof

Lemma (Pham)

Let '  0 be psh and f be holomorphic on the polydisc �n
R of center 0

and (poly)radius R > 0 in Cn, such that for some c > 0Z

�n
R

|f (z)|2e�2c '(z)dV2n(z) < +1.

Let  j  0, j 2 N, be psh functions on �n
R with  j ! ' in L1loc(�

n
R),

and assume that f ⌘ 1 or  j  ' for all j � 1.
Then for every r < R and " 2 ]0, 12 r ], there exist a value wn 2 �" r {0}
(in a set of measure > 0), an index j0 = j0(wn), a constant
c̃ = c̃(wn) > c and holomorphic functions Fj on �n

r , j � j0, such that
Fj(z) = f (z) + (zn � wn)

P
aj ,↵z↵ with |wn||aj ,↵|  r�|↵|"

for all ↵ 2 Nn, IM(Fj)  IM(f ), and
Z

�n
r

|Fj(z)|2e�2c̃  j (z)dV2n(z) 
"2

|wn|2
< +1, 8j � j0.

[Here IM(F ) = Initial Monomial in lexicographic order at 0 ].
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Idea of proof of the key lemma

By Fubini’s theorem we have
Z

�R

 Z

�n�1
R

|f (z 0, zn)|2e�2c '(z 0,zn)dV2n�2(z
0)

�
dV2(zn) < +1.

Since the integral extended to a small disc zn 2 �⌘ tends to 0 as ⌘ ! 0,
it will become smaller than any preassigned value, say "20 > 0, for
⌘  ⌘0 small enough. Therefore we can choose a set of positive measure
of values wn 2 �⌘ r {0} such that

Z

�n�1
R

|f (z 0,wn)|2e�2c '(z 0,wn)dV2n�2(z
0)  "20

⇡⌘2
<

"20
|wn|2

.

Since the main theorem is assumed to hold for n � 1, for any ⇢ < R
there exist j0 = j0(wn) and c̃ = c̃(wn) > c such that

Z

�n�1
⇢

|f (z 0,wn)|2e�2c̃  j (z 0,wn)dV2n�2(z
0) <

"20
|wn|2

, 8j � j0.
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Idea of proof of the key lemma (2)

By Ohsawa-Takegoshi, there exists a holomorphic function Fj on
�n�1
⇢ ⇥ �R such that Fj(z 0,wn) = f (z 0,wn) for all z 0 2 �n�1

⇢ , and
Z

�n�1
⇢ ⇥�R

|Fj(z)|2e�2c̃  j (z)dV2n(z)

 CnR
2
Z

�n�1
⇢

|f (z 0,wn)|2e�2c̃  j (z 0,wn)dV2n�2(z
0)  CnR2"20

|wn|2
,

where Cn is a constant which only depends on n (the constant is
universal for R = 1 and is rescaled by R2 otherwise).
Taking ⇢ = 1

2(r + R), the mean value inequality implies

kFjkL1(�n
r ) 

2nC
1
2
n R"0

⇡
n
2 (R � r)n|wn|

.

Since Fj(z 0,wn)� f (z 0,wn) = 0, 8z 0 2 �n�1
r , we can write

Fj(z) = f (z) + (zn � wn)gj(z) for some holomorphic function
gj(z) =

P
↵2Nn aj ,↵z↵ on �n�1

r ⇥ �R . Then analyze IM(Fj) ...
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Volume and numerical dimension of currents

Definition

let (X ,!) be a compact Kähler manifold, and T � 0 a closed
(1, 1)-current on X . The positive intersection hT pi 2 Hp,p

�0 (X ) (in the
sense of Boucksom) is

lim
"!0

⇣
lim sup(µm,")⇤(�

p
m,")

⌘
, µm," : eXm," ! X

for the Zariski decomposition µ⇤
m,"Tm," = �m," + [Em,"] of Bergman

approximations Tm," of T + "!. The volume is Vol(T ) = hT ni.

Numerical dimension of a current

nd(T ) = max
�
p 2 N ; hT pi 6= 0 in Hp,p

�0 (X )
 
.

Numerical dimension of a hermitian line bundle (L, h)

If ⇥L,h � 0, one defines nd(L, h) = nd(⇥L,h).
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Generalized Nadel vanishing theorem

Theorem (Junyan Cao, PhD thesis 2012)

Let X be compact Kähler, and (L, h) be s.t. ⇥L,h � 0 on X . Then

Hq(X ,KX ⌦ L⌦ I+(h)) = 0 for q � n � nd(L, h) + 1,

Moreover we have in fact I+(h) = I(h) by Guan-Zhou.

Remark 1. There is also a concept of numerical dimension of a class
↵ 2 H1,1(X ): one defines nd(L) to be �1 if L is not psef, and

nd(L) = max{p 2 N ; lim
"!0

sup
{T2C1(L), T��"!}

h(T + "!)pi 6= 0

when L is psef. In general, we have nd(L, h)  nd(L), but it may
happen that sup{h, ⇥L,h�0} nd(L, h) < nd(L).

Remark 2. In the projective case, one can use a hyperplane section
argument, using Tsuji’s algebraic expression of nd(L, h) :

nd(L, h) = max
�
p2N ; 9Y p⇢X , h0(Y , (L⌦m ⌦ I(hm))|Y ) � cmp

 
.
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Proof of generalized Nadel vanishing (projective case)

Hyperplane section argument (projective case). Take A = very ample
divisor, ! = ⇥A,hA > 0, and Y = A1 \ . . . \ An�p, Aj 2 |A|. Then

h⇥p
L,hi · Y =

Z

X
h⇥p

L,hi · Y =

Z

X
h⇥p

L,hi ^ !
n�p > 0.

From this one concludes that (⇥L,h)|Y is big.

Lemma (J. Cao)

When (L, h) is big, i.e. h⇥n
L,hi > 0, there exists a metric eh such that

I(eh) = I+(h) with ⇥L,eh � "! [Riemann-Roch].

Then Nadel ) Hq(X ,KX ⌦ L⌦ I+(h)) = 0 for q � 1.

Conclude by induction on dimX and the exact cohomology sequence for
the restriction to a hyperplane section.
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Proof of generalized Nadel vanishing (Kähler case)

Kähler case. By the regularization theorem, one finds an approximation
h̃" = h0e�'̃" with analytic singularities of the metric h of L, such that
⇥L,h̃"

� �1
2"!.

Then, by blowing-up X to achieve divisorial singularities for h̃" and using
Yau’s theorem, one solves on X a singular Monge-Ampère equation:
9h" = h0e�'" with logarithmic poles, such that

(⇥L,h" + "!)n = C"!
n.

where C" �
�n
p

�
h⇥p

L,hi · ("!)n�p ⇠ C"n�p, p = nd(L, h).

Another important fact is that one can ensure the equalities
I+(h) = I(h1+") = I(h") (looking deeper in the regularization).

Ch. Mourougane argument (PhD thesis 1996). Let �1  . . .  �n be
the eigenvalues of ⇥L,h + "! with respect to ! at each point x 2 X .
Then

�1 . . .�n = C" � Const "n�p.
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Final step: use Bochner-Kodaira formula

MoreoverZ

X
�q+1 . . .�n !

n =

Z

X
⇥n�q

L,h ^ !q  Const, 8q � 1,

so �q+1 . . .�n  C on a large open set U ⇢ X and

�qq � �1 . . .�q � c"n�p ) �q � c"(n�p)/q on U,

)
qX

j=1

(�j � ") � �q � q" � c"(n�p)/q � q" > 0 for q > n � p.

�j = eigenvalues of (⇥L,h"+"!) ) (eigenvalues of ⇥L,h") = �j � "

and the Bochner-Kodaira formula yields

k@uk2" + k@⇤uk2" �
Z

U

⇣ qX

j=1

(�j � ")
⌘
|u|2e�'"dV!.

The fact that U has almost full volume allows to take the limit as "! 0
and conclude that u = 0. QED
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Hard Lefschetz theorem with psef coe�cients

Hard Lefschetz theorem (D-Peternell-Schneider 2001)

Let (L, h) be a psef line bundle on a compact n-dimensional Kähler
manifold (X ,!), ⇥L,h � 0. Then, the Lefschetz map :
u 7! !q ^ u induces a surjective morphism :

�q
!,h : H0(X ,⌦n�q

X ⌦ L⌦ I(h)) �! Hq(X ,KX ⌦ L⌦ I(h)).

The proof is based on using approximated metrics h⌫ = h0e�'⌫ , '⌫ # ',
that are smooth on X rZ⌫ , with an increasing sequence of analytic sets
Z⌫ , such that ⇥L,h⌫ � �"⌫!. We also consider Kähler metrics !⌫ # !
that are complete on X rZ⌫ .

Any cohomology class {u} is represented by a (!⌫ , h⌫)-harmonic (n, q)
form u⌫ with values in KX ⌦ L⌦ I(h⌫). One gets a unique
(n � q, 0)-form v⌫ s.t. !q

⌫ ^ v⌫ = u⌫ , and a Bochner type formula

k@uk2 + k@⇤h⌫uk
2 = k@vk2 +

Z

Y

X
I ,J

⇣X
j2J

�⌫,j
⌘
|uIJ |2e�'⌫dV!⌫ .
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Proof of the Hard Lefschetz theorem

Here the �⌫,j are the curvature eigenvalues of ⇥L,h⌫ , so �⌫,j � �"⌫ .
Taking u⌫ = harmonic representative, we get @u⌫ = @

⇤

h⌫u⌫ = 0, hence

k@v⌫k2 =
Z

X
|@v⌫ |!⌫e

�'⌫dV!⌫  q"⌫

Z

X
|u⌫ |2!⌫

e�'⌫dV!⌫

 q"⌫

Z

X
|u|2!⌫

e�'⌫dV!⌫  q"⌫

Z

X
|u|2!e�'dV!.

We need the following consequence of theOhsawa-Takegoshi theorem:

Equisingular approximation theorem

Writing h = h0e�', there exists a decreasing sequence '⌫ # '
) h = lim h⌫ with h⌫ = h0e�'⌫ , such that

'⌫ 2 C1(X rZ⌫),
where Z⌫ is an increasing sequence of analytic sets,

I(h⌫) = I(h), 8⌫,
⇥L,h⌫ � �"⌫!.
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Important complement by Xiaojun Wu

Theorem (Xiaojun Wu, PhD thesis 2020)

Let (L, h) be a psef line bundle on a compact Kähler manifold (X ,!),
⇥L,h � 0. Then, the wedge multiplication operator !q ^ • induces an
isomorphism

H0(X ,⌦n�q
X ⌦ L⌦ I(h)) \ Ker(@h) �! Hq(X ,KX ⌦ L⌦ I(h)).

Moreover, each section v 2 H0(X ,⌦n�q
X ⌦ L⌦ I(h)) \ Ker(@h) is

rh-parallel, and gives rise to a holomorphic foliation of X by
considering the subsheaf Fv = {⇠ 2 O(TX ) ; i⇠v = 0} ⇢ O(TX ).

Proof. In fact, with cq = i (n�q+1)2, a formal integration by parts givesZ

X
|@hv |2hdV! =

Z

X
cq{@hv , @hv}h ^ !q�1 = �

Z

X
cq{i@@hv , v}h ^ !q�1

= �
Z

X
cq{⇥L,hv , v}h ^ !q�1  0 ) @hv = 0.

One can check that this is meaningful in the sense of distributions.
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The end
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