

L^2 extension theorems and applications to algebraic geometry

Jean-Pierre Demailly

Institut Fourier, Université Grenoble Alpes & Académie des Sciences de Paris

Complex Analysis and Geometry – XXV CIRM – ICTP virtual meeting, smr 3601 June 7–11, 2021

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry

1/5

General plan of the lectures

- (1) First lecture: a general qualitative extension theorem
 - Setup and general statement
 - Main ideas of the proof
- (2) Second lecture: extension with optimal L^2 estimates
 - Ohsawa residual measure
 - Log canonical case, case of higher order jets
 - Main L^2 estimate; solution of the Suita conjecture
 - Approximation of quasi-psh functions and currents
- (3) Third lecture: applications
 - Solution of the strong openness conjecture (Guan and Zhou)
 - Pham's strong semicontinuity theorem
 - Generalized Nadel vanishing theorem by Junyan Cao
 - Hard Lefschetz theorem with psef coefficients (and a complement by Xiaojun Wu)

First lecture

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 3/5

First lecture: notation and main concepts

Let (X, ω) be a possibly noncompact n-dimensional Kähler manifold, and L a holomorphic line bundle on X, with a possibly singular hermitian metric $h=e^{-\varphi}$, $\varphi\in L^1_{\mathrm{loc}}$. The curvature current is

$$\Theta_{L,h} = i \, \partial \overline{\partial} \log h^{-1} = i \partial \overline{\partial} \varphi$$

computed in the sense of distributions.

Very often, one needs positivity assumptions for L.

Definition

- L is positive if $\exists h \in C^{\infty}$ such that $\Theta_{L,h} > 0$ ($\Leftrightarrow L$ ample);
- L is nef if $\forall \varepsilon > 0$, $\exists h_{\varepsilon} \in C^{\infty}$ such that $\Theta_{L,h_{\varepsilon}} \geq -\varepsilon \omega$;
- L is pseudoeffective (psef) if $\exists h$ singular such that $\Theta_{L,h} \geq 0$.

Now, let $\mathcal{J} \subset \mathcal{O}_X$ a coherent ideal sheaf, $Y = V(\mathcal{J})$ its zero variety and $\mathcal{O}_Y = \mathcal{O}_X/\mathcal{J}$. Here Y may be non reduced, i.e. \mathcal{O}_Y may have nilpotent elements.

The extension problem

Consider the exact sequence

$$0 \to \mathcal{J} \to \mathcal{O}_X \to \mathcal{O}_X/\mathcal{J} \to 0.$$

By twisting with $\mathcal{O}_X(K_X \otimes L)$, where $K_X = \Lambda^n T_X^*$, one gets the long exact sequence of cohomology groups

$$\cdots \to H^{q}(X, K_{X} \otimes L) \to H^{q}(X, \mathcal{O}_{X}(K_{X} \otimes L) \otimes \mathcal{O}_{X}/\mathcal{J})$$
$$\to H^{q+1}(X, \mathcal{O}_{X}(K_{X} \otimes L) \otimes \mathcal{J}) \ \cdots$$

Surjectivity / extension problem

Under which conditions on X, $Y = V(\mathcal{J})$ and (L, h) is

$$H^q(X, K_X \otimes L) \to H^q(Y, (K_X \otimes L)|_Y) = H^q(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{O}_X/\mathcal{J})$$

a surjective restriction morphism?

Equivalent injectivity problem

When is $H^{q+1}(X, K_X \otimes L \otimes \mathcal{J}) \to H^{q+1}(X, K_X \otimes L)$ injective ?

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 5/5

Multiplier ideal sheaves

Given a hermitian metric $h=e^{-\varphi}$ with φ quasi-psh (i.e. such that $\varphi={\rm psh}+{\color{red}C^{\infty}}$), one defines the associated multiplier ideal sheaf $\mathcal{I}(h)=\mathcal{I}(e^{-\varphi})\subset\mathcal{O}_X$ by

$$\mathcal{I}(e^{-\varphi})_{x_0} = \left\{ f \in \mathcal{O}_{X,x_0} \, ; \, \exists U \ni x_0 \, , \, \int_U |f|^2 e^{-\varphi} d\lambda < +\infty \right\}$$

Theorem (Nadel)

 $\mathcal{I}(e^{-\varphi})$ is a coherent ideal sheaf.

Moreover, $\mathcal{I}(e^{-\varphi})$ is always integrally closed.

One says that a quasi-psh function φ has analytic singularities, i.e. locally on a neighborhood V of an arbitrary point $x_0 \in X$ we have

$$\varphi(z) = c \log \sum |g_j(z)|^2 + u(z), \quad g_j \in \mathcal{O}_X(V), \quad c > 0, \quad u \in C^\infty(V),$$

Example: $\varphi(z) = c \log |s(z)|_{h_E}^2, \ c > 0, \ s \in H^0(X, E), \ h_E \in C^{\infty}.$

Nadel vanishing theorem

Theorem (Nadel vanishing theorem)

Let (X, ω) be a Kähler manifold that is weakly pseudoconvex, i.e. X admits a smooth psh exhaustion γ . Let $L \to X$ be a holomorphic line bundle equipped with a singular hermitian metric h such that

$$\Theta_{L,h} \ge \alpha \omega, \quad \alpha \text{ continuous} > 0 \text{ function}.$$

Then $H^q(X, K_X \otimes L \otimes \mathcal{I}(h)) = 0$ for $q \geq 1$.

Corollary

Assume instead that (*) $\Theta_{L,h} + i\partial \overline{\partial} \psi \geq \alpha \omega$ for some quasi-psh function ψ on X. Then $H^q(X, K_X \otimes L \otimes \mathcal{I}(he^{-\psi})) = 0$ for $q \geq 1$, and for all $q \geq 0$, we have a surjective restriction morphism

$$H^q(X, K_X \otimes L \otimes \mathcal{I}(h)) \rightarrow H^q(X, K_X \otimes L \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi})).$$

Proof.
$$0 \to \mathcal{I}(he^{-\psi}) \to \mathcal{I}(h) \to \mathcal{I}(h)/\mathcal{I}(he^{-\psi})) \to 0$$
.

However, one would like to relax the strict positivity assumption (*).

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry

Motivation: abundance conjecture and MMP

One potential application would be to study the Minimal Model Program (MMP) for arbitrary projective – or even Kähler – varieties, whereas only the case of general type varieties is known.

For a line bundle L, one defines the Kodaira-litaka dimension $\kappa(L) = \limsup_{m \to +\infty} \log \dim H^0(X, L^{\otimes m})/\log m$ and the numerical dimension $\operatorname{nd}(L) = \operatorname{maximum}$ exponent p of non zero "positive intersections" $\langle T^p \rangle$ of a positive current $T \in c_1(L)$ when L is psef (pseudoeffective), and $\operatorname{nd}(L) = -\infty$ otherwise. They always satisfy

$$-\infty \le \kappa(L) \le \operatorname{nd}(L) \le n = \dim X.$$

Definition (abundance)

A line bundle L is said to be abundant if $\kappa(L) = \operatorname{nd}(L)$.

The fundamental abundance conjecture can be stated: for each nonsingular klt pair (X, Δ) the \mathbb{Q} -line bundle $K_X + \Delta$ is abundant.

Generalized base point free theorem ?

One can try to investigate the abundance of $L=K_X+\Delta$ by induction on the dimension $n=\dim X$, by extending sections of K_X+L_m , $L_m=(m-1)K_X+m\Delta$ from subvarieties (noticing that $K_X+\Delta$ psef implies L_m psef, and even $L_m-\Delta$ psef). Cf. BCHM and recent work of D-Hacon-Păun, Fujino, Gongyo, Takayama.

Standard base point free theorem

Let (X, Δ) be a projective klt pair, and L be a nef line bundle such that $L - (K_X + \Delta)$ is nef and big. Then L is semiample, i.e. |mL| is base point free for some m > 0.

Question (weak positivity variant of the BPF property ?)

Assume that X is not uniruled, i.e. that K_X is pseudoeffective, and let L be a line bundle such that $L - \varepsilon K_X$ is pseudoeffective for some $0 < \varepsilon \ll 1$. Does there exist $G \in \operatorname{Pic}^0(X)$ such that L + G is abundant?

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry

General (qualitative) extension theorem

The following very general statement was recently obtained by X. Zhou-L. Zhu as the culmination of many previous works: Ohsawa-Takegoshi, Ohsawa, ..., D, Cao-D-Matsumura (2017).

General qualitative extension theorem

Let (X, ω) be Kähler holomorphically convex, L a holomorphic line bundle with a hermitian metric $h = h_0 e^{-\varphi}$, $h_0 \in C^{\infty}$, φ quasi-psh on X, and $\psi \in L^1_{loc}(X)$. Assume $\exists \alpha > 0$ continuous such that

$$\Theta_{L,h} + (1 + \nu \alpha)i\partial \overline{\partial} \psi \geq 0$$
 on X , $\nu = 0, 1$.

Then, for all $q \ge 0$, the following restriction map is surjective:

$$H^q(X, K_X \otimes L \otimes \mathcal{I}(h)) \rightarrow H^q(X, K_X \otimes L \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi})).$$

Remark. Here $\mathcal{I}(h)/\mathcal{I}(he^{-\psi})$ is supported on the subvariety (Y, \mathcal{O}_Y) where $\mathcal{O}_Y = \mathcal{O}_X/\mathcal{J}_Y$ and \mathcal{J}_Y is the conductor ideal:

$$\mathcal{J}_Y = \mathcal{I}(he^{-\psi}) : \mathcal{I}(h) \stackrel{=}{=} \{ f \in \mathcal{O}_X \, ; \, f \cdot \mathcal{I}(h) \subset \mathcal{I}(he^{-\psi}) \}.$$

Simple algebraic corollary

Assume that X is projective (or \exists projective morphism $X \to S$ over S affine algebraic). Let $Y = \sum m_j Y_j$ be a simple normal crossing divisor, and $\mathcal{O}_Y = \mathcal{O}_X/\mathcal{O}_X(-Y)$. Then $\mathcal{O}_X(-Y) = \mathcal{I}(\psi)$ with

$$\psi(z) = \sum c_j \log |\sigma_{Y_j}|_{h_i}^2, \quad c_j > 0 \text{ such that } \lfloor c_j \rfloor = m_j,$$

for any choice of smooth hermitian metrics h_j on $\mathcal{O}_X(Y_j)$.

We have $i\partial \overline{\partial} \psi = \sum c_j (2\pi [Y_j] - \Theta_{\mathcal{O}(Y_j),h_j}).$

Corollary

Assume $\exists (G_{\nu})_{\nu=0,1}$ semiample \mathbb{Q} -divisors such that

(**)
$$L - (1 + \nu \alpha) \sum c_i Y_i \equiv G_{\nu} \mod \operatorname{Pic}^0(X), \quad c_i > 0, \quad \alpha > 0.$$

Then, for $Y=\sum m_j Y_j$, $m_j=\lfloor c_j \rfloor$, there is a surjective morphism

$$H^q(X, K_X \otimes L) \twoheadrightarrow H^q(Y, (K_X \otimes L)_{|Y}).$$

The case where ψ has analytic singularities can in fact always be reduced to the divisorial case by blowing up.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 11/55

(1) Qualitatively, approximate solutions suffice

Assume X to be holomorphically convex. By the Cartan-Remmert theorem, this is the case iff X admits a

proper holomorphic map $p: X \to S$ only a Stein complex space S.

Observation: cohomology is then always Hausdorff

Let X be a holomorphically convex complex space and \mathcal{F} a coherent analytic sheaf over X. Then all cohomology groups $H^q(X,\mathcal{F})$ are Hausdorff with respect to their natural topology (local uniform convergence of holomorphic Čech cochains)

Proof. $H^q(X, \mathcal{F}) \simeq H^0(S, R^q p_* \mathcal{F})$ is a Fréchet space. **Consequence.** Coboundary spaces are closed in cocycle spaces.

Corollary

To solve an equation $\partial u = v$ on a holomorphically convex manifold X, it is enough to solve it approximately:

$$\overline{\partial} u_{\varepsilon} = v + w_{\varepsilon}, \qquad w_{\varepsilon} \to 0 \ \ \text{as} \ \varepsilon \to 0.$$

(2) Twisted Bochner-Kodaira-Nakano inequality (Ohsawa-Takegoshi)

Let (X,ω) be a Kähler manifold and let $\eta, \lambda > 0$ be smooth functions on X.

For every compacted supported section $u \in \mathcal{C}^{\infty}_{c}(X, \Lambda^{p,q}T^{*}_{X} \otimes L)$ with values in a hermitian line bundle (L, h), one has

$$\begin{split} \|(\eta+\lambda)^{\frac{1}{2}}\overline{\partial}^{*}u\|^{2} + \|\eta^{\frac{1}{2}}\overline{\partial}u\|^{2} + \|\lambda^{\frac{1}{2}}\partial u\|^{2} + 2\|\lambda^{-\frac{1}{2}}\partial\eta\wedge u\|^{2} \\ &\geq \int_{X} \langle B_{\mathsf{L},\mathsf{h},\omega,\eta,\lambda}^{p,q}u,u\rangle dV_{X,\omega} \end{split}$$

where $dV_{X,\omega}=rac{1}{n!}\omega^n$ is the Kähler volume element and $B_{L,h,\omega,\eta,\lambda}^{p,q}$ is the Hermitian operator on $\Lambda^{p,q}T_X^*\otimes L$ such that

$$B_{L,h,\omega,\eta,\lambda}^{p,q} = [\eta i\Theta_L - i \partial \overline{\partial} \eta - i\lambda^{-1}\partial \eta \wedge \overline{\partial} \eta , \Lambda_{\omega}].$$

In the sequel, we will apply this to the case of (n, q)-forms (p = n), and choose $\eta, \lambda > 0$ so that $B^{p,q}_{L,h,\omega,\eta,\lambda}$ is ≥ 0 (or close).

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 13/55

(3) L^2 approximate solutions of $\overline{\partial}$ -equations

L^2 existence theorem "with error term"

Let (X, ω) be a Kähler manifold possessing a complete Kähler metric let (E, h_E) be a Hermitian vector bundle over X. Assume that $B = B_{E,h,\omega,\eta,\lambda}^{n,q}$ satisfies $B + \varepsilon \operatorname{Id} > 0$ for some $\varepsilon > 0$ (so that B can be just semi-positive or slightly negative, e.g. $B \ge -\frac{\varepsilon}{2} \operatorname{Id}$).

Take a section $v \in L^2(X, \Lambda^{n,q}T_X^* \otimes E)$ such that $\overline{\partial}v = 0$ and

$$M(\varepsilon) := \int_X \langle (B + \varepsilon \operatorname{Id})^{-1} v, v \rangle dV_{X,\omega} < +\infty.$$

Then there exists an approximate solution $u_{\varepsilon} \in L^2(X, \Lambda^{n,q-1}T_X^* \otimes E)$ and a correction term $w_{\varepsilon} \in L^2(X, \Lambda^{n,q}T_X^* \otimes E)$ such that

$$\overline{\partial} u_{\varepsilon} = v + w_{\varepsilon}$$
 and

$$\int_X (\eta + \lambda)^{-1} |u_{\varepsilon}|^2 dV_{X,\omega} + \frac{1}{\varepsilon} \int_X |w_{\varepsilon}|^2 dV_{X,\omega} \leq M(\varepsilon).$$

Moreover, notice that $\varepsilon M(\varepsilon)$ involves $\varepsilon (B + \varepsilon \operatorname{Id})^{-1} \leq 2 \operatorname{Id}$.

(4) Represent cohomology classes as Čech cocycles

Every cohomology class in

$$H^q(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi}))$$

is represented by a holomorphic Čech q-cocycle with respect to a Stein covering $\mathcal{U}=(U_i)$, say $(c_{i_0...i_q})$,

$$c_{i_0...i_q} \in H^0ig(U_{i_0} \cap \ldots \cap U_{i_q}, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi})ig).$$

By the standard sheaf theoretic isomorphism with Dolbeault cohomology, this class is represented by a smooth (n, q)-form

$$f = \sum_{i_0, \dots, i_q} c_{i_0 \dots i_q} \, \xi_{i_0} \overline{\partial} \xi_{i_1} \wedge \dots \overline{\partial} \xi_{i_q}$$

by means of a partition of unity (ξ_i) subordinate to (U_i) . This form is to be interpreted as a form on the (non necessarily reduced) analytic subvariety Y associated with the conductor ideal sheaf $\mathcal{J}_Y = \mathcal{I}(he^{-\psi}) : \mathcal{I}(h)$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 15/55

(5) Smooth lifting and associated $\overline{\partial}$ equation

We get an extension of f as a smooth (no longer $\overline{\partial}$ -closed) (n,q)-form \widetilde{f} on X by taking a lifting via $\mathcal{I}(h) \to \mathcal{I}(h)/\mathcal{I}(he^{-\psi})$

$$\widetilde{f} = \sum_{i_0,\dots,i_q} \widetilde{c}_{i_0\dots i_q} \xi_{i_0} \overline{\partial} \xi_{i_1} \wedge \dots \overline{\partial} \xi_{i_q},$$

where $\widetilde{c}_{i_0...i_q} \in H^0(U_{i_0} \cap ... \cap U_{i_q}, K_X \otimes L \otimes \mathcal{I}(h))$.

Now, truncate \widetilde{f} as $\theta(\psi - t) \cdot \widetilde{f}$ on the green hollow tubular neighborhood, and solve an approximate $\overline{\partial}$ -equation

$$(*) \qquad \overline{\partial} u_{t,\varepsilon} = \overline{\partial} (\theta(\psi - t) \cdot \widetilde{f}) + w_{t,\varepsilon}, \quad 0 \leq \theta \leq 1, \quad |\theta'| \leq 1 + \varepsilon.$$

(6) L² bound and regularization of the metrics

Here we have

$$\overline{\partial}(\theta(\psi - t) \cdot \widetilde{f}) = \theta(\psi - t) \cdot \overline{\partial}\widetilde{f} + \theta'(\psi - t)\overline{\partial}\psi \wedge \widetilde{f}$$

where the second term vanishes near Y.

Moreover the image of $\overline{\partial} \widetilde{f}$ in $\mathcal{I}(h)/\mathcal{I}(he^{-\psi})$ is $\overline{\partial} f=0$, thus $\overline{\partial} \widetilde{f}$ has coefficients in $\mathcal{I}(he^{-\psi})$. Hence $\overline{\partial} \widetilde{f} \in L^2_{\mathrm{loc}}(he^{-\psi})=L^2_{\mathrm{loc}}(h_0e^{-\varphi-\psi})$.

Truncate $p: X \to S$ by taking $X' = p^{-1}(S')$, $S' \subseteq S$ Stein.

There are quasi-psh regularizations $\varphi_{\delta}\downarrow\varphi$, $\psi_{\delta}\downarrow\psi$ with analytic singularities, smooth on $X'\smallsetminus Z_{\delta}$, Z_{δ} analytic, and a complete Kähler metric ω_{δ} on $X'\smallsetminus Z_{\delta}$ such that

$$\int_{X' \smallsetminus Z_{\delta}} |\overline{\partial} \widetilde{f}|^{2}_{\omega_{\delta},h_{0}} e^{-\varphi_{\delta}-\psi_{\delta}} dV_{\omega_{\delta}} \leq \int_{X'} |\overline{\partial} \widetilde{f}|^{2}_{\omega,h_{0}} e^{-\varphi-\psi} dV_{\omega} < +\infty,$$

and we have an arbitrary small loss $O(\delta)$ of positivity in the curvature assumptions. Since ε errors are permitted, we take $\delta \ll \varepsilon$ and are reduced to the case where φ and ψ are smooth on X'.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 17/55

(7) Bound of the error term in the $\overline{\partial}$ -equation

We obtain an approximate L^2 solution $u_{t,\varepsilon}$ of the $\overline{\partial}$ -equation $\overline{\partial} u_{t,\varepsilon} = v_t + w_{t,\varepsilon}$, $v_t := \theta(\psi - t) \cdot \overline{\partial} \widetilde{f} + \theta'(\psi - t) \overline{\partial} \psi \wedge \widetilde{f}$, with $\int_{X'} |w_{t,\varepsilon}|^2_{\omega,h_0} \, e^{-\varphi - \psi} \, dV_{X,\omega} \le 4 \int_{X' \cap \{\psi < t+1\}} |\overline{\partial} \widetilde{f}|^2_{\omega,h_0} \, e^{-\varphi - \psi} \, dV_{\omega}$ $+ 4 \int_{X' \cap \{t < \psi < t+1\}} \varepsilon \langle (B_t + \varepsilon \operatorname{Id})^{-1} \overline{\partial} \psi \wedge \widetilde{f}, \overline{\partial} \psi \wedge \widetilde{f} \rangle_{\omega,h_0} \, e^{-\varphi - \psi}.$

The first integral in the right hand side tends to 0 as $t \to -\infty$.

The main point is to choose ad hoc factors $\eta = \eta_t$, $\lambda = \lambda_t$ in the twisted Bochner identity to get the last integral to converge to 0. As $X' \subseteq X$, we can assume α constant and $\psi < 0$. For u < 0, set

$$\zeta(u) = \log \frac{\frac{1}{\alpha} + 1}{\frac{1}{\alpha} + 1 - e^u}, \ \chi(u) = \frac{\frac{1}{\alpha^2} - 1 + e^u - (\frac{1}{\alpha} + 1)u}{\frac{1}{\alpha} + 1 - e^u}, \ \beta = \frac{(\chi')^2}{\chi \zeta'' - \chi''}.$$

One checks that $\varepsilon = e^{2t}$, $\sigma_t(u) = \log(e^u + e^t)$, $\eta_t = \chi(\sigma_t(\psi))$, $\lambda_t = \beta(\sigma_t(\psi))$ and $h_0 \mapsto h_t = h_0 e^{-\zeta(\sigma_t(\psi))}$ yield an $O(e^t)$ bound.

Second lecture

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 19/55

Second lecture: extension with optimal L^2 estimates

Setup. Let $L \to X$ be a holomorphic line bundle, equipped with a singular hermitian metric $h = h_0 e^{-\varphi}$, φ quasi-psh. Let $\psi \in L^1_{loc}$ such that $\varphi + \psi$ is quasi-psh, and $Y \subset X$ the subvariety defined by the conductor ideal $\mathcal{J}_Y = \mathcal{I}(he^{-\psi}) : \mathcal{I}(h)$.

For a section $f \in H^0(Y, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi}))$, the goal is to get an "extension" $F \in H^0(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h))$,

via
$$\mathcal{I}(h) \rightarrow \mathcal{I}(h)/\mathcal{I}(he^{-\psi}), F \mapsto f$$
,

with an explicit L^2 estimate of F on X in terms of a suitable L^2 integral of f on the subvariety Y.

Additionally, it will be convenient to assume that X is weakly pseudoconvex (this is weaker than being holomorphically convex). This means that there exists a smooth psh exhaustion γ on X.

We first define the Ohsawa residual measure associated with f. As for f, this will be a measure supported on Y.

The Ohsawa residual measure

Given $f \in H^0(U, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi}))$, there exists a Stein covering (U_i) of X and liftings $\widetilde{f_i} \in H^0(U_i, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h))$ of f on U_i via $\mathcal{I}(h) \to \mathcal{I}(h)/\mathcal{I}(he^{-\psi})$. We obtain in this way a C^{∞} extension $\widetilde{f} = \sum \xi_i \widetilde{f_i}$ where (ξ_i) is a partition of unity.

Definition of the Ohsawa residual measure

For
$$g \in C_c(Y)$$
, $g \ge 0$, and $0 \le \widetilde{g} \in C_c(X)$ extending g , we set
$$\int_Y g \, dV_Y[f^2, h, \psi] := \inf_{\widetilde{g}} \limsup_{t \to -\infty} \int_{\{t < \psi < t+1\}} \widetilde{g} \, |\widetilde{f}|_{\omega,h}^2 e^{-\psi} dV_{X,\omega}.$$

Proposition

 $dV_Y[f^2, h, \psi]$ is independent of the choice of \widetilde{f} as well as of ω , and defines a positive measure on Y (but not necessarily locally finite).

Proof. When $\delta \widetilde{f}_i \in H^0(U_i, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(he^{-\psi}))$, then $|\delta \widetilde{f}_i|_{\omega,h}^2 e^{-\psi} \in L^1_{loc}(X)$ and the $\limsup \to 0$ for $\operatorname{Supp}(\widetilde{g}) \subset U$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 21/55

The Ohsawa residual measure (2)

Example 1. Take $\psi(z) = r \log |s(z)|_{h_E}^2$, where $s \in H^0(X, E)$ and $r = \operatorname{rank}(E)$. Assume that $Y = s^{-1}(0)$ is of codimension r, that s is generically transverse to 0 on Y and $h \in C^{\infty}$. Then

$$dV_Y[f^2,h,\psi] = c_{n,r} \frac{|f|_{\omega,h}^2 dV_{Y,\omega}}{|\Lambda^r(ds)|_{\omega,h_E}^2} \quad \text{on } Y \setminus \{\Lambda^r(ds) = 0\}.$$

Proof. Near a regular point z_0 be can pick a holomorphic frame $(e_{\lambda})_{1 \leq \lambda \leq r}$ of E and coordinates (z_1, \ldots, z_n) such that (e_{λ}) is h-orthornormal and $(\partial/\partial z_j)$ is ω -orthonormal at z_0 , and $s(z) = \sum_{1 \leq j \leq r} \lambda_j z_j e_j$, $\lambda_j \neq 0$. Then $\omega \sim i \sum dz_j \wedge d\overline{z}_j$ and $\psi(z) \sim r \log(|\lambda_1|^2 |z_1|^2 + \ldots + |\lambda_r|^2 |z_r|^2)$. This is an easy calculation of integrals on ellipsoids.

Example 2. Take now $\psi(z) = \sum c_j \log |s_{D_j}|_{h_j}^2$ where $D = \sum c_j D_j$ is a simple normal crossing divisor, $c_j > 0$, and h_j is a C^{∞} metric on $\mathcal{O}_X(D_i)$. Also assume $h \in C^{\infty}$.

Ohsawa residual measure for s.n.c. singularities

By a change of coordinates, we are reduced to computing $dV_Y[f^2, h, \psi]$ for $\psi(z) = \sum c_i \log |z_i|^2 + u(z)$, $u \in C^{\infty}$. However

$$dV_Y[f^2, h, \psi + u] = e^{-u} dV_Y[f^2, h, \psi],$$

thus we may assume u=0. At a regular point of $D_j \setminus \bigcup_{k \neq j} D_k$, (and j=1, say) we apply the Fubini theorem with $z=(z_1,z')$, $z'=(z_2,\ldots,z_n)$. We have to compute limits of the form

$$\lim_{t \to -\infty} \int_{e^t < |z_1|^{2c_1} < e^{t+1}} \frac{\widetilde{g}(z) |\widetilde{f}(z)|^2}{|z_1|^{2c_1}} i dz_1 \wedge d\overline{z}_1 = \frac{2\pi}{m_1} g(0, z') |\widetilde{h}(0, z')|^2$$

when $c_1=m_1\in\mathbb{N}^*$ and $\widetilde{f}(z)=z_1^{m_1-1}\widetilde{h}(z)$. However, if $c_j<1$, we get 0, and in general, if $c_j\notin\mathbb{N}^*$ and $c_j>1$, we can get only 0 or ∞ values, according to the divisibility of f by $z_j^{m_j-1}$, $m_j=\lfloor c_j\rfloor\in\mathbb{N}^*$.

As a consequence, we can capture an interesting (i.e. locally finite, non zero) residual measure $dV_Y[f^2, h, \psi]$ only in the case where one of the coefficients c_i is an integer.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 23/55

Ohsawa residual measure for analytic singularities

One general case of interests is when ψ has analytic singularities, i.e. locally $\psi(z) = c \log \sum |g_i(z)|^2 + u(z)$, $g_i \in \mathcal{O}_X(V)$, $u \in C^{\infty}(V)$.

Then, it is interesting to look at the family of multiplier ideal sheaves $\mathcal{I}(e^{-s\psi})$ when $s \in \mathbb{R}_+$, which decrease as s increases. Assume without loss of generality that c=1.

By Hironaka, we know that there exists a composition of blow-ups $\mu:\widetilde{X}\to X$ such that the pull-back ideal $\mu^*(g_j)=(g_j\circ\mu)$ is an invertible ideal sheaf $\mathcal{O}_{\widetilde{X}}(-\sum m_jD_j)$ associated with a simple normal crossing divisor. The direct image formula implies

$$\mathcal{I}(e^{-s\psi}) = \mu_*(\mathcal{K}_{\widetilde{X}/X} \otimes \mathcal{I}(e^{-s\,\psi\circ\mu})) = \mu_*\mathcal{O}_{\widetilde{X}}\Big(\sum (\mathsf{a}_j - \lfloor \mathsf{s} \mathsf{m}_j \rfloor) D_j\Big)$$

where $K_{\widetilde{X}/X} = \mathcal{O}_{\widetilde{X}}(\sum a_j D_j)$. This implies that $\mathcal{I}(e^{-s\psi})$ "jumps" precisely for a discrete sequence of rational numbers $0 = s_0 < s_1 < \dots < s_N < s_N < \dots$ such that $s_i m_i \in \mathbb{N}$ for some i

 $0 = s_0 < s_1 < \ldots < s_k < \ldots$ such that $s_k m_j \in \mathbb{N}$ for some j.

For $f \in \mathcal{I}(e^{-s_{k-1}\psi})$, the measure $dV_Y[f^2, h, s_k\psi]$ will be interesting.

Restricted multiplier ideals

We first have to introduce a suitable sheaf of integrable functions on the subvariety Y associated with $\mathcal{J}_Y = \mathcal{I}(he^{-\psi}) : \mathcal{I}(h)$.

Definition of the restricted multiplier ideal

For $x \in Y$, we define $\mathcal{I}'_{\psi}(h)_x \subset \mathcal{I}(h)_x$ to be the ideal of germs of functions $\widetilde{f} \in \mathcal{I}(h)_x$ associated with $f = \widetilde{f} \mod \mathcal{I}(he^{-\psi})_x$ in $\mathcal{I}(h)/\mathcal{I}(he^{-\psi})_x$, for which $dV[f^2,h,\psi]$ is locally finite near x on Y. Clearly, $\mathcal{I}(he^{-\psi}) \subset \mathcal{I}'_{\psi}(h) \subset \mathcal{I}(h)$.

Typical case of application. Assume that $h = e^{-\varphi}$ and ψ have analytic singularities, and that $s_k = 1$ is one of jumping values for $s \mapsto \mathcal{I}(e^{-s\psi})$ (case of log canonical singularities: $s_1 = 1$).

Then $\mathcal{I}'_{\psi}(h) \subset \mathcal{I}(he^{-s_{k-1}\psi})$ on X, and $\mathcal{I}'_{\psi}(h) = \mathcal{I}(he^{-s_{k-1}\psi})$ on a Zariski open subset $X_0 = X \setminus Z$, $Z \subsetneq Y$ (however, the ideals may differ on Z).

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 25/55

Use of more "flexible" weights

The next issue is that we need special and rather flexible weights. Let $\alpha \in]0,1[$ and $A=\sup_X \psi \in]-\infty,+\infty].$ We consider functions $\rho:[-\infty,A] \to \mathbb{R}_+^*$, such as

$$\rho(u) = 1 - (A + 1 + \alpha^{-1/2} - u)^{-1},$$

that are continuous strictly decreasing, with the property that ρ is concave near $-\infty$.

We assume moreover that

$$\int_t^A \rho(u) \, du + \frac{\rho(A)}{\alpha} \le \frac{\rho(t)^2}{|\rho'(t)|} \quad \text{for all } t \in]-\infty, A].$$

The L^2 estimates will involve integrals of the form $\int_X |F|_{\omega,h}^2 e^{-\psi} |\rho'(\psi)| \, dV_{X,\omega}$, where $|\rho'(\psi)| = (C-\psi)^{-2}$ in the above example, so that $e^{-\psi} |\rho'(\psi)|$ is locally sommable when ψ has log canonical singularities.

Theorem (X. Zhou-L. Zhu 2019)

Let (X,ω) be a weakly pseudoconvex Kähler manifold, L a holomorphic line bundle with a hermitian metric $h=h_0e^{-\varphi}$, $h_0\in C^\infty$, φ quasi-psh on X, and $\psi\in L^1_{\mathrm{loc}}(X)$. Assume $\exists \alpha>0$ constant such that

$$\Theta_{L,h} + (1 + \nu \alpha) i \partial \overline{\partial} \psi \ge 0 \quad \text{on } X, \quad \nu = 0, 1.$$

Then, for every $f \in H^0(Y, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}'_{\psi}(h)/\mathcal{I}(he^{-\psi}))$ s.t.

$$\int_{Y} dV_{Y}[f^{2}, h, \psi] < +\infty,$$

there exists $F \in H^0(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}'_{\psi}(h)$ that is mapped to f by the morphism $\mathcal{I}'_{\psi}(h) \to \mathcal{I}'_{\psi}(h)/\mathcal{I}(he^{-\psi})$, such that

$$\int_X |F|_{\omega,h}^2 e^{-\psi} |\rho'(\psi)| \, dV_{X,\omega} \leq \rho(-\infty) \int_Y dV_Y[f^2,h,\psi].$$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 27/55

(1) Construction of a smooth extension

Every section $f \in H^0(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi}))$ admits a C^{∞} lifting

$$\widetilde{f} = \sum \xi_i \widetilde{f_i}, \ \ \widetilde{f_i} \in H^0(U_i, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h))$$

by means of a Stein covering (U_i) of X and a partition of unity (ξ_i) subordinate to (U_i) .

Since $\sum \overline{\partial} \xi_i = 0$, we have $\overline{\partial} \widetilde{f} = \sum \overline{\partial} \xi_i (\widetilde{f_i} - \widetilde{f_j})$ on U_j , and since $\widetilde{f_i} - \widetilde{f_j}$ has coefficients in $\mathcal{I}(he^{-\psi})$, we see that $\overline{\partial} \widetilde{f}$ is valued in

$$\mathcal{O}_X(K_X\otimes L)\otimes \mathcal{I}(he^{-\psi})\otimes_{\mathcal{O}_X} C^{\infty}.$$

As X is assumed to be weakly pseudoconvex, we can consider $X_c = \{z \in X : \gamma(z) < c\} \subseteq X$, $\forall c \in \mathbb{R}$, and get by compactness

$$\int_{X} |\overline{\partial} \widetilde{f}|_{\omega,h}^{2} e^{-\psi} dV_{X,\omega} < +\infty.$$

It will be enough to get estimates on X_c , and then let $c \to +\infty$.

(2) Solving the $\overline{\partial}$ equation

The next idea is to truncate \widetilde{f} by multiplying \widetilde{f} with a cut-off function $\theta(\psi - t)$ equal to 1 near $Y \subset \psi^{-1}(-\infty)$.

We next solve the approximate $\overline{\partial}$ -equation

$$\begin{array}{ll} \text{(*)} & \partial u_{t,\varepsilon} = v_t + w_{t,\varepsilon} \\ \\ \text{with } v_t := \overline{\partial} (\theta(\psi - t) \cdot \widetilde{f}) = \theta(\psi - t) \cdot \overline{\partial} \widetilde{f} + \theta'(\psi - t) \overline{\partial} \psi \wedge \widetilde{f}. \end{array}$$

It the weights ψ and φ of $h=h_0e^{-\varphi}$ are not smooth, we use regularizations $\varphi_\delta\downarrow\varphi$, $\psi_\delta\downarrow\psi$ and complete Kähler metrics $\omega_\delta\downarrow\omega$ on $X\smallsetminus Z_\delta$. (We omit details here).

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 29/55

(3) L² estimates for solution and error term

The existence theorem with twisting factors $\eta_{t,\varepsilon}$, $\lambda_{t,\varepsilon}$ yields

$$\int_{X_{c}} (\eta_{t,\varepsilon} + \lambda_{t,\varepsilon})^{-1} |u_{t,\varepsilon}|_{\omega,h_{0}}^{2} e^{-\varphi - \psi} dV_{X,\omega} + \frac{1}{\varepsilon} \int_{X_{c}} |w_{t,\varepsilon}|_{\omega,h_{0}}^{2} e^{-\varphi - \psi} dV_{X,\omega}
\leq 4 \int_{X_{c} \cap \{\psi < t+1\}} |\overline{\partial} \widetilde{f}|_{\omega,h_{0}}^{2} e^{-\varphi - \psi} dV_{\omega}
+ 4 \int_{X_{c} \cap \{t < \psi < t+1\}} \langle (B_{t} + \varepsilon \operatorname{Id})^{-1} \overline{\partial} \psi \wedge \widetilde{f}, \overline{\partial} \psi \wedge \widetilde{f} \rangle_{\omega,h_{0}} e^{-\varphi - \psi}.$$

The first integral in the right hand side tends to 0 as $t \to -\infty$.

Again, the main point is to choose ad hoc factors η_t , λ_t , and we want here the last integral to converge to a finite limit. One can check that this works with

$$\zeta(u) = \log \frac{\rho(-\infty)}{\rho(u)}, \quad \chi(u) = \frac{\int_{u}^{A} \rho(v) dv + \frac{1}{\alpha \rho(A)}}{\rho(u)}, \quad \beta = \frac{(\chi')^{2}}{\chi \zeta'' - \chi''},$$

$$\sigma_{t,\varepsilon}(u) = \max_{\varepsilon}(u, t), \quad \eta_{t,\varepsilon} = \chi(\sigma_{t,\varepsilon}(\psi)), \quad \lambda_{t,\varepsilon} = \beta(\sigma_{t,\varepsilon}(\psi)).$$

Extension from hypersurface (Stein case)

In the hypersurface case, one gets the following simpler statement.

Theorem

Let X be a Stein manifold of dimension n. Let φ and ψ be plurisubharmonic functions on X. Assume that w is a holomorphic function on X such that $\sup_X (\psi + 2 \log |w|) \le 0$ and dw does not vanish identically on any branch of $w^{-1}(0)$.

Denote $Y = w^{-1}(0)$ and $Y_0 = \{x \in Y : dw(x) \neq 0\}$.

Then for any holomorphic (n-1)-form f on Y_0 satisfying

$$\int_{Y_0} e^{-\varphi - \psi} i^{(n-1)^2} f \wedge \overline{f} < +\infty,$$

there exists a holomorphic *n*-form F on X satisfying $F_{|Y_0} = dw \wedge f$ and an optimal estimate

$$\int_{X} e^{-\varphi} i^{n^2} F \wedge \bar{F} \leq 2\pi \int_{Y_0} e^{-\varphi - \psi} i^{(n-1)^2} f \wedge \bar{f}.$$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 31/55

The Suita conjecture

The Suita conjecture was posed originally on open Riemann surfaces in 1972. The motivation was to answer a question posed by Sario and Oikawa about the relation between the Bergman kernel B_{Ω} for holomorphic (1,0) forms on an open Riemann surface Ω which admits a Green function G_{Ω} .

Recall that the logarithmic capacity $c_{\beta}(z)$ is locally defined by

$$c_{eta}(z) = \exp\lim_{\xi o z} (\mathit{G}_{\Omega}(\xi,z) - \log|\xi-z|) \ \ ext{on} \ \ \Omega.$$

Suita conjecture

 $(c_{\beta}(z))^2 |dz|^2 \leq \pi B_{\Omega}(z)$, for every $z \in \Omega$.

Theorem

The Suita conjecture holds true (planar case: Błocki 2013; general case: Guan-Zhou 2014). Moreover (Guan-Zhou 2014), equality holds iff Ω biholomorphic to disc minus a closed polar set.

Approximation of currents, Zariski decomposition

Definition

On X compact Kähler, a Kähler current T is a closed (1,1)-current T such that $T \geq \delta \omega$ for a smooth (1,1) form $\omega > 0$ and $\delta \ll 1$.

Easy observation

 $\alpha \in \mathcal{E}^{\circ}$ (interior of \mathcal{E}) $\iff \alpha = \{T\}$, T = a Kähler current. We say that \mathcal{E}° is the cone of big (1,1)-classes.

Theorem on approximate Zariski decomposition (D, 1992)

Any Kähler current can be written $T=\lim T_m$ where $T_m\in\{T\}$ has analytic singularities & logarithmic poles, i.e. \exists modification $\mu_m:\widetilde{X}_m\to X$ such that $\mu_m^\star T_m=[E_m]+\beta_m$, where $E_m\geq 0$ is a \mathbb{Q} -divisor on \widetilde{X}_m with coeff. in $\frac{1}{m}\mathbb{Z}$ and β_m is a Kähler form on \widetilde{X}_m .

Moreover (Boucksom), $\operatorname{Vol}(\beta_m) = \int_{\widetilde{X}_m} \beta_m^n \to \operatorname{Vol}(T)$ as $m \to +\infty$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 33/5

Proof of the analytic Zariski decomposition

ullet Write locally on any coordinate ball $\Omega\subset X$

$$T = i\partial \overline{\partial} \varphi$$

for some strictly plurisubharmonic psh potential φ on X.

• Approximate T on Ω by

$$T_m = i\partial\overline{\partial}\varphi_m$$
, where $\varphi_m(z) = \frac{1}{2m}\log\sum_{\ell}|g_{\ell,m}(z)|^2$

where $(g_{\ell,m})$ is a Hilbert basis of the space

$$\mathcal{H}(\Omega, m\varphi) = \big\{ f \in \mathcal{O}(\Omega) \, ; \, \|f\|_{m\varphi}^2 := \int_{\Omega} |f|^2 e^{-2m\varphi} dV < +\infty \big\}.$$

• We have $\varphi_m(z) = \frac{1}{2m} \sup_{\|f\|_{m\omega} < 1} \log |f(z)|^2$.

The mean value inequality implies

$$|f(z)|^2 \leq \frac{1}{\pi^n r^{2n}/n!} \sup_{B(z,r)} e^{2m\varphi(z)} \Rightarrow \varphi_m(z) \leq \sup_{B(z,r)} \varphi + \frac{n}{m} \log \frac{C}{r}.$$

Use of the pointwise Ohsawa-Takegoshi theorem

• The Ohsawa-Takegoshi L^2 extension theorem (extension from a single isolated point) implies that for every $z_0 \in \Omega$, there exists $f \in \mathcal{O}(\Omega)$ such that $f(z_0) = c \, e^{m\varphi(z_0)}$ (c > 0 small), such that

$$||f||_{m\varphi}^2 = \int_{\Omega} |f|^2 e^{-2m\varphi} dV \le C \int_{\{z_0\}} |f|^2 e^{-2m\varphi} \delta_{z_0} = 1$$

for $c = C^{-1/2}$. As a consequence $\varphi_m(z) \ge \varphi(z) + \frac{1}{2m} \log c$.

ullet By the above inequalities one easily concludes that the Lelong number at any point $z_0 \in \Omega$ satisfies

$$\nu(\varphi, z_0) - \frac{n}{m} \leq \nu(\varphi_m, z_0) \leq \nu(\varphi, z_0).$$

This implies Siu's analyticity result for Lelong upper level sets $E_c(T)$.

• The case of a global current $T = \alpha + dd^c \varphi$ is obtained by using a covering of X by balls Ω_j , and gluing the local approximations $\varphi_{j,m}$ of φ into a global one φ_m by a partition of unity.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 35/55

Third lecture

Third lecture

Log canonical thresholds

The goal is to explain a proof of the strong openness conjecture for log canonical thresholds. Let Ω be a domain in \mathbb{C}^n , $f \in \mathcal{O}(\Omega)$ a holomorphic function, and $\varphi \in \mathrm{PSH}(\Omega)$ a psh function on Ω .

The log canonical threshold $c_{z_0}(\varphi) \in]0, +\infty]$ (or complex singularity exponent) is defined to be

$$c_{z_0}(\varphi) = \sup \{c > 0; e^{-2c\varphi} \text{ is } L^1 \text{ on a neighborhood of } z_0\}.$$

A well known theorem of Skoda asserts that

$$\frac{1}{n}\nu(\varphi,z_0)\leq c_{z_0}(\varphi)^{-1}\leq \nu(\varphi,z_0).$$

For every holomorphic function f on Ω , we also introduce the weighted log canonical threshold $c_{f,z_0}(\varphi) \in]0,+\infty]$ of φ with weight f at z_0 to be

$$c_{f,z_0}(\varphi) = \sup \{c > 0; |f|^2 e^{-2c\varphi} \text{ is } L^1 \text{ on a neighborhood of } z_0\}.$$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 37/55

Semi-continuity theorem / strong openness

Theorem (Guan-Zhou 2013, version due to Pham H. Hiep 2014))

Let f be a holomorphic function on an open set Ω in \mathbb{C}^n and let φ be a psh function on Ω .

- (i) ("Semicontinuity theorem") Assume that $\int_{\Omega'} e^{-2c\,\varphi} dV_{2n} < +\infty$ on some open subset $\Omega' \subset \Omega$ and let $z_0 \in \Omega'$. Then there exists $\delta = \delta(c, \varphi, \Omega', z_0) > 0$ such that for every $\psi \in \mathrm{PSH}(\Omega')$, $\|\psi \varphi\|_{L^1(\Omega')} \leq \delta$ implies $c_{z_0}(\psi) > c$. Moreover, as ψ converges to φ in $L^1(\Omega')$, the function $e^{-2c\,\psi}$ converges to $e^{-2c\,\varphi}$ in L^1 on every relatively compact open subset $\Omega'' \subseteq \Omega'$.
- (ii) ("Strong effective openness") Assume that $\int_{\Omega'} |f|^2 e^{-2c\varphi} dV_{2n} < +\infty \text{ on some open subset } \Omega' \subset \Omega. \text{ When } \psi \in \mathrm{PSH}(\Omega') \text{ converges to } \varphi \text{ in } L^1(\Omega') \text{ with } \psi \leq \varphi, \text{ the function } |f|^2 e^{-2c\psi} \text{ converges to } |f|^2 e^{-2c\varphi} \text{ in } L^1 \text{ norm on every relatively compact open subset } \Omega'' \subseteq \Omega'.$

Consequences of the semi-continuity theorem

Corollary 1 (Strong openness, Guan-Zhou 2013)

For any plurisubharmonic function φ on a neighborhood of a point $z_0 \in \mathbb{C}^n$, the set $\{c > 0 : |f|^2 e^{-2c\varphi} \text{ is } L^1 \text{ on a neighborhood of } z_0\}$ is an open interval $]0, c_{f,z_0}(\varphi)[$.

Proof. After subtracting a large constant to φ , we can assume $\varphi \leq 0$. Then Cor. 1 is a consequence of assertion (ii) of the main theorem by taking Ω' small enough and $\psi = (1 + \delta)\varphi$ with $\delta \searrow 0$.

Application to multiplier ideal sheaves (Guan-Zhou 2013)

Let $h=e^{-\varphi}$ a singular hermitian metric with φ quasi-psh. The "upper semicontinuous regularization" of $\mathcal{I}(h)$ is defined to be

$$\mathcal{I}_+(h) = \lim_{\varepsilon \to 0} \mathcal{I}(h^{1+\varepsilon}) = \lim_{\varepsilon \to 0} \mathcal{I}((1+\varepsilon)\varphi) = \lim_{k \to +\infty} \mathcal{I}((1+1/k)\varphi)$$

(by Noetherianity, this increasing sequence is stationary on all compact subsets). Then $\mathcal{I}_+(h) = \mathcal{I}(h)$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 39/55

Convergence from below / idea of the proof

Corollary 2 (Convergence from below)

If $\psi \leq \varphi$ converges to φ in a neighborhood of $z_0 \in \mathbb{C}^n$, then $c_{f,z_0}(\psi) \leq c_{f,z_0}(\varphi)$ converges to $c_{f,z_0}(\varphi)$.

Proof. We have by definition $c_{f,z_0}(\psi) \leq c_{f,z_0}(\varphi)$ for $\psi \leq \varphi$, but again (ii) shows that $c_{f,z_0}(\psi)$ becomes $\geq c$ for any given value $c \in (0, c_{f,z_0}(\varphi))$, when $\|\psi - \varphi\|_{L^1(\Omega')}$ is sufficiently small.

Phams's theorem is proved by induction on n (n = 0, 1 are easy).

Aassume that the theorem holds for dimension n-1. Let $f \in \mathcal{O}(\Delta_R^n)$ be holomorphic on a n-dimensional polydisc, such that $\int_{\Delta_R^n} |f(z)|^2 e^{-2c\varphi(z)} dV_{2n}(z)$ converges. The idea is to restrict f to a generic hyperplane $z_n = w_n$. By induction, the integral of the restriction still converges after increasing c to $c + \varepsilon$ (shrinking R). By the Ohsawa-Takegoshi theorem, the restriction can be extended to a function F and one proceeds by comparing f and F.

Key lemma in Pham's proof

Lemma (Pham)

Let $\varphi \leq 0$ be psh and f be holomorphic on the polydisc Δ_R^n of center 0 and (poly)radius R>0 in \mathbb{C}^n , such that for some c>0

$$\int_{\Delta_R^n} |f(z)|^2 e^{-2c\,\varphi(z)} dV_{2n}(z) < +\infty.$$

Let $\psi_j \leq 0$, $j \in \mathbb{N}$, be psh functions on Δ_R^n with $\psi_j \to \varphi$ in $L^1_{\mathrm{loc}}(\Delta_R^n)$, and assume that $f \equiv 1$ or $\psi_j \leq \varphi$ for all $j \geq 1$.

Then for every r < R and $\varepsilon \in]0, \frac{1}{2}r]$, there exist a value $w_n \in \Delta_\varepsilon \setminus \{0\}$ (in a set of measure > 0), an index $j_0 = j_0(w_n)$, a constant $\tilde{c} = \tilde{c}(w_n) > c$ and holomorphic functions F_j on Δ_r^n , $j \geq j_0$, such that $F_j(z) = f(z) + (z_n - w_n) \sum a_{j,\alpha} z^\alpha$ with $|w_n| |a_{j,\alpha}| \leq r^{-|\alpha|} \varepsilon$ for all $\alpha \in \mathbb{N}^n$, $\underline{\mathrm{IM}}(F_j) \leq \underline{\mathrm{IM}}(f)$, and

$$\int_{\Delta_r^n} |F_j(z)|^2 e^{-2\tilde{c}\,\psi_j(z)} dV_{2n}(z) \le \frac{\varepsilon^2}{|w_n|^2} < +\infty, \quad \forall j \ge j_0.$$

[Here $\underline{IM}(F)$ = Initial Monomial in lexicographic order at 0].

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 41/55

Idea of proof of the key lemma

By Fubini's theorem we have

$$\int_{\Delta_R} \left[\int_{\Delta_P^{n-1}} |f(z',z_n)|^2 e^{-2c \, \varphi(z',z_n)} dV_{2n-2}(z') \right] dV_2(z_n) < +\infty.$$

Since the integral extended to a small disc $z_n \in \Delta_\eta$ tends to 0 as $\eta \to 0$, it will become smaller than any preassigned value, say $\varepsilon_0^2 > 0$, for $\eta \le \eta_0$ small enough. Therefore we can choose a set of positive measure of values $w_n \in \Delta_\eta \setminus \{0\}$ such that

$$\int_{\Delta_R^{n-1}} |f(z',w_n)|^2 e^{-2c\,\varphi(z',w_n)} dV_{2n-2}(z') \leq \frac{\varepsilon_0^2}{\pi\eta^2} < \frac{\varepsilon_0^2}{|w_n|^2}.$$

Since the main theorem is assumed to hold for n-1, for any $\rho < R$ there exist $j_0 = j_0(w_n)$ and $\tilde{c} = \tilde{c}(w_n) > c$ such that

$$\int_{\Delta_{\rho}^{n-1}} |f(z',w_n)|^2 e^{-2\tilde{c}\,\psi_j(z',w_n)} dV_{2n-2}(z') < \frac{\varepsilon_0^2}{|w_n|^2}, \quad \forall j \geq j_0.$$

Idea of proof of the key lemma (2)

By Ohsawa-Takegoshi, there exists a holomorphic function F_j on $\Delta_{\rho}^{n-1} \times \Delta_R$ such that $F_j(z', w_n) = f(z', w_n)$ for all $z' \in \Delta_{\rho}^{n-1}$, and

$$\begin{split} \int_{\Delta_{\rho}^{n-1}\times\Delta_{R}} |F_{j}(z)|^{2} e^{-2\tilde{c}\,\psi_{j}(z)} dV_{2n}(z) \\ &\leq C_{n} R^{2} \int_{\Delta_{\rho}^{n-1}} |f(z',w_{n})|^{2} e^{-2\tilde{c}\,\psi_{j}(z',w_{n})} dV_{2n-2}(z') \leq \frac{C_{n} R^{2} \varepsilon_{0}^{2}}{|w_{n}|^{2}}, \end{split}$$

where C_n is a constant which only depends on n (the constant is universal for R=1 and is rescaled by R^2 otherwise).

Taking $\rho = \frac{1}{2}(r+R)$, the mean value inequality implies

$$||F_j||_{L^{\infty}(\Delta_r^n)} \leq \frac{2^n C_n^{\frac{1}{2}} R \varepsilon_0}{\pi^{\frac{n}{2}} (R-r)^n |w_n|}.$$

Since $F_j(z', w_n) - f(z', w_n) = 0$, $\forall z' \in \Delta_r^{n-1}$, we can write $F_j(z) = f(z) + (z_n - w_n)g_j(z)$ for some holomorphic function $g_j(z) = \sum_{\alpha \in \mathbb{N}^n} a_{j,\alpha} z^{\alpha}$ on $\Delta_r^{n-1} \times \Delta_R$. Then analyze $\underline{\mathrm{IM}}(F_j)$...

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 43/55

Volume and numerical dimension of currents

Definition

let (X,ω) be a compact Kähler manifold, and $T\geq 0$ a closed (1,1)-current on X. The positive intersection $\langle T^p\rangle\in H^{p,p}_{\geq 0}(X)$ (in the sense of Boucksom) is

$$\lim_{\varepsilon \to 0} \left(\limsup (\mu_{m,\varepsilon})_* (\beta_{m,\varepsilon}^p) \right), \quad \mu_{m,\varepsilon} : \widetilde{X}_{m,\varepsilon} \to X$$

for the Zariski decomposition $\mu_{m,\varepsilon}^* T_{m,\varepsilon} = \beta_{m,\varepsilon} + [E_{m,\varepsilon}]$ of Bergman approximations $T_{m,\varepsilon}$ of $T + \varepsilon \omega$. The volume is $\operatorname{Vol}(T) = \langle T^n \rangle$.

Numerical dimension of a current

$$\operatorname{nd}(T) = \max \{ p \in \mathbb{N} : \langle T^p \rangle \neq 0 \text{ in } H^{p,p}_{>0}(X) \}.$$

Numerical dimension of a hermitian line bundle (L, h)

If $\Theta_{L,h} \geq 0$, one defines $\operatorname{nd}(L,h) = \operatorname{nd}(\Theta_{L,h})$.

Generalized Nadel vanishing theorem

Theorem (Junyan Cao, PhD thesis 2012)

Let X be compact Kähler, and (L, h) be s.t. $\Theta_{L,h} \geq 0$ on X. Then

$$H^q(X, K_X \otimes L \otimes \mathcal{I}_+(h)) = 0$$
 for $q \ge n - \operatorname{nd}(L, h) + 1$,

Moreover we have in fact $\mathcal{I}_{+}(h) = \mathcal{I}(h)$ by Guan-Zhou.

Remark 1. There is also a concept of numerical dimension of a class $\alpha \in H^{1,1}(X)$: one defines $\operatorname{nd}(L)$ to be $-\infty$ if L is not psef, and

$$\mathrm{nd}(L) = \max\{p \in \mathbb{N} : \lim_{\varepsilon \to 0} \sup_{\{T \in C_1(L), T \ge -\varepsilon\omega\}} \langle (T + \varepsilon\omega)^p \rangle \neq 0$$

when L is psef. In general, we have $nd(L, h) \leq nd(L)$, but it may happen that $\sup_{\{h, \Theta_{L,h} \geq 0\}} \operatorname{nd}(L,h) < \operatorname{nd}(L)$.

Remark 2. In the projective case, one can use a hyperplane section argument, using Tsuji's algebraic expression of nd(L, h):

$$\operatorname{nd}(L,h)=\max\big\{p{\in}\mathbb{N}\,;\,\exists Y^p{\subset}X,\,h^0(Y,(L^{\otimes m}\otimes\mathcal{I}(h^m))_{|Y})\geq cm^p\big\}.$$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry

Proof of generalized Nadel vanishing (projective case)

Hyperplane section argument (projective case). Take A = very ampledivisor, $\omega = \Theta_{A,h_A} > 0$, and $Y = A_1 \cap \ldots \cap A_{n-p}$, $A_j \in |A|$. Then

$$\langle \Theta_{L,h}^p \rangle \cdot Y = \int_X \langle \Theta_{L,h}^p \rangle \cdot Y = \int_X \langle \Theta_{L,h}^p \rangle \wedge \omega^{n-p} > 0.$$

From this one concludes that $(\Theta_{L,h})_{|Y}$ is big.

Lemma (J. Cao)

When (L, h) is big, i.e. $\langle \Theta_{L,h}^n \rangle > 0$, there exists a metric \widetilde{h} such that $\mathcal{I}(h) = \mathcal{I}_{+}(h)$ with $\Theta_{L,\tilde{h}} \geq \varepsilon \omega$ [Riemann-Roch].

Then Nadel $\Rightarrow H^q(X, K_X \otimes L \otimes \mathcal{I}_+(h)) = 0$ for q > 1.

Conclude by induction on dim X and the exact cohomology sequence for the restriction to a hyperplane section.

Proof of generalized Nadel vanishing (Kähler case)

Kähler case. By the regularization theorem, one finds an approximation $\tilde{h}_{\varepsilon}=h_0e^{-\tilde{\varphi}_{\varepsilon}}$ with analytic singularities of the metric h of L, such that $\Theta_{L,\tilde{h}_{\varepsilon}}\geq -\frac{1}{2}\varepsilon\omega$.

Then, by blowing-up X to achieve divisorial singularities for \tilde{h}_{ε} and using Yau's theorem, one solves on X a singular Monge-Ampère equation: $\exists h_{\varepsilon} = h_0 e^{-\varphi_{\varepsilon}}$ with logarithmic poles, such that

$$(\Theta_{L,h_{\varepsilon}} + \varepsilon \omega)^n = C_{\varepsilon} \omega^n.$$

where
$$C_{\varepsilon} \geq \binom{n}{p} \langle \Theta_{L,h}^p \rangle \cdot (\varepsilon \omega)^{n-p} \sim C \varepsilon^{n-p}$$
, $p = \operatorname{nd}(L,h)$.

Another important fact is that one can ensure the equalities $\mathcal{I}_{+}(h) = \mathcal{I}(h^{1+\varepsilon}) = \mathcal{I}(h_{\varepsilon})$ (looking deeper in the regularization).

Ch. Mourougane argument (PhD thesis 1996). Let $\lambda_1 \leq \ldots \leq \lambda_n$ be the eigenvalues of $\Theta_{L,h} + \varepsilon \omega$ with respect to ω at each point $x \in X$. Then

$$\lambda_1 \dots \lambda_n = C_{\varepsilon} \ge \text{Const } \varepsilon^{n-p}.$$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 47/55

Final step: use Bochner-Kodaira formula

Moreover

$$\int_X \lambda_{q+1} \dots \lambda_n \, \omega^n = \int_X \Theta_{L,h}^{n-q} \wedge \omega^q \leq \mathsf{Const}, \quad \forall q \geq 1,$$

so $\lambda_{q+1} \dots \lambda_n \leq C$ on a large open set $U \subset X$ and

$$\lambda_q^q \ge \lambda_1 \dots \lambda_q \ge c \varepsilon^{n-p} \quad \Rightarrow \quad \lambda_q \ge c \varepsilon^{(n-p)/q} \quad \text{on } U,$$

$$\Rightarrow \sum_{j=1}^q (\lambda_j - \varepsilon) \geq \lambda_q - q\varepsilon \geq c \varepsilon^{(n-p)/q} - q\varepsilon > 0 \ \ ext{for} \ \ q > n-p.$$

 $\lambda_j = \text{eigenvalues of } (\Theta_{L,h_{\varepsilon}} + \varepsilon \omega) \Rightarrow (\text{eigenvalues of } \Theta_{L,h_{\varepsilon}}) = \lambda_j - \varepsilon$ and the Bochner-Kodaira formula yields

$$\|\overline{\partial} u\|_{\varepsilon}^2 + \|\overline{\partial}^* u\|_{\varepsilon}^2 \ge \int_U \Big(\sum_{j=1}^q (\lambda_j - \varepsilon)\Big) |u|^2 e^{-\varphi_{\varepsilon}} dV_{\omega}.$$

The fact that U has almost full volume allows to take the limit as $\varepsilon \to 0$ and conclude that u=0. QED

Hard Lefschetz theorem with psef coefficients

Hard Lefschetz theorem (D-Peternell-Schneider 2001)

Let (L, h) be a psef line bundle on a compact n-dimensional Kähler manifold (X, ω) , $\Theta_{L,h} \geq 0$. Then, the Lefschetz map :

 $u \mapsto \omega^q \wedge u$ induces a surjective morphism:

$$\Phi^q_{\omega,h}: H^0(X,\Omega_X^{n-q}\otimes L\otimes \mathcal{I}(h))\longrightarrow H^q(X,K_X\otimes L\otimes \mathcal{I}(h)).$$

The proof is based on using approximated metrics $h_{\nu}=h_0e^{-\varphi_{\nu}}$, $\varphi_{\nu}\downarrow\varphi$, that are smooth on $X\smallsetminus Z_{\nu}$, with an increasing sequence of analytic sets Z_{ν} , such that $\Theta_{L,h_{\nu}}\geq -\varepsilon_{\nu}\omega$. We also consider Kähler metrics $\omega_{\nu}\downarrow\omega$ that are complete on $X\smallsetminus Z_{\nu}$.

Any cohomology class $\{u\}$ is represented by a (ω_{ν},h_{ν}) -harmonic (n,q) form u_{ν} with values in $K_X \otimes L \otimes \mathcal{I}(h_{\nu})$. One gets a unique (n-q,0)-form v_{ν} s.t. $\omega_{\nu}^q \wedge v_{\nu} = u_{\nu}$, and a Bochner type formula

$$\|\overline{\partial} u\|^2 + \|\overline{\partial}_{h_{\nu}}^* u\|^2 = \|\overline{\partial} v\|^2 + \int_{Y} \sum_{I,J} \left(\sum_{j \in J} \lambda_{\nu,j} \right) |u_{IJ}|^2 e^{-\varphi_{\nu}} dV_{\omega_{\nu}}.$$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 49/55

Proof of the Hard Lefschetz theorem

Here the $\lambda_{\nu,j}$ are the curvature eigenvalues of $\Theta_{L,h_{\nu}}$, so $\lambda_{\nu,j} \geq -\varepsilon_{\nu}$. Taking $u_{\nu} =$ harmonic representative, we get $\overline{\partial} u_{\nu} = \overline{\partial}_{h_{\nu}}^{*} u_{\nu} = 0$, hence

$$\begin{split} \|\overline{\partial} v_{\nu}\|^{2} &= \int_{X} |\overline{\partial} v_{\nu}|_{\omega_{\nu}} e^{-\varphi_{\nu}} dV_{\omega_{\nu}} \leq q \varepsilon_{\nu} \int_{X} |u_{\nu}|_{\omega_{\nu}}^{2} e^{-\varphi_{\nu}} dV_{\omega_{\nu}} \\ &\leq q \varepsilon_{\nu} \int_{X} |u|_{\omega_{\nu}}^{2} e^{-\varphi_{\nu}} dV_{\omega_{\nu}} \leq q \varepsilon_{\nu} \int_{X} |u|_{\omega}^{2} e^{-\varphi} dV_{\omega}. \end{split}$$

We need the following consequence of the Ohsawa-Takegoshi theorem:

Equisingular approximation theorem

Writing $h=h_0e^{-\varphi}$, there exists a decreasing sequence $\varphi_{\nu}\downarrow\varphi$ $\Rightarrow h=\lim h_{\nu}$ with $h_{\nu}=h_0e^{-\varphi_{\nu}}$, such that

- $\varphi_{\nu} \in C^{\infty}(X \setminus Z_{\nu})$, where Z_{ν} is an increasing sequence of analytic sets,
- $\mathcal{I}(h_{\nu}) = \mathcal{I}(h)$, $\forall \nu$,
- $\Theta_{L,h_{\nu}} \geq -\varepsilon_{\nu}\omega$.

Important complement by Xiaojun Wu

Theorem (Xiaojun Wu, PhD thesis 2020)

Let (L,h) be a psef line bundle on a compact Kähler manifold (X,ω) , $\Theta_{L,h} \geq 0$. Then, the wedge multiplication operator $\omega^q \wedge \bullet$ induces an isomorphism

$$H^0(X,\Omega_X^{n-q}\otimes L\otimes \mathcal{I}(h))\cap \operatorname{Ker}(\partial_h)\longrightarrow H^q(X,K_X\otimes L\otimes \mathcal{I}(h)).$$

Moreover, each section $v \in H^0(X, \Omega_X^{n-q} \otimes L \otimes \mathcal{I}(h)) \cap \text{Ker}(\partial_h)$ is ∇_h -parallel, and gives rise to a holomorphic foliation of X by considering the subsheaf $\mathcal{F}_v = \{\xi \in \mathcal{O}(T_X); i_{\xi}v = 0\} \subset \mathcal{O}(T_X)$.

Proof. In fact, with $c_q = i^{(n-q+1)^2}$, a formal integration by parts gives

$$\begin{split} \int_{X} |\partial_{h} v|_{h}^{2} dV_{\omega} &= \int_{X} c_{q} \{\partial_{h} v, \partial_{h} v\}_{h} \wedge \omega^{q-1} = -\int_{X} c_{q} \{i\overline{\partial}\partial_{h} v, v\}_{h} \wedge \omega^{q-1} \\ &= -\int_{X} c_{q} \{\Theta_{L,h} v, v\}_{h} \wedge \omega^{q-1} \leq 0 \quad \Rightarrow \quad \partial_{h} v = 0. \end{split}$$

One can check that this is meaningful in the sense of distributions.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 51/55

References (1)

- S. Boucksom, Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. École Norm. Sup. (4), 37(1) (2004) 45–76
- J.Y. Cao, Numerical dimension and a Kawamata-Viehweg-Nadel type vanishing theorem on compact Kähler manifolds, Compos. Math. 150 no. 11 (2014) 1869–1902
- J.Y. Cao, J.-P. Demailly, S-i. Matsumura, A general extension theorem for cohomology classes on non reduced analytic subspaces, Science China Mathematics, **60** (2017) 949–962
- J.-P. Demailly, On the cohomology of pseudoeffective line bundles, The Abel Symposium 2013, Vol. 10, Complex Geometry and Dynamics, Springer 2015, 51–99

References (2)

- J.-P. Demailly, Extension of holomorphic functions defined on non reduced analytic subvarieties, Advanced Lectures in Mathematics Volume 35.1, the legacy of Bernhard Riemann after one hundred and fifty years, 2015.
- J.-P. Demailly, Th. Peternell, M. Schneider, *Pseudo-effective line* bundles on compact Kähler manifolds, Internat. J. Math., 12(6) (2001) 689-741
- Q.A. Guan, X. Zhou, A proof of Demailly's strong openness conjecture, Annals of Math., Vol. 182, No. 2 (2015), 605-616
- T. Ohsawa, K. Takegoshi, On the extension of L² holomorphic functions, Math. Zeitschrift **195** (1987), 197–204.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 53/55

References (3)

T. Ohsawa series of papers I – VI, and : On a curvature condition that implies a cohomology injectivity theorem of Kollár-Skoda type, Publ. Res. Inst. Math. Sci. **41** (2005), no. 3, 565–577.

Hiep H. Pham, The weighted log canonical threshold, C. R. Math. Acad. Sci. Paris, 352(4) (2014) 283-288

H. Skoda, Sous-ensembles analytiques d'ordre fini ou infini dans \mathbb{C}^n , Bull. Soc. Math. France, 100 (1972) 353-408

Xiaojun Wu, On the hard Lefschetz theorem for pseudoeffective line bundles, arXiv:1911.13253v3, 17 pp, to appear in Int. J. of Mathematics.

X. Zhou, L. Zhu, Extension of cohomology classes and holomorphic sections defined on subvarieties, arXiv:1909.08822 [math.CV], 35 pp

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 55/55