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Links between di↵erent objects on a (smooth) manifold M2n

Geometric structures
[(almost) complex, symplectic]
19
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em
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Existence of special
Riemannian metrics

Solutions to PDEs

Lecture 1: Taming condition and Pluriclosed Metrics

Lecture 2: Symplectic Calabi-Yau Problem

Lecture 3: Balanced Metrics and the Hull-Strominger System
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Complex structures

Definition

An almost complex structure on M2n is an endomorphism of TM2n

such that J2 = �Id .

Theorem (Newlander-Nirenberg)

An almost complex structure J on M2n is integrable () NJ = 0.

For a complex manifold (M2n, J) the di↵erential d splits as
d = @ + @ and d2 = 0 gives

@2 = @
2
= @@ + @@ = 0

,! Dolbeault cohomology.
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Kähler metrics

Some complex manifolds are more complex than others!

Definition

A Riemannian metric g on (M2n, J) is J-Hermitian (or compatible)
if gp(Ju, Jv) = gp(u, v), 8p 2 M2n, 8u, v 2 TpM2n

Remark

!(·, ·) = g(J·, ·) is a di↵erential 2-form of type (1, 1).

Definition

A complex mfd (M2n, J) is called Kähler if it admits a Hermitian
metric g such that d! = 0.
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Examples

Riemann surfaces, Cn,Cn/Zn,CPn.

Question: Are all complex manifolds Kähler? No

• n = 1 all Riemann surfaces are Kähler.

• n � 2 necessary topological conditions for compact manifolds
(e.g. the odd Betti numbers have to be even; fundamental group
of particular type; formality in the sense of rational homotopy
theory..)

Theorem (Kodaira; Siu; Buchdal; Lamori)

A compact complex surface M is Kähler , b1(M) is even.
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A non-Kähler example

Example (Kodaira-Thurston manifold)

M4 = G/Z4, with G = H ⇥ R a Lie group of nilpotent matrices:

H =

8
<

:

0

@
1 x z
0 1 y
0 0 1

1

A , x , y , z 2 R

9
=

;

M4 is complex and symplectic, but since b1(M4) = 3 it cannot
admit a Kähler metric.

Remark

• M4 is an example of compact nilmanifold (,! compact locally
homogeneous space).
• Every complex structure on M4 is invariant, i.e. it is induced by
a complex structure on the Lie algebra of G .
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Taming condition

For a Kähler manifold (M2n, J,!) we have:

• d! = 0 and !n
6= 0 ,! symplectic

• ! of type (1, 1), i.e. !(J·, J·) = !(·, ·)

• ! > 0

• NJ = 0 ,! complex

Definition (Gromov)

An almost cpx structure J on a symplectic manifold (M2n,⌦) is
tamed by ⌦ if ⌦(X , JX ) > 0, 8X 6= 0.

If J is tamed by ⌦, then g(X ,Y ) = 1
2(⌦(X , JY )� ⌦(JX ,Y )) is a

J-Hermitian metric.
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Theorem (Streets, Tian; Li, Zhang)

If a compact complex (M4, J) admits a symplectic structure
taming J, then (M4, J) has a Kähler metric.

Problem

Does there exist an example of a compact complex (M2n, J), with
n > 2, admitting a symplectic form ⌦ taming J, but no Kähler
structures?

We will give some negative answer to the problem by using that
⌦ tames J () @⌦1,1 = @�, for some @-closed (2, 0)-form �.

,! in particular ! = ⌦1,1 defines a pluriclosed metric.
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Pluriclosed metrics

Definition

A Hermitian metric g on a complex manifold (M2n, J) is called
pluriclosed (or SKT) if

i@@! = ddc! = 0,

where dc = �J�1dJ = �i(@ � @).

Remark

The pluriclosed condition is essentially the only weakening of the
Kähler condition which is linear in the fundamental form!

Theorem (Gauduchon)

(M2n, J, g) compact Hermitian. Then 9! u 2 C
1(M2n) such that

@@(e2u!)n�1 = 0,
R
M2n u dVg = 0.
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,! Every conformal hermitian structure on a compact complex
(M2n, J) contains an hermitian metric !̃ such that @@!̃n�1 = 0
) every compact complex surface admits pluriclosed metrics!

Theorem (Gauduchon)

On any Hermitian manifold (M2n, J, g) there exists an a�ne line
of canonical Hermitian connections r⌧ (r⌧J = 0, r⌧g = 0),
completely determined by their torsion

T (X ,Y ,Z ) := g(T (X ,Y ),Z ).

The family includes:

• the Chern connection r
C (TC has trivial (1, 1)-component)

• the Bismut (or Strominger) connection r
B (TB is a 3-form)
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Bismut and Chern connections

Remark

r
C and r

B are related to the Levi-Civita connection r
LC by

g(rB
XY ,Z ) = g(rLC

X Y ,Z ) + 1
2d

c!(X ,Y ,Z ),

g(rC
XY ,Z ) = g(rLC

X Y ,Z ) + 1
2d!(JX ,Y ,Z ).

Remark

• g is pluriclosed if and only if dTB = 0.

• The trace of the torsion of rC is equal to the Lee form
✓ := Jd⇤!, which is the unique 1-form satisfying

d!n�1 = ✓ ^ !n�1.
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Even-dimensional compact Lie groups

tC:= Cartan subalgebra of gC

• Left-invariant cpx structures J on G () pairs (Jt,P), with Jt
any cpx structure on t and P ✓ � is a system of positive roots:

g1,0 = t1,0 �
M

↵2P
gC↵

• Left-invariant pluriclosed metrics g on G are obtained by
extending the negative of the Killing form on [g, g] to a
J-compatible positive definite inner product:

r
LC
X Y =

1

2
[X ,Y ], r

B
XY = 0, X ,Y 2 g,

with TB(X ,Y ,Z ) = g([X ,Y ],Z ) a closed 3-form!
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Compact locally homogeneous spaces

Compact (�\G , J) with J invariant complex structure

• Classification results for the existence of pluriclosed metrics on
nilmanifolds [F, Parton, Salamon; Enrietti, F, Vezzoni]

Conjecture: Every nilmanifold admitting a pluriclosed metric has to
be 2-step and the total space of a holomorphic torus bundle over a
torus!

• Classification results for the existence of pluriclosed metrics on
solvmanifolds [F, Otal, Ugarte; F, Paradiso; Freibert, Swann]

Theorem (F, Tardini, Vezzoni)

The existence of a left-invariant pluriclosed metric on a unimodular
Lie group G with a left-invariant abelian complex structure J
forces the group G to be 2-step nilpotent.

Anna Fino Interplays of Complex and Symplectic Geometry



Other examples which are not Bismut flat

• Characterization of the existence of pluriclosed metrics on
Oeljkelaus-Toma (OT) manifolds X (K ,U) := H

s
⇥ C

t/U ⇥OK ,
where Q ✓ K is an algebraic number field, OK is the ring of
algebraic integers of K and U is an admissible subgroup of the
group of totally positive units O⇤,+ [Otiman].

• For any positive integer k � 1, (k � 1)(S2
⇥ S4)#k(S3

⇥ S3) has
a pluriclosed metric [D. Grantcharov, G. Grantcharov, Y. Poon].

• Total spaces E of principal bundles over a projective manifold M
with structure group an even dimensional unitary, special
orthogonal or compact symplectic Lie group [Poddar, Takhur].
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Blow-ups

Theorem (Blanchard)

The complex blow-up of a Kähler manifold (M, J, g) at a point p
or along a compact complex submanifold Y is still Kähler.

Theorem (F, Tomassini)

The complex blow-up at a point or along a compact complex
submanifold preserves the existence of pluriclosed metrics.

,! resolutions of complex orbifolds with pluriclosed metrics.
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Characterization in terms of currents

D
p,q(M) : = space of (p, q)-forms with cpt support on (M, J).

Definition

The space of currents of bi-dimension (p, q) or of bi-degree
(n � p, n � q) is the topological dual D0

p,q(M) of Dp,q(M).

A current of bi-dimension (p, q) on M can be locally identified
with a (n � p, n � q)-form on M with coe�cients distributions.

Definition

A current T of bi-dimension (p, p) is real if T (') = T ('), for any
' 2 D

p,p(M).
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Definition

A real T 2 D
0
p,p is positive if

T ( i
p2

2p '
1
^ . . . ^ 'p

^ '1
^ . . . ^ 'p) � 0, for any 'j

2 D
1,0.

T is strictly positive if

'1
^ . . . ^ 'p

6= 0 ) T ( i
p2

2p '
1
^ . . . ^ 'p

^ '1
^ . . . ^ 'p) > 0, for

any 'j
2 D

1,0.

If T 2 D
0
p,p(M) is real, then T = i (n�p)2

2(n�p)

P
I ,J TI JdzI ^ dzJ , where

TI J are distributions such that TJI = T I J and I , J are multi-indices
of length n � p.
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Theorem (Harvey, Lawson)

A compact (M, J) does not admit a Kähler metric () (M, J) has
a non-zero, positive current of bi-dimension (1, 1) which is the
(1, 1)- part of an exact current.

Theorem (Alessandrini, Bassanelli)

• A compact (M, J) admits no symplectic forms taming J ()

(M, J) has a positive, exact, non-zero current of bi-dimension
(1, 1).
• A compact (M, J) admits no pluriclosed metrics () M admits
a positive, non-zero, current of bi-dimension (1, 1) which is
i@@-exact.
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An extension result

Theorem (Miyaoka)

If M2n
\ {p} admits a Kähler metric, then there exists a Kähler

metric on the complex manifold M2n.

Theorem (F, Tomassini)

Let (M2n, J), n � 2. If M2n
\ {p} admits a pluriclosed metric, then

there exists a pluriclosed metric on M2n.

Remark

If ! is the fundamental form of a pluriclosed g on (M2n, J), then !
corresponds to a real strictly positive current of bi-degree (1, 1)
which is @@-closed.
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Sketch of the proof

It is su�cient to show that if ! is the fundamental 2-form of a
pluriclosed metric on B

n(r) \ {0}, n � 2, then 9 0 < R < r and
!̂ 2 ⇤1,1(Bn(R)) such that
i) !̂ is the fundamental 2-form of a pluriclosed metric on B

n(R);
ii) !̂ = ! on B

n(R) \ Bn(23R).

Set T = �! with ! = fundamental form of a pluriclosed metric on
B
n(r) \ {0}. We apply

Theorem (Alessandrini, Bassanelli)

Y analytic subset in ⌦ ⇢ C
n. If T is a plurisubharmonic, negative

current of bi-dim (p, p) on ⌦ \ Y and dimC Y < p, then 9 the
simple (or trivial) extension T 0 of T across Y and T 0 is
plurisubharmonic.

,! T = �! can be extended as a current to B
n(r).
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Set !0 = �T 0.

Theorem (Siu; Bassanelli)

Let T be a current of bi-degree (h, k) on ⌦. If T is of order 0 and
i @@T = 0, then, locally,

T = @G + @H ,

with G and H with locally integrable functions as coe�cients.

Then

!0 = @G + @G ,

on B
n(R) for some 0 < R < r , where G is a current of bi-degree

(0, 1). In fact, G is smooth on B
n(R) \ {0}.

Finally, we can regularize G to obtain a @@-closed and positive
(1, 1)-form on B

n(R).
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Some negative results

Theorem (Enrietti, F, Vezzoni)

A compact nilmanifold M = �\G with J invariant has a symplectic
form taming J () M is a torus.

Sketch of the proof:

• If (M, J) admits a pluriclosed metric, then J has to preserve the
center ⇠ of g.

• We use that ⇠ \ [g, g] 6= {0} for a nilpotent Lie algebra.

Remark

For a solvable Lie algebra (g, J) admitting a pluriclosed metric it is
not true in general that J preserves the center ⇠ of g.

Anna Fino Interplays of Complex and Symplectic Geometry



Compact nilmanifolds are in particular compact solvmanifolds of
completely solvable type.

Definition

A compact solvmanifold �\G is completely solvable if the adjoint
representation of the Lie algebra g of G has only real eigenvalues.

Theorem (Baues, Cortes; Hasegawa)

A compact solvmanifold of completely solvable type has a Kähler
structure if and only if it is a complex torus.
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Theorem (F, Kasuya)

A compact solvmanifold (M = �\G , J) of completely solvable type
endowed with an invariant complex structure J admits a symplectic
form ⌦ taming J if and only if M is a complex torus.

Sketch of the Proof:

• g contains a nontrivial isotropic ideal h, i.e. ⌦|h⇥h = 0 [Baues,
Cortes].

• If dim h = 1, then the Lie algebra h?⌦/h admits a symplectic
form ⌦̃ taming a complex structure J̃ and h?⌦/h is unimodular.

• By induction h?⌦/h is Kähler and so h?⌦/h is abelian.
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Twistor space

M compact, anti-selfdual Riemannian 4-manifold (W+ = 0)

Tw(M) := S(⇤+M) the set of unit vectors in ⇤+M, where

⇤+M := {↵ 2 ⇤2M = so(TM) | ⇤↵ = ↵}.

,! the unit vectors ↵ 2 ⇤+M correspond to oriented, orthogonal
complex structures on TmM.

At each point (m, s) 2 Tw(M), consider the decomposition

T(m,s)Tw(M) = TmM � TsS(⇤
+
mM),

induced by the Levi-Civita connection.
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One can define
Im,s := Is � IS(⇤+

mM),

where Is is the cpx structure on TmM induced by s and IS(�⇤
mM) is

the cpx structure on S(⇤+
mM) = S2 induced by the metric and

orientation.

Theorem (Verbitsky)

If the twistor space (Tw(M), I) of a compact, anti-selfdual
Riemannian manifold admits a pluriclosed metric, then Tw(M) is
Kähler, hence isomorphic to CP

3 or a flag space.

The result is obtained from rational connectedness of the twistor
space, due to F. Campana. Indeed, using this one can show that
Tw(M) is Moishezon ,! satisfies @@-Lemma ,! admits a
symplectic form taming the complex structure ,! a contradiction!
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The pluriclosed flow

On a compact Kähler manifold (M, J, g) the Ricci flow

@tg(t) = �Ric(g(t)), g(0) = g ,

preserves the Kähler condition (,! Kähler Ricci flow) and reduces
to a parabolic Monge-Amṕere equation (Cao, Tian....).

Remark

For a non-Kähler manifold (M, J, g)

• the Levi-Civita connection does not not preserve the complex
structure and the Ricci flow does not preserve the Hermitian
condition!

• One may consider other connections preserving both the complex
structure and the metric (e.g. the Bismut connection).
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Let (M2n, J, g0,!0) be an Hermitian manifold. Streets and Tian
introduced the geometric flow

@t!(t) = �(⇢B)1,1(!(t)), !(0) = !0.

! ! �(⇢B)1,1(!) is a real quasi-linear second-order elliptic
operator when restricted to pluriclosed J-Hermitian metrics ,!

Theorem (Streets,Tian)

Let (M2n, J) be a compact complex manifold. If !0 is pluriclosed,
then 9✏ > 0 and a unique solution !(t) to the pluriclosed flow with
initial condition !0.
If !0 is Kähler, then !(t) is the unique solution to the Kähler-Ricci
flow with initial data !0.
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Remark

In local cpx coordinates the pluriclosed flow can be written as:

@t!(t) = @@⇤!(t) + @@
⇤
!(t) + i@@ log det g(t).

Proposition (Streets, Tian)

If a pluriclosed metric ! on (M2n, J) satisfies (⇢B)1,1 = �!, for a
constant � 6= 0, then ! = ⌦1,1 with ⌦ a symplectic form ⌦ taming
the complex structure J.

Problem

• Describe the maximal smooth existence time T .

• Study the limiting behavior at the time T .
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Consider the real (1, 1) Aeppli cohomology:

H1,1
A,R :=

{Ker i@@ : ⇤1,1
! ⇤2,2

}

{@⌘ + @⌘ | ⌘ 2 ⇤1,0}
.

,! the (1, 1) Aeppli positive cone

P := {[ ] 2 H1,1
A,R | 9! 2 [ ], ! > 0}.

consists precisely of the (1, 1) Aeppli classes represented by
pluriclosed metrics.

Remark

For a general complex manifold (M2n, J)

c1(M
2n) 2 H1,1

BC ,R :=
{Ker d : ⇤1,1

! ⇤2,2
}

{i@@f | f 2 C1}
,! H1,1

A,R.
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As in the Kähler-Ricci flow case for the real (1, 1) Aeppli class:
[!(t)] = [!0]� t c1(M2n).

,! The maximal smooth existence time T for the pluriclosed flow
with initial condition g0 satisfies:

T  ⌧⇤(!0) := sup{t � 0 | [!0]� t c1(M
2n) 2 P}.

Conjecture (Streets, Tian)

Let (M2n, J, g0) be a compact complex manifold with pluriclosed
metric. The maximal smooth solution of pluriclosed flow with
initial condition g0 exists on [0, ⌧⇤(!0)).
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Nilpotent Lie groups case

For a Lie group G with left-invariant Hermitian structure (J, g),
one may deform the Lie bracket instead of the Hermitian metric g

Theorem (Enrietti, F, Vezzoni)

The pluriclosed flow on a 2-step nilpotent simply-connected Lie
group (G , J) starting from a left-invariant Hermitian metric g has
a long-time solution.

The solutions converge in the Gromov-Hausdor↵ sense, after a
suitable normalization, to self-similar solutions of the flow
[Arroyo-Lafuente].

Anna Fino Interplays of Complex and Symplectic Geometry



Bismut Kähler-like conditions

Remark

In general rB does not satisfy the first Bianchi identity, since

�X ,Y ,Z RB(X ,Y ,Z ,U) = dTB(X ,Y ,Z ,U) + (rB
UT

B)(X ,Y ,Z )

��X ,Y ,Z g(TB(X ,Y ),TB(Z ,U)).

Definition

r
B is Kähler-like if it satisfies the first Bianchi identity

�X ,Y ,Z RB(X ,Y ,Z ) = 0

and the type condition

RB(X ,Y ,Z ,W ) = RB(JX , JY ,Z ,W ), 8X ,Y ,Z ,W .
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Conjecture (Angella, Otal, Ugarte, Villacampa)

If for a Hermitian manifold (M2n, J, g) the Bismut connection r
B

is Kähler-like, then g is pluriclosed.

Theorem (Zhao, Zheng)

r
B is Kähler-like () g is pluriclosed and r

BTB = 0.

Problem

Study the behaviour of the Bismut Kähler-like condition along the
pluriclosed flow.

Remark

If n = 2, then TB = � ⇤ ✓.
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Complex surfaces case

Definition

A Hermitian metric g on a complex manifold M2n is a Vaisman
metric if d! = ✓ ^ !, for some d-closed 1-form ✓ with r

LC✓ = 0.

,! Vaisman metrics are Gauduchon and |✓| is constant.

Theorem (F, Tardini)

Let (M4, J) be a complex surface.
• A Hermitian metric g is Vaisman if and only if g is pluriclosed
and r

B satisfies the first Bianchi identity.
• If (M4, J) admits a Vaisman metric g0 with constant scalar
curvature, then pluriclosed flow starting with !0 preserves the
Vaisman condition.

We use that, if (M4, J, g) is a compact Vaisman surface, then
⇢C = h dJ✓, for some h 2 C

1(M4). Moreover, Scal(g) is constant
if and only if h is constant and, in such a case c1(M4) = 0.
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Nilpotent Lie group case

Remark

If a 6-dimensional nilpotent Lie group (G , J) admits a Bismut
Kähler-like metric, then the left-invariant complex structure J has
to be abelian.

Theorem (F, Tardini, Vezzoni)

Let (G , J, g0) be a 2-step nilpotent Lie group with a left-invariant
Bismut Kähler-like Hermitian structure and let g(t) be the solution
to the pluriclosed flow starting from g0. Then g(t) is Bismut
Kähler-like for every t.
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